Citation: | LIU H W, LUAN H A, ZHANG Y T, XI B, DONG K J, WANG W J. Research progress on the occurrence characteristics of nitrogen and phosphorus leaching in dryland farmland[J]. Chinese Journal of Eco-Agriculture, 2024, 32(9): 1520−1533. DOI: 10.12357/cjea.20240040 |
Nitrogen and phosphorus leaching is the main form of non-point source pollution in dryland agriculture, which directly leads to a risk of water pollution, especially excessive nitrogen and phosphorus content in groundwater. Clarifying the characteristics of nitrogen and phosphorus leaching is a prerequisite for formulating targeted measures to control farmland nutrient loss. In this study, by analyzing the relevant literatures, the research hotspots of nitrogen and phosphorus leaching in farmlands at home and abroad over the past two decades were clarified. The main leaching monitoring methods and their advantages and disadvantages were discussed, and the key factors affecting leaching and their environmental effects were summarized. Finally, the existing problems and future research directions for nitrogen and phosphorus leaching were discussed. In the past two decades, the leaching characteristics of soil nitrogen, phosphorus, nitrate, and other solutes under different water and fertilizer conditions and management methods have been evaluated at home and abroad. Long-term excessive fertilizer input is the main reason for the accumulation and leaching of nitrogen and phosphorus in the soil. Long-term excessive fertilizer input leads to a surplus. Some nitrogen is discharged into the atmosphere along with ammonia, nitrous oxide, and other gases, whereas some nitrogen and phosphorus enter rivers and groundwater via runoff and leaching. NO3−-N is the main form of nitrogen leaching. Phosphorus is mostly immobilized in the soil in the form of insoluble particles, and there is less vertical migration. However, with the increase in phosphorus fertilizer use, leaching has gradually become an important mode of phosphorus loss. Current quantitative methods for nitrogen and phosphorus leaching mainly include in situ field monitoring and artificial simulation of the rainfall remodeling leaching process. Each method has its advantages and disadvantages. Monitoring methods should be selected according to local conditions such as soil, crops, and purpose. Affected by factors such as fertilization, rainfall irrigation, soil type, and land use, the risk of nitrogen and phosphorus leaching in farmlands varies from place to place. The amount of fertilizer input in the main agricultural areas is large, with a correspondingly large surplus of soil nitrogen and phosphorus, and the pollution of groundwater is more serious than in other areas, representing a serious environmental risk. In the face of extreme climate change, it is necessary to strengthen research on the microbial processes and driving mechanisms of deep soil in drylands while assessing the degree of nitrate pollution in groundwater and accurately identifying the main pollutant types for prevention and control. Moreover, it is important to continue to develop monitoring methods suitable for long-term, continuous, and similar natural conditions and to comprehensively use in situ monitoring, remote sensing, model simulation, and other methods to quantify the nitrogen and phosphorus leaching contribution of different land use patterns in the same area. Finally, classification, zoning, and grading management should be carried out.
[1] |
HUSSAIN M Z, BHARDWAJ A K, BASSO B, et al. Nitrate leaching from continuous corn, perennial grasses, and poplar in the US Midwest[J]. Journal of Environmental Quality, 2019, 48(6): 1849−1855 doi: 10.2134/jeq2019.04.0156
|
[2] |
张维理, 冀宏杰, Kolbe H. , 等. 中国农业面源污染形势估计及控制对策Ⅱ. 欧美国家农业面源污染状况及控制[J]. 中国农业科学, 2004, 37(7): 1018−1025 doi: 10.3321/j.issn:0578-1752.2004.07.013
ZHANG W L, JI H J, KOLBE H, et al. Estimation of agricultural non-point source pollution in China and the alleviating strategies Ⅱ. Status of agricultural non-point source pollution and the alleviating strategies in European and American countries[J]. Scientia Agricultura Sinica, 2004, 37(7): 1018−1025 doi: 10.3321/j.issn:0578-1752.2004.07.013
|
[3] |
中国农业绿色发展研究会, 中国农业科学院农业资源与农业区划研究所. 中国农业绿色发展报告2021[R]. 北京: 中国农业科学院农业资源与农业区划研究所, 2022: 38
China Agricultural Green Development Research Society; Institute of Agricultural Resources and Regional Planning, Chines Academy of Agricultural Sciences. China Agricultural Green Development Report 2021[R]. Beijing: Institute of Agricultural Resources and Regional Planning, Chines Academy of Agricultural Sciences, 2022: 38
|
[4] |
GAO S S, XU P, ZHOU F, et al. Quantifying nitrogen leaching response to fertilizer additions in China’s cropland[J]. Environmental Pollution, 2016, 211: 241−251 doi: 10.1016/j.envpol.2016.01.010
|
[5] |
MAGUIRE R O, SIMS J T, FOY R H. Long-term kinetics for phosphorus sorption-desorption by high phosphorus soils from Ireland and the Delmarva Peninsula, USA[J]. Soil Science, 2001, 166(8): 557−565 doi: 10.1097/00010694-200108000-00007
|
[6] |
XIAO Z G, RASMANN S, YUE L, et al. The effect of biochar amendment on N-cycling genes in soils: a meta-analysis[J]. The Science of the Total Environment, 2019, 696: 133984 doi: 10.1016/j.scitotenv.2019.133984
|
[7] |
杨荣全, 曹飞, 李迎春, 等. 不同施肥处理对华北露天菜地氮素淋溶的影响[J]. 中国土壤与肥料, 2020(6): 130−137 doi: 10.11838/sfsc.1673-6257.19481
YANG R Q, CAO F, LI Y C, et al. Effects of different fertilization treatments on nitrogen leaching in North China open-air vegetable fields[J]. Soil and Fertilizer Sciences in China, 2020(6): 130−137 doi: 10.11838/sfsc.1673-6257.19481
|
[8] |
WANG L Y, LI M. Review of soil dissolved organic nitrogen cycling: implication for groundwater nitrogen contamination[J]. Journal of Hazardous Materials, 2024, 461: 132713 doi: 10.1016/j.jhazmat.2023.132713
|
[9] |
ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528: 51−59 doi: 10.1038/nature15743
|
[10] |
徐梦, 刘鸿雁, 吴攀, 等. 黔中水利枢纽不同土地利用类型土壤养分淋溶特征[J]. 水土保持研究, 2017, 24(1): 25−30, 35
XU M, LIU H Y, WU P, et al. Leaching characteristics of soil nutrients in different land use types of central Guizhou water control project[J]. Research of Soil and Water Conservation, 2017, 24(1): 25−30, 35
|
[11] |
YANG F, SUI L, TANG C Y, et al. Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances[J]. The Science of the Total Environment, 2021, 768: 145106 doi: 10.1016/j.scitotenv.2021.145106
|
[12] |
HESKETH N, BROOKES P C. Development of an indicator for risk of phosphorus leaching[J]. Journal of Environmental Quality, 2000, 29(1): 105−110
|
[13] |
胡良, 杜伟, 常博焜, 等. 不同磷水平塿土的表面性质及其对磷素流失特征的影响[J]. 土壤学报, 2023, 60(2): 424−434
HU L, DU W, CHANG B K, et al. Surface properties of Lou soil with different phosphorus levels and their effects on phosphorus loss characteristics[J]. Acta Pedologica Sinica, 2023, 60(2): 424−434
|
[14] |
SALAZAR O, VARGAS J, NÁJERA F, et al. Monitoring of nitrate leaching during flush flooding events in a coarse-textured floodplain soil[J]. Agricultural Water Management, 2014, 146: 218−227 doi: 10.1016/j.agwat.2014.08.014
|
[15] |
PADILLA F M, FARNESELLI M, GIANQUINTO G, et al. Monitoring nitrogen status of vegetable crops and soils for optimal nitrogen management[J]. Agricultural Water Management, 2020, 241: 106356 doi: 10.1016/j.agwat.2020.106356
|
[16] |
王攀磊, 徐胜涛, 潘艳华, 等. 农田土壤环境监测渗漏池系统的构建技术及应用[J]. 农业工程学报, 2019, 35(7): 86−96 doi: 10.11975/j.issn.1002-6819.2019.07.011
WANG P L, XU S T, PAN Y H, et al. Construction technology and application of lysimeter in agricultural soil environment monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7): 86−96 doi: 10.11975/j.issn.1002-6819.2019.07.011
|
[17] |
GREEN D, PATTISON I. Christiansen uniformity revisited: re-thinking uniformity assessment in rainfall simulator studies[J]. CATENA, 2022, 217: 106424 doi: 10.1016/j.catena.2022.106424
|
[18] |
RONČEVIĆ V, ŽIVANOVIĆ N, RISTIĆ R, et al. Dripping rainfall simulators for soil research — Design review[J]. Water, 2022, 14(20): 3309 doi: 10.3390/w14203309
|
[19] |
CHEN J C, HU G Q, WANG H, et al. Leaching and migration characteristics of nitrogen during coastal saline soil remediation by combining humic acid with gypsum and bentonite[J]. Annals of Agricultural Sciences, 2023, 68(1): 1−11 doi: 10.1016/j.aoas.2023.02.001
|
[20] |
MO X Y, PENG H, XIN J, et al. Analysis of urea nitrogen leaching under high-intensity rainfall using HYDRUS-1D[J]. Journal of Environmental Management, 2022, 312: 114900 doi: 10.1016/j.jenvman.2022.114900
|
[21] |
黄倩楠, 党海燕, 黄婷苗, 等. 我国主要麦区农户施肥评价及减肥潜力分析[J]. 中国农业科学, 2020, 53(23): 4816−4834 doi: 10.3864/j.issn.0578-1752.2020.23.009
HUANG Q N, DANG H Y, HUANG T M, et al. Evaluation of farmers’ fertilizer application and fertilizer reduction potentials in major wheat production regions of China[J]. Scientia Agricultura Sinica, 2020, 53(23): 4816−4834 doi: 10.3864/j.issn.0578-1752.2020.23.009
|
[22] |
WANG S Q, WEI S C, LIANG H Y, et al. Nitrogen stock and leaching rates in a thick vadose zone below areas of long-term nitrogen fertilizer application in the North China Plain: a future groundwater quality threat[J]. Journal of Hydrology, 2019, 576: 28−40 doi: 10.1016/j.jhydrol.2019.06.012
|
[23] |
Nanang Zulkarnaen, 程谊, 张金波. 土地利用方式对红壤氮素矿化和硝化作用的影响[J]. 土壤通报, 2019, 50(5): 1210−1217
ZULKARNAEN N, CHENG Y, ZHANG J B. Effects of land use on soil nitrogen mineralization and nitrification transformation in red soil in subtropical region of China[J]. Chinese Journal of Soil Science, 2019, 50(5): 1210−1217
|
[24] |
张奇茹, 谢英荷, 李廷亮, 等. 有机肥替代化肥对旱地小麦产量和养分利用效率的影响及其经济环境效应[J]. 中国农业科学, 2020, 53(23): 4866−4878 doi: 10.3864/j.issn.0578-1752.2020.23.012
ZHANG Q R, XIE Y H, LI T L, et al. Effects of organic fertilizers replacing chemical fertilizers on yield, nutrient use efficiency, economic and environmental benefits of dryland wheat[J]. Scientia Agricultura Sinica, 2020, 53(23): 4866−4878 doi: 10.3864/j.issn.0578-1752.2020.23.012
|
[25] |
习斌, 翟丽梅, 刘申, 等. 有机无机肥配施对玉米产量及土壤氮磷淋溶的影响[J]. 植物营养与肥料学报, 2015, 21(2): 326−335 doi: 10.11674/zwyf.2015.0206
XI B, ZHAI L M, LIU S, et al. Effects of combined application of organic and inorganic fertilizers on maize yield and soil nitrogen and phosphorus leaching[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 326−335 doi: 10.11674/zwyf.2015.0206
|
[26] |
温延臣, 李海燕, 袁亮, 等. 长期定位施肥对潮土剖面养分分布的影响[J]. 中国农业科学, 2020, 53(21): 4460−4469 doi: 10.3864/j.issn.0578-1752.2020.21.014
WEN Y C, LI H Y, YUAN L, et al. Effect of long-term fertilization on nutrient distribution in fluvo-aquic soil profile[J]. Scientia Agricultura Sinica, 2020, 53(21): 4460−4469 doi: 10.3864/j.issn.0578-1752.2020.21.014
|
[27] |
LU J S, HU T T, ZHANG B C, et al. Nitrogen fertilizer management effects on soil nitrate leaching, grain yield and economic benefit of summer maize in Northwest China[J]. Agricultural Water Management, 2021, 247: 106739 doi: 10.1016/j.agwat.2021.106739
|
[28] |
WANG Z, LI J, LI Y. Effects of drip irrigation system uniformity and nitrogen applied on deep percolation and nitrate leaching during growing seasons of spring maize in semi-humid region[J]. Irrigation Science, 2014, 32(3): 221−236 doi: 10.1007/s00271-013-0425-x
|
[29] |
YANG X L, LU Y L, DING Y, et al. Optimising nitrogen fertilisation: a key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014)[J]. Field Crops Research, 2017, 206: 1−10 doi: 10.1016/j.fcr.2017.02.016
|
[30] |
WANG Y S, LIU Y S, LIU R L, et al. Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation, China[J]. Scientific Reports, 2017, 7: 1592 doi: 10.1038/s41598-017-01173-w
|
[31] |
ZHAO C S, HU C X, HUANG W, et al. A lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in Central China[J]. Journal of Soils and Sediments, 2010, 10(1): 9−17 doi: 10.1007/s11368-009-0063-3
|
[32] |
WANG D Y, GUO L P, ZHENG L, et al. Effects of nitrogen fertilizer and water management practices on nitrogen leaching from a typical open field used for vegetable planting in northern China[J]. Agricultural Water Management, 2019, 213: 913−921 doi: 10.1016/j.agwat.2018.12.015
|
[33] |
GENG Y C, BASHIR M A, ZHAO Y, et al. Long-term fertilizer reduction in greenhouse tomato-cucumber rotation system to assess N utilization, leaching, and cost efficiency[J]. Sustainability-Basel, 2022, 14(8): 4647 doi: 10.3390/su14084647
|
[34] |
CHEN Y M, ZHANG J Y, XU X, et al. Effects of different irrigation and fertilization practices on nitrogen leaching in facility vegetable production in northeastern China[J]. Agricultural Water Management, 2018, 210: 165−170 doi: 10.1016/j.agwat.2018.07.043
|
[35] |
FEYEREISEN G W, KLEINMAN P J A, FOLMAR G J, et al. Effect of direct incorporation of poultry litter on phosphorus leaching from coastal plain soils[J]. Journal of Soil and Water Conservation, 2010, 65(4): 243−251 doi: 10.2489/jswc.65.4.243
|
[36] |
UKWATTAGE N L, LI Y C, GAN Y D, et al. Effect of biochar and coal fly ash soil amendments on the leaching loss of phosphorus in subtropical sandy ultisols[J]. Water, Air, & Soil Pollution, 2020, 231(2): 56
|
[37] |
彭畅, 朱平, 张秀芝, 等. 基于渗漏池法研究施肥对东北中部雨养区玉米氮素地下淋溶的影响[J]. 玉米科学, 2015, 23(6): 125−130
PENG C, ZHU P, ZHANG X Z, et al. Based on the seepage pool method, the effect of fertilization on nitrogen leaching of maize in rain-fed areas in central Northeast China was studied[J]. Journal of Maize Sciences, 2015, 23(6): 125−130
|
[38] |
LIU J, BI X Q, MA M T, et al. Precipitation and irrigation dominate soil water leaching in cropland in Northern China[J]. Agricultural Water Management, 2019: 165–171
|
[39] |
WANG H Y, JU X T, WEI Y P, et al. Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain[J]. Agricultural Water Management, 2010, 97(10): 1646−1654 doi: 10.1016/j.agwat.2010.05.022
|
[40] |
HESS L J T, HINCKLEY E L S, ROBERTSON G P, et al. Rainfall intensification increases nitrate leaching from tilled but not no-till cropping systems in the U.S. Midwest[J]. Agriculture, Ecosystems & Environment, 2020, 290: 106747
|
[41] |
LIU L Y, ZHENG X Q, WEI X C, et al. Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication[J]. Scientific Reports, 2021, 11: 23015 doi: 10.1038/s41598-021-02521-7
|
[42] |
GAO J B, WANG S M, LI Z Q, et al. High nitrate accumulation in the vadose zone after land-use change from croplands to orchards[J]. Environmental Science & Technology, 2021, 55(9): 5782−5790
|
[43] |
FAN Z B, LIN S, ZHANG X M, et al. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production[J]. Agricultural Water Management, 2014, 144: 11−19 doi: 10.1016/j.agwat.2014.05.010
|
[44] |
YU Y Z, JIAO Y, YANG W Z, et al. Mechanisms underlying nitrous oxide emissions and nitrogen leaching from potato fields under drip irrigation and furrow irrigation[J]. Agricultural Water Management, 2022, 260: 107270 doi: 10.1016/j.agwat.2021.107270
|
[45] |
于亚泽, 焦燕, 杨文柱, 等. 不同灌溉方式旱田土壤N2O排放和氮素淋溶特征[J]. 中国环境科学, 2021, 41(2): 813−825 doi: 10.3969/j.issn.1000-6923.2021.02.036
YU Y Z, JIAO Y, YANG W Z, et al. Characteristics of N2O emission and nitrogen leaching in dryland soil with different irrigation methods[J]. China Environmental Science, 2021, 41(2): 813−825 doi: 10.3969/j.issn.1000-6923.2021.02.036
|
[46] |
张亦涛, 王洪媛, 刘宏斌, 等. 基于大型渗漏池监测的褐潮土农田水、氮淋失特征[J]. 中国农业科学, 2016, 49(1): 110−119 doi: 10.3864/j.issn.0578-1752.2016.01.010
ZHANG Y T, WANG H Y, LIU H B, et al. Characteristics of water and nitrogen leaching in brown fluvo-aquic soil farmland based on monitoring of large seepage pool[J]. Scientia Agricultura Sinica, 2016, 49(1): 110−119 doi: 10.3864/j.issn.0578-1752.2016.01.010
|
[47] |
徐嘉翼, 隋世江, 张鑫, 等. 东北雨养区草甸土玉米田氮素淋溶累积特征[J]. 环境科学与技术, 2021, 44(11): 72−78
XU J Y, SUI S J, ZHANG X, et al. Characteristics of nitrogen leaching in the maize farmland of meadow soil in rain-fed area of northeastern China[J]. Environmental Science & Technology, 2021, 44(11): 72−78
|
[48] |
李桂花, 张艳萍, 胡克林. 不同降雨和灌溉模式对作物产量及农田氮素淋失的影响[J]. 中国农业科学, 2013, 46(3): 545−554 doi: 10.3864/j.issn.0578-1752.2013.03.011
LI G H, ZHANG Y P, HU K L. Effects of different rainfall and irrigation modes on crop yield and nitrogen leaching from farmland[J]. Scientia Agricultura Sinica, 2013, 46(3): 545−554 doi: 10.3864/j.issn.0578-1752.2013.03.011
|
[49] |
PENG S Z, YANG S H, XU J Z, et al. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements[J]. Paddy and Water Environment, 2011, 9(3): 333−342 doi: 10.1007/s10333-010-0246-y
|
[50] |
SIECZKO A K, VAN DE VLASAKKER P C H, TONDERSKI K, et al. Seasonal nitrogen and phosphorus leaching in urban agriculture: dominance of non-growing season losses in a Southern Swedish case study[J]. Urban Forestry & Urban Greening, 2023, 79: 127823
|
[51] |
SIMMELSGAARD S E. The effect of crop, N-level, soil type and drainage on nitrate leaching from Danish soil[J]. Soil Use and Management, 1998, 14(1): 30−36 doi: 10.1111/j.1475-2743.1998.tb00607.x
|
[52] |
兰翔, 王婷, 杨春玲, 等. 不同施磷量对蔬菜地土壤硝态氮淋失的影响[J]. 植物营养与肥料学报, 2016, 22(4): 958−964 doi: 10.11674/zwyf.15245
LAN X, WANG T, YANG C L, et al. Effects of different phosphorus application rates on nitrate leaching in vegetable fields[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 958−964 doi: 10.11674/zwyf.15245
|
[53] |
王洪媛, 李俊改, 樊秉乾, 等. 中国北方主要农区农田氮磷淋溶特征与时空规律[J]. 中国生态农业学报(中英文), 2021, 29(1): 11−18
WANG H Y, LI J G, FAN B Q, et al. Leaching characteristics and temporal and spatial law of nitrogen and phosphorus in farmland of main agricultural areas in Northern China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 11−18
|
[54] |
张学科, 白俊英, 严海霞. 灌水量与施氮量对不同类型土壤中硝酸盐运移的影响[J]. 节水灌溉, 2020(2): 83−87 doi: 10.3969/j.issn.1007-4929.2020.02.016
ZHANG X K, BAI J Y, YAN H X. Effects of irrigation and nitrogen application on nitrate transport in different soils[J]. Water Saving Irrigation, 2020(2): 83−87 doi: 10.3969/j.issn.1007-4929.2020.02.016
|
[55] |
JALALI M, JALALI M. Assessment risk of phosphorus leaching from calcareous soils using soil test phosphorus[J]. Chemosphere, 2017, 171: 106−117 doi: 10.1016/j.chemosphere.2016.12.042
|
[56] |
OLSON B M, BREMER E, MCKENZIE R H, et al. Phosphorus accumulation and leaching in two irrigated soils with incremental rates of cattle manure[J]. Canadian Journal of Soil Science, 2010, 90(2): 355−362 doi: 10.4141/CJSS09025
|
[57] |
SHARMA R, BELL R W, WONG M T F. Phosphorus forms in soil solution and leachate of contrasting soil profiles and their implications for P mobility[J]. Journal of Soils and Sediments, 2015, 15(4): 854−862 doi: 10.1007/s11368-014-1057-3
|
[58] |
DREWRY J J, HEDLEY C B, MCNEILL S J, et al. Nitrogen and phosphorus leaching losses under cropping and zone-specific variable-rate irrigation[J]. Soil Research, 2023, 62(1): SR23136.
|
[59] |
KOSTENSALO J, LEMOLA R, SALO T, et al. A site-specific prediction model for nitrogen leaching in conventional and organic farming[J]. Journal of Environmental Management, 2024, 349: 119388
|
[60] |
YANG S H, DONG Y, WU H Y, et al. Deep accumulation of soluble organic nitrogen after land-use conversion from woodlands to orchards in a subtropical hilly region[J]. The Science of the Total Environment, 2023, 863: 160931 doi: 10.1016/j.scitotenv.2022.160931
|
[61] |
DURÁN ZUAZO V H, FRANCIA MARTÍNEZ J R, GARCÍA TEJERO I, et al. Runoff and sediment yield from a small watershed in southeastern Spain (Lanjarón): implications for water quality[J]. Hydrological Sciences Journal, 2012, 57(8): 1610−1625 doi: 10.1080/02626667.2012.726994
|
[62] |
陈浏寰, 覃英凤, 王紫莹, 等. 土地利用方式下岩溶湿地土壤无机磷形态特征及分析方法适用性探讨[J]. 中国岩溶, 2020, 39(6): 845−853 doi: 10.11932/karst20200605
CHEN L H, QIN Y F, WANG Z Y, et al. Speciation characteristics of inorganic phosphorus in Karst wetland soil under land use patterns and applicability of analytical methods[J]. Carsologica Sinica, 2020, 39(6): 845−853 doi: 10.11932/karst20200605
|
[63] |
WANG L S, HE Z B, LI J. Assessing the land use type and environment factors affecting groundwater nitrogen in an arid oasis in northwestern China[J]. Environmental Science and Pollution Research, 2020, 27(32): 40061−40074 doi: 10.1007/s11356-020-09745-6
|
[64] |
ZHENG W B, WANG S Q, TAN K D, et al. Nitrate accumulation and leaching potential is controlled by land-use and extreme precipitation in a headwater catchment in the North China Plain[J]. The Science of the Total Environment, 2020, 707: 136168 doi: 10.1016/j.scitotenv.2019.136168
|
[65] |
LU Y L, CHEN Z J, KANG T T, et al. Land-use changes from arable crop to kiwi-orchard increased nutrient surpluses andaccumulation in soils[J]. Agriculture, Ecosystems & Environment, 2016, 223: 270–277
|
[66] |
WANG S Q, ZHENG W B, CURRELL M, et al. Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain[J]. The Science of the Total Environment, 2017, 609: 607−620 doi: 10.1016/j.scitotenv.2017.07.176
|
[67] |
FRATERS D, VAN LEEUWEN T, BOUMANS L, et al. Use of long-term monitoring data to derive a relationship between nitrogen surplus and nitrate leaching for grassland and arable land on well-drained sandy soils in the Netherlands[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2015, 65(sup2): 144–154
|
[68] |
刘宏元, 张爱平, 杨世琦, 等. 山东省冬小麦-夏玉米轮作体系土壤氮素盈余指标体系的构建与评价−以德州市为例[J]. 农业环境科学学报, 2019, 38(6): 1321−1329 doi: 10.11654/jaes.2018-1158
LIU H Y, ZHANG A P, YANG S Q, et al. Construction and evaluation of soil nitrogen surplus index system of winter wheat-summer maize rotation system in Shandong Province — A case study of Dezhou City[J]. Journal of Agro-Environment Science, 2019, 38(6): 1321−1329 doi: 10.11654/jaes.2018-1158
|
[69] |
徐嘉翼, 隋世江, 康越, 等. 辽河平原区玉米旱田氮磷流失特征研究[J]. 玉米科学, 2021, 29(2): 131−139
XU J Y, SUI S J, KANG Y, et al. Study on characteristics of nitrogen and phosphorus loss in maize dry field in Liaohe Plain[J]. Journal of Maize Sciences, 2021, 29(2): 131−139
|
[70] |
ZHANG W L, TIAN Z X, ZHANG N, et al. Nitrate pollution of groundwater in Northern China[J]. Agriculture, Ecosystems & Environment, 1996, 59(3): 223–231
|
[71] |
GU B J, JU X T, CHANG J, et al. Integrated reactive nitrogen budgets and future trends in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): 8792−8797
|
1. |
刘新茹,杜新忠,刘晓荣,雷秋良,刘宏斌. 典型降雨事件下流域氮素输出特征与影响因素研究. 中国环境科学. 2025(02): 1027-1035 .
![]() | |
2. |
王丽莎,陈龙飞,罗德伟,何志斌,何晓丽. 河西走廊荒漠绿洲农田氮素吸收、残留与淋失特征. 应用与环境生物学报. 2024(06): 1115-1123 .
![]() |