Volume 29 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
YANG Jie, XIE Baopeng, ZHANG Degang. Spatio-temporal evolution of carbon stocks in the Yellow River Basin based on InVEST and CA-Markov models[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1018-1029. doi: 10.13930/j.cnki.cjea.200746
Citation: YANG Jie, XIE Baopeng, ZHANG Degang. Spatio-temporal evolution of carbon stocks in the Yellow River Basin based on InVEST and CA-Markov models[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1018-1029. doi: 10.13930/j.cnki.cjea.200746

Spatio-temporal evolution of carbon stocks in the Yellow River Basin based on InVEST and CA-Markov models

doi: 10.13930/j.cnki.cjea.200746

the National Key R & D Program of China 2016YFC0501902

the Scientific Research Projects of Gansu Provincial Department of Education 2018A-038

More Information
  • Corresponding author: ZHANG Degang, E-mail:zhangdg@gsau.edu.cn
  • Received Date: 2020-09-14
  • Accepted Date: 2020-12-07
  • Available Online: 2021-06-22
  • Publish Date: 2021-06-01
  • The Yellow River Basin is an important carbon sink and carbon stock area of terrestrial ecosystems in China, and land use/cover change is the primary reason for variation in the carbon stocks. Therefore, accurately predicting future land use/cover changes and their impacts on regional carbon stocks is important for a better understanding of regional terrestrial ecosystems. This study aimed to explore the law of spatio-temporal changes in land use in the Yellow River Basin from 2005 to 2018 and to predict the characteristics of carbon stock changes under two scenarios of ecological protection and natural change in 2030. The CA-Markov model was used to predict the land use/cover spatial pattern in two scenarios:the ecological conservation scenario and the natural change scenario, based on its law in the Yellow River Basin from 2005 to 2018. The InVEST model was used to estimate the carbon stock in six phases of the Yellow River Basin from 2005 to 2030 based on the revised carbon density. The results highlighted land use change and transition among land use types. From 2005 to 2018, the areas of forest, water, and built-up land in the Yellow River Basin continued to increase, but the areas of cropland, grassland, and unused land decreased. The main transfer characteristics of land use types were from cropland to built-up land and grassland, and from cropland and grassland to forest. During the 13 years, the carbon stock of the whole basin decreased by 28.734×106t. The simulation results of land use changes under two scenarios with the CA-Markov model showed that compared with the natural change scenario, the ecological protection scenario led to reductions in grassland and cropland in 2030, which was less than that in 2018. The expansion of built-up land was restricted under the ecological scenario, and the scale of expansion was substantially reduced, both of which facilitated the generation of ecological effects in the Yellow River Basin. Furthermore, in 2030, the carbon stocks under the natural change scenario and the ecological protection scenario were reduced by 258.863×106t and 30.813×106t, respectively, compared with 2018. This study provides a scientific basis for adjusting the land use structure and land use management decision-making, improving the regional carbon stock capacity, and promoting ecological civilization construction in the Yellow River Basin.
  • loading
  • [1]
    HOUGHTON R A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000[J]. Tellus, 2003, 55(2):378-390 doi: 10.3402/tellusb.v55i2.16764
    SOLOMON S. Climate change the physical science basis[J]. American Geophysical Union, 2007, 9(1):123-124 http://www.mendeley.com/research/ipcc-2007-summary-policymakers/
    NEWBOLD T, HUDSON L N, HILL S L L, et al. Global effects of land use on local terrestrial biodiversity[J]. Nature, 2015, 520(7545):45-50 doi: 10.1038/nature14324
    孔君洽, 杜泽玉, 杨荣, 等.黑河中游土地利用/覆被变化及其对碳储量影响的预测[J].中国沙漠, 2019, 39(3):87-97 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201903011.htm

    KONG J Q, DU Z Y, YANG R, et al. Prediction of land use change and its influence on carbon stocks in the middle reaches of Heihe River[J]. Journal of Desert Research, 2019, 39(3):87-97 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201903011.htm
    刘晓娟, 黎夏, 梁迅, 等.基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J].热带地理, 2019, 39(3):397-409 https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201903009.htm

    LIU X J, LI X, LIANG X, et al. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model[J]. Tropical Geography, 2019, 39(3):397-409 https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201903009.htm
    朱文博, 张静静, 崔耀平, 等.基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例[J].地理学报, 2019, 74(3):446-459 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201903005.htm

    ZHU W B, ZHANG J J, CUI Y P, et al. Assessment of territorial ecosystem carbon storage based on land use change scenario:A case study in Qihe River Basin[J]. Acta Geographica Sinica, 2019, 74(3):446-459 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201903005.htm
    ABURAS M M, HO Y M, RAMLI M F, et al. Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an analytical hierarchy process and frequency ratio[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 59:65-78 doi: 10.1016/j.jag.2017.03.006
    ETEMADI H, SMOAK J M, KARAMI J. Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery and CA-Markov algorithms to monitor and predict future change[J]. Environmental Earth Sciences, 2018, 77(5):208 doi: 10.1007/s12665-018-7392-8
    FIROZJAEI M K, SEDIGHI A, ARGANY M, et al. A geographical direction-based approach for capturing the local variation of urban expansion in the application of CA-Markov model[J]. Cities, 2019, 93:120-135 doi: 10.1016/j.cities.2019.05.001
    RIMAL B, KESHTKAR H, SHARMA R, et al. Simulating urban expansion in a rapidly changing landscape in eastern Tarai, Nepal[J]. Environmental Monitoring and Assessment, 2019, 191(4):255 doi: 10.1007/s10661-019-7389-0
    NELSON E, MENDOZA G, REGETZ J, et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales[J]. Frontiers in Ecology and the Environment, 2009, 7(1):4-11 doi: 10.1890/080023
    王光谦, 王思远, 陈志祥.黄河流域的土地利用和土地覆盖变化[J].清华大学学报:自然科学版, 2004, 44(9):1218-1222 doi: 10.3321/j.issn:1000-0054.2004.09.018

    WANG G Q, WANG S Y, CHEN Z X. Land-use/land-cover changes in the Yellow River basin[J]. Journal of Tsinghua University:Science & Technology, 2004, 44(9):1218-1222 doi: 10.3321/j.issn:1000-0054.2004.09.018
    WANG S Y, LIU J S, MA T B. Dynamics and changes in spatial patterns of land use in Yellow River Basin, China[J]. Land Use Policy, 2010, 27(2):313-323 doi: 10.1016/j.landusepol.2009.04.002
    张冉, 王义民, 畅建霞, 等.基于水资源分区的黄河流域土地利用变化对人类活动的响应[J].自然资源学报, 2019, 34(2):274-287 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201902005.htm

    ZHANG R, WANG Y M, CHANG J X, et al. Response of land use change to human activities in the Yellow River Basin based on water resources division[J]. Journal of Natural Resources, 2019, 34(2):274-287 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201902005.htm
    解宪丽, 孙波, 周慧珍, 等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报, 2004, 41(1):35-43 doi: 10.3321/j.issn:0564-3929.2004.01.006

    XIE X L, SUN B, ZHOU H Z, et al. Organic carbon density and storage in soils of China and spatial analysis[J]. Acta Pedologica Sinica, 2004, 41(1):35-43 doi: 10.3321/j.issn:0564-3929.2004.01.006
    李克让, 王绍强, 曹明奎.中国植被和土壤碳贮量[J].中国科学:D辑, 2003, 33(1):72-80 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200301007.htm

    LI K R, WANG S Q, CAO M K. Carbon storage of vegetation and soil in China[J]. Science China, 2003, 33(1):72-80 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200301007.htm
    陈利军, 刘高焕, 励惠国, 等.中国植被净第一性生产力遥感动态监测[J].遥感学报, 2002, 6(2):129-135 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200202009.htm

    CHEN L J, LIU G H, LI H G, et al. Estimating net primary productivity of terrestrial vegetation in china using remote sensing[J]. Journal of Remote Sensing, 2002, 6(2):129-135 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200202009.htm
    张杰, 李敏, 敖子强, 等.中国西部干旱区土壤有机碳储量估算[J].干旱区资源与环境, 2018, 32(9):132-137 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201809021.htm

    ZHANG J, LI M, AO Z Q, et al. Estimation of soil organic carbon storage of terrestrial ecosystem in arid western China[J]. Journal of Arid Land Resources and Environment, 2018, 32(9):132-137 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201809021.htm
    CHUAI X W, HUANG X J, LAI L, et al. Land use structure optimization based on carbon storage in several regional terrestrial ecosystems across China[J]. Environmental Science & Policy, 2013, 25:50-61 http://www.sciencedirect.com/science/article/pii/S146290111200072X
    FU Q, XU L L, ZHENG H Y, et al. Spatiotemporal dynamics of carbon storage in response to urbanization:A case study in the Su-Xi-Chang Region, China[J]. Processes, 2019, 7(11):836 doi: 10.3390/pr7110836
    RAICH J W, NADELHOFFER K J. Belowground carbon allocation in forest ecosystems:Global trends[J]. Ecology, 1989, 70(5):1346-1354 doi: 10.2307/1938194
    ALAM S A, STARR M, CLARK B J F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah:A regional carbon sequestration study[J]. Journal of Arid Environments, 2013, 89:67-76 doi: 10.1016/j.jaridenv.2012.10.002
    GIARDINA C P, RYAN M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000, 404(6780):858-861 doi: 10.1038/35009076
    陈光水, 杨玉盛, 刘乐中, 等.森林地下碳分配(TBCA)研究进展[J].亚热带资源与环境学报, 2007, 2(1):34-42 doi: 10.3969/j.issn.1673-7105.2007.01.005

    CHEN G S, YANG Y S, LIU L Z, et al. Research review on total belowground carbon allocation in forest ecosystems[J]. Journal of Subtropical Resources and Environment, 2007, 2(1):34-42 doi: 10.3969/j.issn.1673-7105.2007.01.005
    黄卉.基于InVEST模型的土地利用变化与碳储量研究[D].北京: 中国地质大学, 2015

    HUANG H. Research on land use/land cover change and carbon storage based on InVEST model[D]. Beijing: China University of Geosciences, 2015
    SANG L L, ZHANG C, YANG J Y, et al. Simulation of land use spatial pattern of towns and villages based on CA-Markov model[J]. Mathematical and Computer Modelling, 2011, 54(3/4):938-943 http://dl.acm.org/citation.cfm?id=2281284
    SANG N, MILLER D, ODE Å. Landscape metrics and visual topology in the analysis of landscape preference[J]. Environment and Planning B:Urban Analytics and City Science, 2008, 35(3):504-520 http://www.nrcresearchpress.com/servlet/linkout?suffix=refg38/ref38&dbid=16&doi=10.1139%2Fcjfr-2012-0210&key=10.1068%2Fb33049
    ZHAO M M, HE Z B, DU J, et al. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models[J]. Ecological Indicators, 2019, 98:29-38 doi: 10.1016/j.ecolind.2018.10.052
    NASEHI S, NAMIN A I, SALEHI E. Simulation of land cover changes in urban area using CA-Markov model (case study:Zone 2 in Tehran, Iran)[J]. Modeling Earth Systems and Environment, 2019, 5(1):193-202 doi: 10.1007/s40808-018-0527-9
    WICKRAMASURIYA R C, BREGT A K, VAN DELDEN H, et al. The dynamics of shifting cultivation captured in an extended Constrained Cellular Automata land use model[J]. Ecological Modelling, 2009, 220(18):2302-2309 doi: 10.1016/j.ecolmodel.2009.05.021
    WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11):699-712 doi: 10.1038/nnano.2012.193
    SUN C M, HALL J A, BLANK R B, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid[J]. Journal of Experimental Medicine, 2007, 204(8):1775-1785 doi: 10.1084/jem.20070602
    黄康, 戴文远, 黄万里, 等.基于CA-Markov和InVEST模型的土地利用变化对生境影响评价——以福建省福州新区为例[J].水土保持通报, 2019, 39(6):155-162 https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201906025.htm

    HUANG K, DAI W Y, HUANG W L, et al. Impacts of land use change evaluation on habitat quality based on CA-Markov and InVEST models—Taking Fuzhou New District of Fujian Province as an example[J]. Bulletin of Soil and Water Conservation, 2019, 39(6):155-162 https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201906025.htm
    彭玺, 张亚威.湘乡市林地森林碳储量及碳密度研究[J].中南林业调查规划, 2019, 38(1):62-67 https://www.cnki.com.cn/Article/CJFDTOTAL-ZLDF201901014.htm

    PENG X, ZHANG Y W. Study on carbon storage and carbon density of forest land in Xiangxiang[J]. Central South Forest Inventory and Planning, 2019, 38(1):62-67 https://www.cnki.com.cn/Article/CJFDTOTAL-ZLDF201901014.htm
    CAO V, MARGNI M, FAVIS B D, et al. Aggregated indicator to assess land use impacts in life cycle assessment (LCA) based on the economic value of ecosystem services[J]. Journal of Cleaner Production, 2015, 94:56-66 doi: 10.1016/j.jclepro.2015.01.041
    VO T Q, KUENZER C, OPPELT N. How remote sensing supports mangrove ecosystem service valuation:a case study in Ca Mau Province, Vietnam[J]. Ecosystem Services, 2015, 14:67-75 doi: 10.1016/j.ecoser.2015.04.007
    TARDIEU L, ROUSSEL S, THOMPSON J D, et al. Combining direct and indirect impacts to assess ecosystem service loss due to infrastructure construction[J]. Journal of Environmental Management, 2015, 152:145-157 http://www.sciencedirect.com/science/article/pii/S0301479715000432
    KROGH L, NOERGAARD A, HERMANSEN M, et al. Preliminary estimates of contemporary soil organic carbon stocks in Denmark using multiple datasets and four scaling-up methods[J]. Agriculture, Ecosystems & Environment, 2003, 96(1/3):19-28 http://www.sciencedirect.com/science/article/pii/S0167880903000161
    PAGIOLA S. Payments for environmental services in Costa Rica[J]. Ecological Economics, 2008, 65(4):712-724 doi: 10.1016/j.ecolecon.2007.07.033
    何丹, 周璟, 高伟, 等.基于CA-Markov模型的滇池流域土地利用变化动态模拟研究[J].北京大学学报:自然科学版, 2014, 50(6):1095-1105 https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201406014.htm

    HE D, ZHOU J, GAO W, et al. An integrated CA-Markov model for dynamic simulation of land use change in Lake Dianchi Watershed[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(6):1095-1105 https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201406014.htm
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (1097) PDF downloads(156) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint