ZHANG G Q, BA Y, DU Y M, LI F M, XUE W. Environmental risk and cost restraint mechanism for incorporating large quantities of vegetable residues into fields in semi-arid area of the Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1827−1841. DOI: 10.12357/cjea.20220435
Citation: ZHANG G Q, BA Y, DU Y M, LI F M, XUE W. Environmental risk and cost restraint mechanism for incorporating large quantities of vegetable residues into fields in semi-arid area of the Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1827−1841. DOI: 10.12357/cjea.20220435

Environmental risk and cost restraint mechanism for incorporating large quantities of vegetable residues into fields in semi-arid area of the Loess Plateau

Funds: The study was supported by the National Natural Science Foundation of China (32001129) and the Research and Promotion Project of Special New Technology (New Equipment) for Agricultural Ecological Environment Protection in Gansu Province (RWS-NYSTZZ202102).
More Information
  • Corresponding author:

    XUE Wei, E-mail: xuewei@lzu.edu.cn

  • Received Date: June 06, 2022
  • Accepted Date: August 25, 2022
  • Available Online: October 11, 2022
  • The incorporation of vegetable residues can fertilize low-quality loess, but it is still unclear whether large quantity of vegetable residues incorporation will cause secondary environmental pollution and increase processing costs. In this study, a plot test was designed in the semi-arid area of the Loess Plateau in Yuzhong, which was randomly combined with three thicknesses of incorporated vegetable residues (20, 40, and 60 cm), three thicknesses of surface soil covering (10, 20, and 30 cm). Meantime, two medium-scale site tests were conducted, in which the thickness of incorporated vegetable residue was up to 350 cm, and the surface soil covering thickness was 30 cm. The degradation rate of vegetable residues, emission rate of NH3 and H2S on the soil surface, residue of heavy metals and pesticides in the soil, salt ions contents, and processing cost were investigated. The cumulative degradation rate of vegetable residues in all treatments showed a logarithmic growth curve, which was first fast and then slow. On the 20th and 35th days, the degradation rate of vegetable residues reached 70.0% in the plot and the medium-scale test sites, respectively, and subsequently slowed down. When the thickness of the incorporated vegetable residues was 60 cm and the depth of covering soil was 10–30 cm, the emission of NH3 was reduced by 71.0%–86.0%, and the emission of H2S was reduced by 84.9%−87.9%, compared with QC (vegetable residue thickness of 60 cm and no soil cover). The time series changes of the NH3 emission rate on the soil surface showed a single narrow peak curve, and the peak value of emission rate and cumulative emission were significantly positively correlated with the thickness of incorporated vegetable residues, and significantly negatively correlated with the depth of the covering soil. There was no significant difference in H2S emissions from the soil surface of the plot test and QT (no incorporation of vegetable residues), and the H2S emissions from the medium-sized test increased significantly. The larger the amount of vegetable residues into the field, the smaller the emission intensity of pollutants was. There was no significant difference in the contents of heavy metals, pesticide residues, and Ca2+ in the vegetable residue layer and the upper and lower soil layers of the medium-sized test sites compared with those in QT (no incorporation of vegetable residues), whereas Na+ leached into the deep soil layer. There is a power-law negative correlation between the thickness of incorporated vegetable residues in the field and the processing cost in a medium-sized test field. The larger the incorporating capacity of vegetable residues, the lower the processing cost, and the lowest cost was 25.0 ¥∙t−1 (fresh weight). Therefore, in the semi-arid area of the Loess Plateau, using the method of covering soil and burying pressure to incorporate vegetable residues into the field in high quantities is a low-cost, simple, eco-friendly, and efficient processing scheme for utilizing vegetable residues.
  • [1]
    国家统计局. 中国统计年鉴[EB/OL]. http://www.stats.gov.cn/tjsj/ndsj/

    National Bureau of Statistics. China Statistical Yearbook[EB/OL]. http://www.stats.gov.cn/tjsj/ndsj/
    [2]
    联合国粮食与农业组织. FAOSTAT[EB/OL]. http://www.fao.org/faostat/zh/#data.

    Food and Agriculture Organization of the United Nations. FAOSTAT[EB/OL]. http://www.fao.org/faostat/zh/#data
    [3]
    GUSTAVSSON J, CEDERBERG C, SONESSON U, et al. Global food losses and food waste: extent, causes and prevention[EB/OL]. Food and Agriculture Organization of the United Nation, 2011. https://www.docin.com/p-1434376481.html
    [4]
    OMRE P K, SINGH S, SHIKHA. Waste utilization of fruits and vegetables — A review[J]. South Asian Journal of Food Technology and Environment, 2018, 4(1): 605−615 doi: 10.46370/sajfte.2018.v04i01.02
    [5]
    李金文, 沈根祥, 钱晓雍, 等. 蔬菜初级加工废弃物产生现状与实证分析−以上海市为例[J]. 中国农业资源与区划, 2016, 37(11): 87−91, 104

    LI J W, SHEN G X, QIAN X Y, et al. Produce of vegetable waste during primary processing in Shanghai[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(11): 87−91, 104
    [6]
    薛颖昊, 徐志宇, 张明明, 等. 我国蔬菜秸秆无害化处理技术优化探讨[J]. 中国农业资源与区划, 2021, 42(10): 75−83

    XUE Y H, XU Z Y, ZHANG M M, et al. Discussion on optimization for harmless disposal technology of vegetable straw[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(10): 75−83
    [7]
    赵丽娅, 杨湛, 陈红兵. 城市蔬菜垃圾处理及资源化对策——以武汉市武昌车辆厂蔬菜市场为例[C]. 中国环境科学学会学术年会优秀论文集. 北京: 中国环境科学出版社, 2008: 1249–1252

    ZHAO L Y, YANG Z, CHEN H B. Urban vegetable waste treatment and resource utilization countermeasures — Taking the vegetable market of Wuchang Vehicle Factory in Wuhan as an example[C]. Excellent Papers Collection of the Annual Meeting of Chinese Society of Environmental Sciences. Beijing: China Environmental Science Press, 2008: 1249–1252
    [8]
    甘肃省农业生态环境保护管理站. 深入推进尾菜处理利用 促进蔬菜产业健康发展[J]. 甘肃农业, 2019(4): 15−19

    Gansu Agricultural Ecological Environment Protection Management Station. Further promote the treatment and utilization of vegetable waste and advance the healthy development of vegetable industry[J]. Gansu Agriculture, 2019(4): 15−19
    [9]
    魏程程, 王英琪, 杨宏志. 尾菜厌氧消化处理研究进展[J]. 农产品加工, 2018(19): 71−74

    WEI C C, WANG Y Q, YANG H Z. Research progress of anaerobic digestion treatment of vegetable wastes[J]. Farm Products Processing, 2018(19): 71−74
    [10]
    王鹤睿. 农业蔬菜废物处理方法研究进展和探讨[J]. 农业开发与装备, 2021(10): 90−91

    WANG H R. Research progress and discussion on treatment methods of agricultural vegetable waste[J]. Agricultural Development & Equipments, 2021(10): 90−91
    [11]
    宋彦平. 农业蔬菜废物处理方法研究进展和探讨[J]. 种子科技, 2019, 37(4): 53

    SONG Y P. Research progress and discussion on treatment methods of agricultural vegetable waste[J]. Seed Science & Technology, 2019, 37(4): 53
    [12]
    彭章普, 王洁, 麻和平, 等. 尾菜处理利用技术研究进展与研究思路探讨[J]. 中国饲料, 2019(11): 86−91

    PENG Z P, WANG J, MA H P, et al. Research progress and discussion on treatment and utilization techniques of vegetable wastes[J]. China Feed, 2019(11): 86−91
    [13]
    慕钰文, 冯毓琴, 李长亮, 等. 响应面法优化高原夏菜尾菜废水活性炭脱色工艺的研究[J]. 食品工业科技, 2015, 36(14): 271−274

    MU Y W, FENG Y Q, LI C L, et al. Study on optimization of active carbon discoloration of plateau summer vegetable processing wastewater by response surface analysis[J]. Science and Technology of Food Industry, 2015, 36(14): 271−274
    [14]
    杨富民, 张克平, 杨敏. 3种尾菜饲料化利用技术研究[J]. 中国生态农业学报, 2014, 22(4): 491−495

    YANG F M, ZHANG K P, YANG M. Study on feed product technology for three different vegetable residues[J]. Chinese Journal of Eco-Agriculture, 2014, 22(4): 491−495
    [15]
    新甘肃客户端. 甘肃省加快推进农业绿色高质量发展[N]. 甘肃日报, 2020-08-16(6)

    New Gansu APP. Gansu Province accelerates the green and high-quality development of agriculture[N]. Gansu Daily, 2020-08-16(6)
    [16]
    HUANG R, LIU J, HE X H, et al. Reduced mineral fertilization coupled with straw return in field mesocosm vegetable cultivation helps to coordinate greenhouse gas emissions and vegetable production[J]. Journal of Soils and Sediments, 2020, 20(4): 1834−1845 doi: 10.1007/s11368-019-02477-2
    [17]
    JIANG C M, YU W T, MA Q, et al. Alleviating global warming potential by soil carbon sequestration: a multi-level straw incorporation experiment from a maize cropping system in Northeast China[J]. Soil and Tillage Research, 2017, 170: 77−84 doi: 10.1016/j.still.2017.03.003
    [18]
    宋晓, 陈莉, 李建芬. 蔬菜秸秆废弃物资源化利用模式研究[J]. 安徽农业科学, 2019, 47(21): 89−91

    SONG X, CHEN L, LI J F. Study on vegetable straw waste resource utilization model[J]. Journal of Anhui Agricultural Sciences, 2019, 47(21): 89−91
    [19]
    钱佳宇, 江解增, 张永仙, 等. 小麦秸秆截段高量还田对大棚夏秋茬蕹菜产量及土壤肥力的影响[J]. 广东农业科学, 2020, 47(4): 30−38

    QIAN J Y, JIANG J Z, ZHANG Y X, et al. Effect of wheat straw cutting and high quantity returning to the field on the yield of water spinach and soil fertility in summer and autumn in greenhouse[J]. Guangdong Agricultural Sciences, 2020, 47(4): 30−38
    [20]
    丛萍, 逄焕成, 王婧, 等. 粉碎与颗粒秸秆高量还田对黑土亚耕层土壤有机碳的提升效应[J]. 土壤学报, 2020, 57(4): 811−823

    CONG P, PANG H C, WANG J, et al. Effect of returning chopped and pelletized straw at a high rate enhancing soil organic carbon in subsoil of farmlands of black soil[J]. Acta Pedologica Sinica, 2020, 57(4): 811−823
    [21]
    丛萍, 李玉义, 高志娟, 等. 秸秆颗粒化高量还田快速提高土壤有机碳含量及小麦玉米产量[J]. 农业工程学报, 2019, 35(1): 148−156 doi: 10.11975/j.issn.1002-6819.2019.01.018

    CONG P, LI Y Y, GAO Z J, et al. High dosage of pelletized straw returning rapidly improving soil organic carbon content and wheat-maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 148−156 doi: 10.11975/j.issn.1002-6819.2019.01.018
    [22]
    王峥宇, 廉宏利, 孙悦, 等. 秸秆还田深度对春玉米农田土壤有机碳、氮含量和土壤酶活性的影响[J]. 农业资源与环境学报, 2021, 38(4): 636−646 doi: 10.13254/j.jare.2020.0378

    WANG Z Y, LIAN H L, SUN Y, et al. Effects of straw return depth on soil organic carbon, nitrogen content, and soil enzyme activity of spring maize field[J]. Journal of Agricultural Resources and Environment, 2021, 38(4): 636−646 doi: 10.13254/j.jare.2020.0378
    [23]
    马玲. 玉米秸秆还田方式对土壤氮素形态、排放及分配的影响[D]. 沈阳: 沈阳农业大学, 2020

    MA L. Effects of straw returning modes on soil nitrogen forms, emissions and distribution[D]. Shenyang: Shenyang Agricultural University, 2020
    [24]
    马彦霞, 王晓巍, 张玉鑫, 等. 甘肃省尾菜资源化利用现状及对策[J]. 甘肃农业科技, 2017(6): 56−60 doi: 10.3969/j.issn.1001-1463.2017.06.020

    MA Y X, WANG X W, ZHANG Y X, et al. Current situation and countermeasures of vegetable waste utilization in Gansu[J]. Gansu Agricultural Science and Technology, 2017(6): 56−60 doi: 10.3969/j.issn.1001-1463.2017.06.020
    [25]
    吴文辉, 朱为静, 朱凤香, 等. 蔬菜废弃物还田量及配施菌剂对土壤腐殖质组成的影响[J]. 农业资源与环境学报, 2022, 39(1): 182−192 doi: 10.13254/j.jare.2020.0736

    WU W H, ZHU W J, ZHU F X, et al. Effects of returning varying amounts of vegetable waste to fields and combined application of decomposing agents on soil humus composition[J]. Journal of Agricultural Resources and Environment, 2022, 39(1): 182−192 doi: 10.13254/j.jare.2020.0736
    [26]
    吴文辉. 蔬菜废弃物不同还田方式对番茄生长及土壤环境的影响[D]. 杨凌: 西北农林科技大学, 2021

    WU W H. The effect of different return ways of vegetable waste on tomato growth and soil environment[D]. Yangling: Northwest A & F University, 2021
    [27]
    刘银环. 尾菜直接还田试验模式初报[J]. 甘肃农业, 2020(7): 89−90 doi: 10.15979/j.cnki.cn62-1104/f.2020.07.030

    LIU Y H. Preliminary report on the experimental mode of incorporating vegetable residues directly to the field[J]. Gansu Agriculture, 2020(7): 89−90 doi: 10.15979/j.cnki.cn62-1104/f.2020.07.030
    [28]
    莫舒颖. 蔬菜残株堆肥化利用技术研究[D]. 北京: 中国农业科学院, 2009

    MO S Y. Study on technique of vegetable residues compost[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009
    [29]
    巴音, 张光全, 薛伟, 等, 黄土高原半干旱区尾菜高量埋压抑制土壤氮淋溶的研究[J/OL]. 农业资源与环境学报, 2022. https://kns.cnki.net/kcms/detail/12.1437.s.20220601.1829.004.html

    BA Y, ZHANG G Q, XUE W, et al. Investigation on nitrogen leaching control in the semi-arid area of Loess Plateau restrained by surface soil covering and massive burying of vegetable waste[J/OL]. Journal of Agricultural and Environment, 2022. https://kns.cnki.net/kcms/detail/12.1437.s.20220601.1829.004.html
    [30]
    王健君, 陈乃实, 赵丽娜, 等. 我国蔬菜废弃物资源化高效利用潜力分析[J]. 农村实用技术, 2021(5): 139−140

    WANG J J, CHEN N S, ZHAO L N, et al. Analysis on the potential of efficient utilization of vegetable waste resources in China[J]. Nongcun Shiyong Jishu, 2021(5): 139−140
    [31]
    YANI M, ISMAYANA A, SUKARDI, et al. Physical and chemical characteristics of organic packing materials of soil, compost, and rubber leaf litter for ammonia biofiltration[J]. Journal of Environment and Earth Science, 2017, 7: 76−87
    [32]
    吕宝兴, 李松. 杭州七格污水处理厂的土壤除臭系统[J]. 中国给水排水, 2007, 23(22): 69−72 doi: 10.3321/j.issn:1000-4602.2007.22.018

    LYU B X, LI S. Soil deodorization system in Hangzhou Qige WWTP[J]. China Water & Wastewater, 2007, 23(22): 69−72 doi: 10.3321/j.issn:1000-4602.2007.22.018
    [33]
    陈霖明, 李艳红, 李发东, 等. 玛纳斯河流域出苗期棉田土壤膜下滴灌前后水分-盐分-养分运移分析[J]. 甘肃农业大学学报, 2021, 56(5): 110−119 doi: 10.13432/j.cnki.jgsau.2021.05.015

    CHEN L M, LI Y H, LI F D, et al. Analysis of water-salt-nutrient transport before and after drip irrigation under plastic film in soil of cotton field at seedling stage in Manas River Basin[J]. Journal of Gansu Agricultural University, 2021, 56(5): 110−119 doi: 10.13432/j.cnki.jgsau.2021.05.015
    [34]
    张光全, 许邓颖, 李桃, 等. 榆中县尾菜资源化利用现状及对策[J]. 农业开发与装备, 2019(5): 109−110 doi: 10.3969/j.issn.1673-9205.2019.05.080

    ZHANG G Q, XU D Y, LI T, et al. Current situation and way of resource utilization of vegetable residues in Yuzhong County[J]. Agricultural Development & Equipments, 2019(5): 109−110 doi: 10.3969/j.issn.1673-9205.2019.05.080
    [35]
    薛伟, 巴音, 李凤民, 等. 尾菜覆土埋压臭气收集装置: 中国, ZL 202022073262.4[P]. 2021-01-05

    XUE W, BA Y, LI F M, et al. Patent certificate of utility model of vegetable wastes covering soil buried pressure odor collection device: China, ZL 2020 2 2073262.4[P]. 2021-01-05
    [36]
    吴曼, 李添宝, 黄路, 等. 啶虫脒在茶叶和土壤中的残留和降解动态研究[J]. 精细化工中间体, 2014, 44(1): 67−72 doi: 10.3969/j.issn.1009-9212.2014.01.018

    WU M, LI T B, HUANG L, et al. Residues and degradation dynamics of acetamiprid in tea and soil[J]. Fine Chemical Intermediates, 2014, 44(1): 67−72 doi: 10.3969/j.issn.1009-9212.2014.01.018
    [37]
    蔡晓钰, 姜宇, 蒋宝南, 等. 分散固相萃取-气相色谱法测定土壤中的高效氯氰菊酯残留[J]. 上海农业学报, 2018, 34(1): 101−105 doi: 10.15955/j.issn1000-3924.2018.01.19

    CAI X Y, JIANG Y, JIANG B N, et al. Determination of β-cypermethrin in soil samples by gas chromatography with dispersive solid phase extraction[J]. Acta Agriculturae Shanghai, 2018, 34(1): 101−105 doi: 10.15955/j.issn1000-3924.2018.01.19
    [38]
    GAO H J, CHEN X, WEI J L, et al. Decomposition dynamics and changes in chemical composition of wheat straw residue under anaerobic and aerobic conditions[J]. PLoS One, 2016, 11(7): e0158172 doi: 10.1371/journal.pone.0158172
    [39]
    张鑫, 周菊华, 张朝阳, 等. 天蓝苜蓿绿肥的腐解规律和养分释放[J]. 草学, 2021(4): 25−28 doi: 10.3969/j.issn.2096-3971.2021.04.005

    ZHANG X, ZHOU J H, ZHANG C Y, et al. Decomposition and nutrient release of alfalfa green manure[J]. Journal of Grassland and Forage Science, 2021(4): 25−28 doi: 10.3969/j.issn.2096-3971.2021.04.005
    [40]
    BERG B, MCCLAUGHERTY C, DE SANTO A V, et al. Decomposition of litter and soil organic matter — Can we distinguish a mechanism for soil organic matter buildup?[J]. Scandinavian Journal of Forest Research, 1995, 10(1/2/3/4): 108−119
    [41]
    张经廷, 张丽华, 吕丽华, 等. 还田作物秸秆腐解及其养分释放特征概述[J]. 核农学报, 2018, 32(11): 2274−2280 doi: 10.11869/j.issn.100-8551.2018.11.2274

    ZHANG J T, ZHANG L H, LYU L H, et al. Overview of the characteristics of crop straw decomposition and nutrients release of returned field crops[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(11): 2274−2280 doi: 10.11869/j.issn.100-8551.2018.11.2274
    [42]
    胡国平. “高原夏菜”剩余物资源状况及其还田效应[D]. 兰州: 兰州大学, 2012

    HU G P. Vegetable residues resource and effect of waste vegetable return to field at plateau[D]. Lanzhou: Lanzhou University, 2012
    [43]
    陈建英, 罗超越, 邱慧珍, 等. 不同施氮量对半干旱区还田玉米秸秆腐解及养分释放特征的影响[J]. 干旱地区农业研究, 2020, 38(1): 101−106 doi: 10.7606/j.issn.1000-7601.2020.01.14

    CHEN J Y, LUO C Y, QIU H Z, et al. Effects of application of different nitrogen levels on decomposition characteristics and nutrient release of returning straw[J]. Agricultural Research in the Arid Areas, 2020, 38(1): 101−106 doi: 10.7606/j.issn.1000-7601.2020.01.14
    [44]
    SCHROYEN M, VERVAEREN H, RAES K, et al. Modelling and simulation of anaerobic digestion of various lignocellulosic substrates in batch reactors: influence of lignin content and phenolic compoundsⅡ[J]. Biochemical Engineering Journal, 2018, 134: 80−87 doi: 10.1016/j.bej.2018.03.017
    [45]
    王朝辉, 刘学军, 巨晓棠, 等. 北方冬小麦/夏玉米轮作体系土壤氨挥发的原位测定[J]. 生态学报, 2002, 22(3): 359−365 doi: 10.3321/j.issn:1000-0933.2002.03.011

    WANG Z H, LIU X J, JU X T, et al. In situ determination of ammonia volatilization from wheat maize rotation system field in North China[J]. Acta Ecologica Sinica, 2002, 22(3): 359−365 doi: 10.3321/j.issn:1000-0933.2002.03.011
    [46]
    宁书菊, 魏道智. 两种氮肥混用比一种单施好[J]. 河北农业科技, 1994(1): 20

    NING S J, WEI D Z. It is better to mix two kinds of nitrogen fertilizer than to apply one alone[J]. Hebei Agricultural Science and Technology, 1994(1): 20
    [47]
    李银坤, 武雪萍, 武其甫, 等. 水氮用量对设施栽培蔬菜地土壤氨挥发损失的影响[J]. 植物营养与肥料学报, 2016, 22(4): 949−957 doi: 10.11674/zwyf.15234

    LI Y K, WU X P, WU Q F, et al. Effects of irrigation and nitrogen application on ammonia volatilization loss from vegetable fields under greenhouse cultivation[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 949−957 doi: 10.11674/zwyf.15234
    [48]
    王从, 孙会峰, 徐春花, 等. 施肥方式对设施菜地氨挥发的影响[J]. 中国农业科学, 2022, 55(1): 123−133

    WANG C, SUN H F, XU C H, et al. Effects of fertilization methods on ammonia volatilization from vegetable field under greenhouse cultivation[J]. Scientia Agricultura Sinica, 2022, 55(1): 123−133
    [49]
    姜桂华. 铵态氮在土壤中吸附性能探讨[J]. 长安大学学报(建筑与环境科学版), 2004, 21(2): 32−34, 38

    JIANG G H. Discussion about NH4+-N adsorptive ability in soils[J]. Journal of Architecture and Civil Engineering, 2004, 21(2): 32−34, 38
    [50]
    张艳霞, 邓春光, 赵丽. 铵态氮在非正规垃圾填埋场土壤中的赋存特征[J]. 环境工程学报, 2017, 11(10): 5764−5770

    ZHANG Y X, DENG C G, ZHAO L. Characteristics of ammonium forms in soils at informal landfill[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5764−5770
    [51]
    卢九斤, 聂易丰, 魏娇娇, 等. 不同施氮措施对枸杞园土壤NH3挥发和N2O排放的影响[J]. 农业环境科学学报, 2022, 41(1): 210−220 doi: 10.11654/jaes.2021-0702

    LU J J, NIE Y F, WEI J J, et al. Effects of different nitrogen application measures on NH3 volatilization and N2O emissions in a wolfberry orchard[J]. Journal of Agro-Environment Science, 2022, 41(1): 210−220 doi: 10.11654/jaes.2021-0702
    [52]
    高鹏程, 张一平. 氨挥发与土壤水分散失关系的研究[J]. 西北农林科技大学学报(自然科学版), 2001, 29(6): 22−26 doi: 10.13207/j.cnki.jnwafu.2001.06.005

    GAO P C, ZHANG Y P. Research on relationship between volatilization of ammonia and evaporation of soil water[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2001, 29(6): 22−26 doi: 10.13207/j.cnki.jnwafu.2001.06.005
    [53]
    张苗苗. pH对土壤硝化作用和氨氧化微生物的影响及其作用机理[D]. 北京: 中国科学院大学, 2014

    ZHANG M M. Effect of pH on soil nitrification and ammonia oxidation microorganisms and its mechanism[D]. Beijing: University of Chinese Academy of Sciences, 2014
    [54]
    齐鹏, 张仁陟, 张伯尧, 等. 兰州市土壤-蔬菜系统典型重金属空间评价及健康风险分析[J]. 干旱区地理, 2012, 35(1): 162−170

    QI P, ZHANG R Z, ZHANG B Y, et al. Spatial analysis and the health risk assessment of typical heavy metal of soil-vegetable system in Lanzhou City[J]. Arid Land Geography, 2012, 35(1): 162−170
    [55]
    孙建云. 甘肃省14个市州市售蔬菜中铅、镉、汞污染状况调查研究[D]. 兰州: 兰州大学, 2016

    SUN J Y. Study on pollution of lead, cadmium and mercury of vegetables in 14 prefectures of Gansu Province[D]. Lanzhou: Lanzhou University, 2016
    [56]
    何宗均, 梁海恬, 李峰. 天津地区蔬菜种植废弃物产生情况初步调查[J]. 中国农学通报, 2017, 33(21): 33−37 doi: 10.11924/j.issn.1000-6850.casb16110084

    HE Z J, LIANG H T, LI F. The quantity of vegetable waste in Tianjin: a preliminary investigation[J]. Chinese Agricultural Science Bulletin, 2017, 33(21): 33−37 doi: 10.11924/j.issn.1000-6850.casb16110084
    [57]
    朱冰雅, 刘思飞, 李延升, 等. 辽宁地区16种蔬菜中的9种元素含量调查[J]. 食品安全质量检测学报, 2020, 11(4): 1168−1172 doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.04.032

    ZHU B Y, LIU S F, LI Y S, et al. Investigation on 9 kinds of mineral elements in 16 kinds of vegetables from Liaoning Province[J]. Journal of Food Safety & Quality, 2020, 11(4): 1168−1172 doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.04.032
    [58]
    王建明. 10种常规蔬菜中微量元素的测定[J]. 安徽农业科学, 2009, 37(31): 15100−15101 doi: 10.3969/j.issn.0517-6611.2009.31.006

    WANG J M. Determination on trace elements in 10 kinds of routine vegetables[J]. Journal of Anhui Agricultural Sciences, 2009, 37(31): 15100−15101 doi: 10.3969/j.issn.0517-6611.2009.31.006
    [59]
    王拯, 张胜全, 宋科, 等. 滨海盐碱地土壤盐分迁移与小麦玉米周年生长管理[J]. 中国种业, 2022(4): 54−57 doi: 10.3969/j.issn.1671-895X.2022.04.017

    WANG Z, ZHANG S Q, SONG K, et al. Soil salinity migration in coastal saline-alkali land and annual growth management of wheat and maize[J]. China Seed Industry, 2022(4): 54−57 doi: 10.3969/j.issn.1671-895X.2022.04.017

Catalog

    Article Metrics

    Article views (574) PDF downloads (67) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return