Citation: | LI J Q, MU C H, HUANG F C, YIN H S, WANG G L. Effects of different ecological transition patterns on soil aggregate stability and cementing substances in jujube economic forest in the Lvliang Mountain[J]. Chinese Journal of Eco-Agriculture, 2025, 33(7): 1−11. DOI: 10.12357/cjea.20240546 |
The ecological transformation of abandoned jujube forests in the Lvliang Mountain is an important part of the ecological restoration of the Loess Plateau. Soil aggregates are the basic unit of soil structure, and their composition and stability are important indicators for evaluating soil quality, and soil cementing material is an important material basis for the formation of aggregates. This study reveals the formation mechanism of soil aggregates by investigating the changes in the content of soil aggregates and cementing material in different ecological transition modes of red jujube economic forests in the Lvliang Mountain. Taking jujube forest abandonment as the control (CK), four different ecological transition model plots were selected as the research objects, including Medicago sativa (AL), medicinal herbs (MM), Pinus tabuliformis (CP) and Platycladus orientalis (PO), the distribution proportion and stability characteristics of water-stable aggregates with particle size <0.053、0.053~0.25、0.25~2 mm and >2mm were analyzed. The contents of six aggregate organic cementing substances and inorganic cementing material calcium carbonate were determined in soil organic carbon, fulvic acid, humic acid, polysaccharide, total glomalin-related soil protein and the easily extractable glomalin-related soil protein. The response relationship between the distribution ratio and stability of aggregates and aggregate cemented substances was explored through redundancy analysis. The results showed that: 1) Compared with CK, ecological transition increased the content of >2 mm and 0.25~2 mm agglomerates, with increments of 1.61% to 5.29% and 1.59% to 5.45%, In addition, the mean weight diameter and geometric mean diameter of the agglomerates also increased, with increments of 0.05 to 0.16 mm and 0.02 to 0.08 mm, respectively, and the CP mode performed best; the rate of agglomerate destruction decreased, ranging from 24.85% to 66.15%. 2) Compared with CK, the contents of six organic cementing substances were increased by the four ecological transition modes, and the content of calcium carbonate in inorganic cementing substances was reduced. 3) The explanation rates of humic acid and easily extractable glomalin-related soil protein for the distribution proportion and stability of aggregates were 59.0% and 14.8%, respectively, reaching a significant level (P<0.05), and the contribution rate of humic acid was the highest, which was 71.0%. In summary, different modes of ecological transformation improved the stability of soil aggregates and the content of organic cementing materials, among which the CP mode had the best effect, and humic acid was the most significant cementing material affecting the distribution ratio and stability of soil aggregates. The results of the study are important for guiding the ecological transformation of abandoned jujube forests and promoting ecological restoration in the Loess Plateau region.
[1] |
关凤峻, 刘连和, 刘建伟, 等. 系统推进自然生态保护和治理能力建设−《全国重要生态系统保护和修复重大工程总体规划(2021—2035年)》专家笔谈[J]. 自然资源学报, 2021, 36(2): 290−299 doi: 10.31497/zrzyxb.20210202
GUAN F J, LIU L H, LIU J W, et al. Systematically promoting the construction of natural ecological protection and governance capacity: Experts comments on Master Plan for Major Projects of National Important Ecosystem Protection and Restoration (2021-2035)[J]. Journal of Natural Resources, 2021, 36(2): 290−299 doi: 10.31497/zrzyxb.20210202
|
[2] |
徐远慧, 冯璐, 屈媛媛, 等. 黄土丘陵沟壑区退耕还草年限对土壤性质和入渗性能的影响[J]. 水土保持学报, 2022, 36(2): 57−63
XU Y H, FENG L, QU Y Y, et al. Effects of different restoration years of grain for green on soil properties and infiltration performance in loess Gully Region[J]. Journal of Soil and Water Conservation, 2022, 36(2): 57−63
|
[3] |
殷海善, 乔月, 刘焕焕, 等. 吕梁山沿黄红枣经济林退耕还林地生态调查研究[J]. 山西农业科学, 2021, 49(2): 243−246 doi: 10.3969/j.issn.1002-2481.2021.02.24
YIN H S, QIAO Y, LIU H H, et al. Ecological investigation on forestland transformed from farmland of jujube economic forest along Yellow River in Lüliang mountain[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(2): 243−246 doi: 10.3969/j.issn.1002-2481.2021.02.24
|
[4] |
刘超华, 李凤巧, 廖杨文科, 等. 人工林对土壤地力的影响过程及其调控研究进展[J]. 土壤学报, 2023, 60(3): 644−656
LIU C H, LI F Q, LIAO Y W K, et al. Research progress on effects and regulation of plantation on soil fertility[J]. Acta Pedologica Sinica, 2023, 60(3): 644−656
|
[5] |
高健永, 王楚涵, 张慧芳, 等. 复垦土壤团聚体稳定性和胶结物质对不同施肥的响应[J]. 应用与环境生物学报, 2022, 28(4): 1042−1050
GAO J Y, WANG C H, ZHANG H F, et al. Responses of cementing materials to different fertilization regimes and stability of reclaimed soil aggregates[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(4): 1042−1050
|
[6] |
PENG X, YAN X, ZHOU H, et al. Assessing the contributions of sesquioxides and soil organic matter to aggregation in an Ultisol under long-term fertilization[J]. Soil and Tillage Research, 2015, 146: 89−98 doi: 10.1016/j.still.2014.04.003
|
[7] |
王子龙, 胡斐南, 赵勇钢, 等. 土壤胶结物质分布特征及其对黄土大团聚体稳定性的影响[J]. 水土保持学报, 2016, 30(5): 331−336
WANG Z L, HU F N, ZHAO Y G, et al. Distribution characteristics of soil cementing material and its effect on loess macro-aggregate stability[J]. Journal of Soil and Water Conservation, 2016, 30(5): 331−336
|
[8] |
TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141−163 doi: 10.1111/j.1365-2389.1982.tb01755.x
|
[9] |
LIU A G, MA B L, BOMKE A A. Effects of cover crops on soil aggregate stability, total organic carbon, and polysaccharides[J]. Soil Science Society of America Journal, 2005, 69(6): 2041−2048 doi: 10.2136/sssaj2005.0032
|
[10] |
CHENG C, SHANGGUAN W, HE L, et al. Effect of exopolysaccharide–producing bacteria on water–stable macro–aggregate formation in soil[J]. Geomicrobiology Journal, 2020, 37(8): 738−745.
|
[11] |
景航, 史君怡, 王国梁, 等. 皆伐油松林不同恢复措施下团聚体与球囊霉素分布特征[J]. 中国环境科学, 2017, 37(8): 3056−3063 doi: 10.3969/j.issn.1000-6923.2017.08.030
JING H, SHI J Y, WANG G L, et al. Distribution of the glomalin-related soil protein and aggregate fractions in different restoration communities after clear-cutting Pinus tabulaeformis plantation[J]. China Environmental Science, 2017, 37(8): 3056−3063 doi: 10.3969/j.issn.1000-6923.2017.08.030
|
[12] |
邸涵悦, 郝好鑫, 孙兆祥, 等. 不同演替阶段下球囊霉素相关土壤蛋白对团聚体稳定性的影响[J]. 生态环境学报, 2021, 30(4): 718−725
DI H Y, HAO H X, SUN Z X, et al. Effects of glomalin–related soil protein on the stability of aggregates at different succession stages[J]. Ecology and Environmental Sciences, 2021, 30(4): 718−725
|
[13] |
谭文峰, 许运, 史志华, 等. 胶结物质驱动的土壤团聚体形成过程与稳定机制[J]. 土壤学报, 2023, 60(5): 1297−1308 doi: 10.11766/trxb202308060312
TAN W F, XU Y, SHI Z H, et al. The formation process and stabilization mechanism of soil aggregates driven by binding materials[J]. Acta Pedologica Sinica, 2023, 60(5): 1297−1308 doi: 10.11766/trxb202308060312
|
[14] |
李小刚. 甘肃景电灌区土壤团聚体特征研究[J]. 土壤学报, 2000, 37(2): 263−270 doi: 10.3321/j.issn:0564-3929.2000.02.015
LI X G. The characteristics of soil aggregate in Jingtai electric-irrigating area of Gansu[J]. Acta Pedologica Sinica, 2000, 37(2): 263−270 doi: 10.3321/j.issn:0564-3929.2000.02.015
|
[15] |
王平, 丁智强, 李璐杉, 等. 滇中主要森林类型土壤团聚体稳定性及其变化机制[J]. 水土保持研究, 2024, 31(5): 232−242
WANG P, DING Z Q, LI L S, et al. Stability and mechanisms of soil aggregates in major forest types in central Yunnan[J]. Research of Soil and Water Conservation, 2024, 31(5): 232−242
|
[16] |
何欢, 康必均, 尹婧, 等. 不同营林措施对川东华蓥山杉木林土壤团聚体稳定性及细根分布的影响[J]. 土壤通报, 2024, 55(2): 351−359
HE H, KANG B J, YIN J, et al. Effects of forest management measurements on soil aggregate stability and fine root distribution of Chinese fir in Huaying Mountains of East Sichuan[J]. Chinese Journal of Soil Science, 2024, 55(2): 351−359
|
[17] |
王荟, 孙琳, 李嘉琦, 等. 生态转型模式对吕梁山红枣经济林土壤团聚体及其有机碳分布的影响[J]. 干旱地区农业研究, 2024, 42(2): 80−87 doi: 10.7606/j.issn.1000-7601.2024.02.10
WANG H, SUN L, LI J Q, et al. Effects of ecological transition patterns on the distribution of soil aggregatesand organic carbon in jujube economic forest in Lvliang Mountain[J]. Agricultural Research in the Arid Areas, 2024, 42(2): 80−87 doi: 10.7606/j.issn.1000-7601.2024.02.10
|
[18] |
ELLIOTT E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627−633
|
[19] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30–35
BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000: 30–35
|
[20] |
邵慧芸, 李紫玥, 刘丹, 等. 有机肥施用量对土壤有机碳组分和团聚体稳定性的影响[J]. 环境科学, 2019, 40(10): 4691−4699
SHAO H Y, LI Z Y, LIU D, et al. Effects of manure application rates on the soil carbon fractions and aggregate stability[J]. Environmental Science, 2019, 40(10): 4691−4699
|
[21] |
WRIGHT S F, UPADHYAYA A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 1998, 198(1): 97−107 doi: 10.1023/A:1004347701584
|
[22] |
王月玲, 王思成, 马璠, 等. 宁南黄土丘陵区撂荒地恢复过程中土壤水稳性团聚体的变化特征[J]. 江苏农业科学, 2018, 46(21): 310−314
WANG Y L, WANG S C, MA F, et al. Characteristics of soil water-stable aggregates in abandoned lands during vegetation restoration in Loess Hilly Region of southern Ningxia[J]. Jiangsu Agricultural Sciences, 2018, 46(21): 310−314
|
[23] |
QIAO X X, WANG C, FENG M C, et al. Hyperspectral response and quantitative estimation on soil aggregate characters[J]. CATENA, 2021, 202: 105286 doi: 10.1016/j.catena.2021.105286
|
[24] |
陈文媛, 徐学选, 华瑞, 等. 黄土丘陵区林草退耕年限对土壤团聚体特征的影响[J]. 环境科学学报, 2017, 37(4): 1486−1492
CHEN W Y, XU X X, HUA R, et al. Effects of forestlands and grasslands on soil aggregates under different vegetation restoration ages in Loess Hilly Region[J]. Acta Scientiae Circumstantiae, 2017, 37(4): 1486−1492
|
[25] |
范家伟, 朱广宇, 上官周平, 等. 黄土丘陵区刺槐林土壤团聚体稳定性和土壤可蚀性动态变化[J]. 水土保持学报, 2023, 37(3): 19−26
FAN J W, ZHU G Y, SHANGGUAN Z P, et al. Dynamics changes of soil aggregate stability and soil erodibility of Robinia pseudoacacia plantations in hilly region of the Loess Plateau[J]. Journal of Soil and Water Conservation, 2023, 37(3): 19−26
|
[26] |
胡阳, 邓艳, 蒋忠诚, 等. 典型岩溶山区植被恢复对土壤团聚体分布及稳定性的影响[J]. 水土保持通报, 2015, 35(1): 61−67
HU Y, DENG Y, JIANG Z C, et al. Effects of vegetation restoration on distribution and stability of soil aggregate in typical Karst Mountains[J]. Bulletin of Soil and Water Conservation, 2015, 35(1): 61−67
|
[27] |
罗晓虹, 王子芳, 陆畅, 等. 土地利用方式对土壤团聚体稳定性和有机碳含量的影响[J]. 环境科学, 2019, 40(8): 3816−3824
LUO X H, WANG Z F, LU C, et al. Effects of land use type on the content and stability of organic carbon in soil aggregates[J]. Environmental Science, 2019, 40(8): 3816−3824
|
[28] |
LIU Y F, LIU Y, SHI Z H, et al. Effectiveness of re-vegetated forest and grassland on soil erosion control in the semi-arid Loess Plateau[J]. CATENA, 2020, 195: 104787 doi: 10.1016/j.catena.2020.104787
|
[29] |
ZENG Q C, DARBOUX F, MAN C, et al. Soil aggregate stability under different rain conditions for three vegetation types on the Loess Plateau (China)[J]. CATENA, 2018, 167: 276−283 doi: 10.1016/j.catena.2018.05.009
|
[30] |
金晓, 陈丽华. 晋西黄土区不同植被类型土壤抗冲性及表层根系分布特征[J]. 水土保持学报, 2019, 33(6): 120−126
JIN X, CHEN L H. Soil anti-scourability and root distribution characteristics in surface soil under different vegetation types in the loess region of western Shanxi Province[J]. Journal of Soil and Water Conservation, 2019, 33(6): 120−126
|
[31] |
程曼, 朱秋莲, 刘雷, 等. 宁南山区植被恢复对土壤团聚体水稳定及有机碳粒径分布的影响[J]. 生态学报, 2013, 33(9): 2835−2844 doi: 10.5846/stxb201202090169
CHENG M, ZHU Q L, LIU L, et al. Effects of vegetation on soil aggregate stability and organic carbon sequestration in the Ningxia Loess Hilly Region of Northwest China[J]. Acta Ecologica Sinica, 2013, 33(9): 2835−2844 doi: 10.5846/stxb201202090169
|
[32] |
耿德洲, 黄菁华, 霍娜, 等. 黄土高原半干旱区不同种植年限紫花苜蓿人工草地土壤微生物和线虫群落特征[J]. 应用生态学报, 2020, 31(4): 1365−1377
GENG D Z, HUANG J H, HUO N, et al. Characteristics of soil microbial and nematode communities under artificial Medicago sativa grasslands with different cultivation years in semi-arid region of Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1365−1377
|
[33] |
ZHANG J J, WEI Y X, LIU J Z, et al. Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol in Northeast China: a five-year field experiment[J]. Soil and Tillage Research, 2019, 190: 1−9 doi: 10.1016/j.still.2019.02.014
|
[34] |
董扬红, 曾全超, 安韶山, 等. 黄土高原不同林型植被对土壤活性有机碳及腐殖质的影响[J]. 水土保持学报, 2015, 29(1): 143−148
DONG Y H, ZENG Q C, AN S S, et al. Effects of different forest types on soil active organic carbon and soil humus composition in the Loess Plateau[J]. Journal of Soil and Water Conservation, 2015, 29(1): 143−148
|
[35] |
袁毅. 长期不同施肥模式对土壤有机碳库的影响及其微生物作用机制[D]. 泰安: 山东农业大学, 2023
YUAN Y. Effects of long-term different fertilization on soil organic carbon pool and its microbial mechanism[D]. Tai’an: Shandong Agricultural University, 2023
|
[36] |
徐其静, 侯磊, 汪丽, 等. 等高反坡阶措施下坡耕地球囊霉素相关土壤蛋白对土壤碳氮储量的贡献[J]. 生态学报, 2024, 44(7): 2919−2930
XU Q J, HOU L, WANG L, et al. Contribution of glomalin-related soil protein to soil carbon and nitrogen storage in sloping farmland under contour reverse-slope terrace measures[J]. Acta Ecologica Sinica, 2024, 44(7): 2919−2930
|
[37] |
阙弘, 葛阳洋, 康福星, 等. 南京典型利用方式土壤中球囊霉素含量及剖面分布特征[J]. 土壤, 2015, 47(4): 719−724
QUE H, GE Y Y, KANG F X, et al. Content and distribution of glomalin-related soil protein in soils of Nanjing under different land use types[J]. Soils, 2015, 47(4): 719−724
|
[38] |
袁瀛, 肖列. 退耕植被演替过程中土壤团聚体与胶结物质的协同响应[J]. 西南林业大学学报(自然科学), 2018, 38(3): 116−122
YUAN Y, XIAO L. Synergetic response of soil aggregates and binding agents in the process of vegetation restoration succession[J]. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(3): 116−122
|
[39] |
高瑞, 牛伊宁, 何仁元, 等. 不同种植年限苜蓿地球囊霉素相关土壤蛋白含量及其影响因素[J]. 草业科学, 2024, 41(3): 700−708 doi: 10.11829/j.issn.1001-0629.2022-0922
GAO R, NIU Y N, HE R Y, et al. Content and factors influencing glomalin-related soil protein of alfalfa fields at different growing ages[J]. Pratacultural Science, 2024, 41(3): 700−708 doi: 10.11829/j.issn.1001-0629.2022-0922
|
[40] |
刘举, 常庆瑞, 张俊华, 等. 黄土高原不同林地植被对土壤肥力的影响[J]. 西北农林科技大学学报(自然科学版), 2004, 32(S1): 111−115
LIU J, CHANG Q R, ZHANG J H, et al. Effect of vegetation on soil fertility in different woodlands on Loess Plateau[J]. Journal of Northwest A & F University (Natural Science Edition), 2004, 32(S1): 111−115
|
[41] |
张露, 魏静, 孙增慧, 等. 风沙土整治区不同林地覆被对土壤特性的影响[J]. 中国水土保持科学(中英文), 2023, 21(4): 46−52
ZHANG L, WEI J, SUN Z H, et al. Effects of different forest covers on soil properties in an aeolian sandy soil improvement area[J]. Science of Soil and Water Conservation, 2023, 21(4): 46−52
|
[42] |
蔡琳, 杨予静, 种玉洁, 等. 亚热带退化森林不同恢复方式对土壤团聚体胶结物质及稳定性的影响[J]. 生态学报, 2023, 43(9): 3689−3698
CAI L, YANG Y J, CHONG Y J, et al. Effects of different restoration approaches of subtropical degraded forests on bonding materials and stability of soil aggregate[J]. Acta Ecologica Sinica, 2023, 43(9): 3689−3698
|
[43] |
纪玲玲. AM真菌驱动的土壤团聚体形成过程与稳定机制[D]. 武汉: 华中农业大学, 2020
JI L L. The formation and stabilization mechanisms of soil aggregates driven by arbuscular mycorrhizal fungi[D]. Wuhan: Huazhong Agricultural University, 2020
|
[1] | WEI Binmeng, WANG Yiquan, LI Zhonghui. Effects of planting apple trees on distribution of soil cementing materials in Weibei apple orchards[J]. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1692-1700. DOI: 10.13930/j.cnki.cjea.180281 |
[2] | KANG Lu, WU Jing-Gui, ZHAO Xin-Yu, MENG An-Hua. Characteristics of humic-like acid of Aphodius-processed cow manure and natural cow manure compost[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8): 985-991. DOI: 10.3724/SP.J.1011.2013.00985 |
[3] | MA Hong-Mei, QIN Jun-Mei, LI Zhao-Jun, WANG Gai-Ling, LU Xin. Study on prolonged effect of humic acid-urea (long-term urea) on maize[J]. Chinese Journal of Eco-Agriculture, 2009, 17(4): 651-655. DOI: 10.3724/SP.J.1011.2009.00651 |
[4] | Effect of humic acid-urea complex on urea transformation and nitrogen release[J]. Chinese Journal of Eco-Agriculture, 2008, 16(1): 109-112. DOI: 10.3724/SP.J.1011.2008.00109 |
[5] | SUN Ben-Hua, GAO Ming-Xia, LU Jia-Long, WANG Xing, ZHANG Yi-Ping. Effect of cropland ecological conditions on soil nutrient and humic acid characteristics of gray desert soil[J]. Chinese Journal of Eco-Agriculture, 2007, 15(3): 18-20. |
[6] | PENG Zheng-Ping, MEN Ming-Xin, XUE Shi-Chuan, XUE Bao-Min, BI Shu-Qin. Effects of humic acid compound fertilizers on the nitrogen utilization and effects on the following rape[J]. Chinese Journal of Eco-Agriculture, 2007, 15(2): 51-53. |
[7] | CHEN Zhen-De, HE Jin-Ming, LI Xiang-Yun, CHEN Jian-Mei. Studies on increasing N utilizing efficiency in maize by applying humic acid[J]. Chinese Journal of Eco-Agriculture, 2007, 15(1): 52-54. |
[8] | DU Hui-Ying, XUE Shi-Chuan, SUN Zhong-Fu. Effects of different application rates of humic acid compound fertilizer on leave nutrient accumulation and physiological mechanism of grape[J]. Chinese Journal of Eco-Agriculture, 2007, 15(1): 49-51. |
[9] | XUE Shi-Chuan, LIU Xiu-Fen, DENG Jing-Hua. Effect and mechanism of humic acid compound fertilizer on the drought- and senility- resistant ability of wheat[J]. Chinese Journal of Eco-Agriculture, 2006, 14(1): 139-141. |
[10] | SUN Zhi-Mei, XUE Shi-Chuan, WANG Guo-Qi, LlU Shu-Ping, ZHANG Hui-Yong. Efect of the application amount of humic acid compound fertilizer 0n the yield and nutrient utilization rate of pepper[J]. Chinese Journal of Eco-Agriculture, 2004, 12(3): 99-101. |