Citation: | PENG X Y, MA H H, HE Y T, LIU R, LIANG H Y, ZHU Y X, ZHU X D, LIU Y Q. Effects of ginger-citrus intercropping on ginger growth, photosynthesis traits and yield[J]. Chinese Journal of Eco-Agriculture, 2024, 32(4): 675−686. DOI: 10.12357/cjea.20230604 |
Intercropping is a traditional cultivation system wherein two or more plant genotypes are grown together for a certain period. Intercropping not only facilitates full use of the available land space, but also contributes to optimizing the light environment and improving yields. In this study, we conducted a field experiment to examine the effects of different cropping patterns of ginger on the growth, photosynthesis and yield of ginger under hot summer conditions in 2021 and 2022, based on the following three treatments: unshaded ginger monoculture (CK), shaded ginger monoculture (CK1), and intercropping of ginger and citrus (CI). To determine the effects of intercropping with citrus, the ginger plant growth characteristics, leaf burn, photosynthetic key enzymes, photosynthetic pigments, chlorophyll fluorescence parameters, osmoregulatory substances, antioxidant enzyme activity, and yield under different cropping patterns were investigated. The results revealed that compared with CK treatment, the CI treatment was associated with a significant reduction in canopy light intensity and plant leaf burn index by 55.40%−55.80% and 61.14%−70.20%, respectively (P<0.05), whereas there were significant increases in the activities of key photosynthetic enzymes, photosynthetic pigment, net photosynthetic rate, and maximum photochemical efficiency of 22.34%−50.55%, 14.36%−50.00%, 51.04%−70.64%, and 5.56%−7.79%, respectively (P<0.05). Furthermore, the CI treatment contributed to the highest ginger yield (63.00−66.08 t·hm−2), which represented a significant increase of 23.28%−23.77% (P<0.05) when compared with that obtained under the CK treatment. Moreover, we detected no significant differences between the CK1 and CI treatments with respect to light intensity, leaf burn index, net photosynthetic rate, or yield. However, compared with the CK1 treatment, the CI treatment significantly enhanced the activities of key photosynthetic enzymes, photosynthetic pigment contents, and maximum photochemical efficiency by 26.88%, 7.74%, and 2.47%, respectively (P<0.05). In conclusion, intercropping with citrus can reduce light intensity at the ginger canopy during the hot season, reduce the degree of leaf burn, improve photosynthetic performance, and increase ginger yield. Among the three assessed planting patterns, ginger-citrus intercropping was identified as the most effective system, which contributed to achieving the highest crop yield, provided beneficial environmental conditions for ginger growth, and highlighted the production advantages of ginger under the citrus canopy.
[1] |
PORTER J R. The ecology of intercropping[J]. Experimental Agriculture, 1994, 30(2): 262
|
[2] |
章伟, 占爱, 李世清. 密度与地膜覆盖对旱塬幼龄果园中大豆综合生产力的影响[J]. 中国生态农业学报(中英文), 2021, 29(7): 1138−1150
ZHANG W, ZHAN A, LI S Q. Effects of planting density and film mulching on the integrated productivity of soybean in young apple orchard of the Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2021, 29(7): 1138−1150
|
[3] |
钱必长, 赵晨, 赵继浩, 等. 不同花生棉花间作模式对花生生育后期生理特性及产量的影响[J]. 应用生态学报, 2022, 33(9): 2422−2430
QIAN B C, ZHAO C, ZHAO J H, et al. Effects of different peanut-cotton intercropping modes on physiological characteristics and yield of peanut in late growth stage[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2422−2430
|
[4] |
胡国彬, 董坤, 董艳, 等. 间作缓解蚕豆连作障碍的根际微生态效应[J]. 生态学报, 2016, 36(4): 1010−1020
HU G B, DONG K, DONG Y, et al. Effects of cultivars and intercropping on the rhizosphere microenvironment for alleviating the impact of continuous cropping of faba bean[J]. Acta Ecologica Sinica, 2016, 36(4): 1010−1020
|
[5] |
DAI C C, CHENG Y, WANG X X, et al. Effects of intercropping of peanut with the medicinal plant Atractylodes lancea on soil microecology and peanut yield in subtropical China[J]. Agroforestry Systems, 2013, 87(2): 417−426 doi: 10.1007/s10457-012-9563-z
|
[6] |
秦齐, 田梦阳, 谢寅峰, 等. 林药间作模式下白及光合生理特性[J]. 东北林业大学学报, 2023, 51(6): 70−76
QIN Q, TIAN M Y, XIE Y F, et al. Photosynthesis and physiological characteristics of Bletilla striata under intercropping of forest and drug[J]. Journal of Northeast Forestry University, 2023, 51(6): 70−76
|
[7] |
JIAO N Y, WANG J T, MA C, et al. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping[J]. The Crop Journal, 2021, 9(6): 1460−1469 doi: 10.1016/j.cj.2020.12.004
|
[8] |
FENG C, SUN Z X, ZHANG L Z, et al. Maize/peanut intercropping increases land productivity: a meta-analysis[J]. Field Crops Research, 2021, 270: 108208
|
[9] |
林松明, 孟维伟, 南镇武, 等. 玉米间作花生冠层微环境变化及其与荚果产量的相关性研究[J]. 中国生态农业学报(中英文), 2020, 28(1): 31−41
LIN S M, MENG W W, NAN Z W, et al. Canopy microenvironment change of peanut intercropped with maize and its correlation with pod yield[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 31−41
|
[10] |
姚向高, 王爱玲. 春玉米与生姜间作不同种植方式农田生态效应研究[J]. 生态学杂志, 1997, 16(4): 6−9
YAO X G, WANG A L. Study of the ecological effects of different treatments of intercropping of spring maize and ginger[J]. Chinese Journal of Ecology, 1997, 16(4): 6−9
|
[11] |
刘奕清, 朱永兴. 生姜高质高效生产200题[M]. 北京: 中国农业出版社, 2022
LIU Y Q, ZHU Y X. 200 Problems of High Quality and Efficient Production of Ginger[M]. Beijing: China Agriculture Press, 2022
|
[12] |
JIANG Y J, JIANG D Z, XIA M Q, et al. Genome-wide identification and expression analysis of the TCP gene family related to developmental and abiotic stress in ginger[J]. Plants, 2023, 12(19): 3389 doi: 10.3390/plants12193389
|
[13] |
彭慧敏, 马佳伟, 李港, 等. 生姜-葡萄立体间作模式对生姜夏季的生长、光合及抗氧化酶的影响[J]. 山东农业大学学报(自然科学版), 2023, 54(2): 159−165
PENG H M, MA J W, LI G, et al. Effects of three-dimensional pattern intercropping grape and ginger on photosynthesis, growth and antioxidase of Zingiber officinale Rosc. in summer[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2023, 54(2): 159−165
|
[14] |
宋江涛, 谌丹丹, 公旭晨, 等. 人工疏果对‘爱媛28’橘橙果实糖酸含量及代谢基因表达的影响[J]. 中国农业科学, 2022, 55(23): 4688−4701
SONG J T, SHEN D D, GONG X C, et al. Effects of artificial fruit thinning on sugar and acid content and expression of metabolism-related genes in fruit of Beni-Madonna Tangor[J]. Scientia Agricultura Sinica, 2022, 55(23): 4688−4701
|
[15] |
盛良学, 黄道友, 夏海鳌, 等. 红壤橘园间作经济绿肥的生态效应及对柑橘产量和品质的影响[J]. 植物营养与肥料学报, 2004, 10(6): 677−679
SHENG L X, HUANG D Y, XIA H A, et al. Effects of intercropping economic green manure on yield and quality of citrus and ecological benefit in the orchard of red soil hilly region[J]. Plant Nutrition and Fertilizer Science, 2004, 10(6): 677−679
|
[16] |
赖瑞联, 龙宇, 程春振, 等. 猕猴桃果园间作模式优化构建与技术集成[J]. 中国生态农业学报(中英文), 2019, 27(9): 1430−1439
LAI R L, LONG Y, CHENG C Z, et al. Model optimized construction and technology integrated application of intercropping in kiwifruit orchard[J]. Chinese Journal of Eco-Agriculture, 2019, 27(9): 1430−1439
|
[17] |
郑开友, 任云, 李洪雷, 等. 玉米/生姜套作模式下玉米株型与行宽对生姜光合特性及产量的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 310−320
ZHENG K Y, REN Y, LI H L, et al. Effects of maize plant type and row width on photosynthetic characteristics and yield of ginger under maize/ginger intercropping mode[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 310−320
|
[18] |
谭焱芝, 周凤珏, 许鸿源, 等. 罗汉果—生姜间作对生姜光合特性和产量的影响[J]. 南方农业学报, 2013, 44(2): 214−217
TAN Y Z, ZHOU F J, XU H Y, et al. Effects of Siraitia grosvenorii and ginger intercropping on the photosynthetic characteristics and yield of ginger[J]. Journal of Southern Agriculture, 2013, 44(2): 214−217
|
[19] |
周卫军, 王凯荣, 李合松. 大豆-柑桔间作系统中作物对磷的吸收利用特性[J]. 生态学报, 2003, 23(12): 2565−2572
ZHOU W J, WANG K R, LI H S. Characteristics of phosphorus uptake by plants in soybean (Glycine max L. Merr) and Citrus (Citrus poonensis Hort ex Tanaka) intercropping system[J]. Acta Ecologica Sinica, 2003, 23(12): 2565−2572
|
[20] |
刘月娇, 倪九派, 张洋, 等. 三峡库区新建柑橘园间作的截流保肥效果分析[J]. 水土保持学报, 2015, 29(1): 226−230
LIU Y J, NI J P, ZHANG Y, et al. Analysis of effects on water interception and nutrient conservation from Citrus intercropping in hilly area of Chongqing City[J]. Journal of Soil and Water Conservation, 2015, 29(1): 226−230
|
[21] |
李丹丹, 杨军, 杨武年, 等. 八宝景天-柑橘间作降低柑橘根际土壤镉含量以减少对镉的吸收[J]. 植物营养与肥料学报, 2020, 26(5): 891−900
LI D D, YANG J, YANG W N, et al. Intercropping of citrus with Hylotelephium spectabile reduces Cd uptake by removing Cd in rhizosphere soil of citrus[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 891−900
|
[22] |
游璟, 倪九派, 黄容, 等. 柑橘/大球盖菇套作下土壤CO2排放及其效率对秸秆还田量的响应[J]. 环境科学, 2019, 40(10): 4708−4717
YOU J, NI J P, HUANG R, et al. Response of soil CO2 emissions to straw-returning in citrus/mushroom intercropping systems[J]. Environmental Science, 2019, 40(10): 4708−4717
|
[23] |
ARNON D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1): 1−15 doi: 10.1104/pp.24.1.1
|
[24] |
高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006
GAO J F. Experimental Guidance for Plant Physiology[M]. Beijing: Higher Education Press, 2006
|
[25] |
可静, 李进, 李永洁. 干旱胁迫下黑果枸杞幼苗对外源水杨酸的生理响应[J]. 植物生理学报, 2016, 52(4): 497−504
KE J, LI J, LI Y J. Physiological responses of Lycium ruthenicum seedlings on exogenous salicylic acid under the drought stress[J]. Plant Physiology Journal, 2016, 52(4): 497−504
|
[26] |
王晓维, 黄国勤, 徐健程, 等. 铜胁迫和间作对玉米抗氧化酶活性及丙二醛含量的影响[J]. 农业环境科学学报, 2014, 33(10): 1890−1896
WANG X W, HUANG G Q, XU J C, et al. Effects of copper stresses and intercropping on antioxidant enzyme activities and malondialdehyde contents in maize[J]. Journal of Agro-Environment Science, 2014, 33(10): 1890−1896
|
[27] |
焦念元, 宁堂原, 赵春, 等. 玉米花生间作复合体系光合特性的研究[J]. 作物学报, 2006, 32(6): 917−923 doi: 10.3321/j.issn:0496-3490.2006.06.022
JIAO N Y, NING T Y, ZHAO C, et al. Characters of photosynthesis in intercropping system of maize and peanut[J]. Acta Agronomica Sinica, 2006, 32(6): 917−923 doi: 10.3321/j.issn:0496-3490.2006.06.022
|
[28] |
姜振升, 孙晓琦, 艾希珍, 等. 低温弱光对黄瓜幼苗Rubisco与Rubisco活化酶的影响[J]. 应用生态学报, 2010, 21(8): 2045−2050
JIANG Z S, SUN X Q, AI X Z, et al. Responses of Rubisco and Rubisco activase in cucumber seedlings to low temperature and weak light[J]. Chinese Journal of Applied Ecology, 2010, 21(8): 2045−2050
|
[29] |
翁晓燕, 陆庆, 蒋德安. 水稻Rubisco活化酶在调节Rubisco活性和光合日变化中的作用[J]. 中国水稻科学, 2001, 15(1): 35−40
WENG X Y, LU Q, JIANG D A. Rubisco activase and its regulation on diurnal changes of photosynthetic rate and the activity of Ribulose 1,5-bisphosphate carboxyase/oxygenase (Rubisco)[J]. Chinese Journal of Rice Science, 2001, 15(1): 35−40
|
[30] |
HUANG D, WU L, CHEN J R, et al. Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels[J]. Photosynthetica, 2011, 49(4): 611−618 doi: 10.1007/s11099-011-0076-1
|
[31] |
赵天宏, 刘轶鸥, 王岩, 等. O3浓度升高和UV-B辐射增强对大豆叶片叶绿素含量和活性氧代谢的影响[J]. 应用生态学报, 2013, 24(5): 1277−1283
ZHAO T H, LIU Y O, WANG Y, et al. Effects of elevated O3 concentration and UV-B radiation on the chlorophyll content and active oxygen metabolism of soybean leaves[J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1277−1283
|
[32] |
MAKOI J H J R, CHIMPHANGO S B M, DAKORA F D. Photosynthesis, water-use efficiency and δ13C of five cowpea genotypes grown in mixed culture and at different densities with sorghum[J]. Photosynthetica, 2010, 48(1): 143−155 doi: 10.1007/s11099-010-0019-2
|
[33] |
潘师峰, 徐志刚, 许亚良, 等. 光质对蔬菜作物类胡萝卜素合成与调控研究进展[J]. 中国蔬菜, 2023(1): 20−33
PAN S F, XU Z G, XU Y L, et al. Research progress made in light quality on biosynthesis and regulation of carotenoids in vegetable crops[J]. China Vegetables, 2023(1): 20−33
|
[34] |
张永征, 李海东, 李秀, 等. 光强和水分胁迫对姜叶片光合特性的影响[J]. 园艺学报, 2013, 40(11): 2255−2262
ZHANG Y Z, LI H D, LI X, et al. Effects of light intensity and water stress on leaf photosynthetic characteristics of ginger[J]. Acta Horticulturae Sinica, 2013, 40(11): 2255−2262
|
[35] |
张劲松, 孟平, 辛学兵, 等. 太行山低山丘陵区苹果生姜间作系统综合效应研究[J]. 林业科学, 2001, 37(2): 74−78 doi: 10.11707/j.1001-7488.20010211
ZHANG J S, MENG P, XIN X B, et al. Effects of apple-ginger inter-cropping in the hilly land of Taihang Mountain[J]. Scientia Silvae Sinicae, 2001, 37(2): 74−78 doi: 10.11707/j.1001-7488.20010211
|
[36] |
TSCHIERSCH H, JUNKER A, MEYER R C, et al. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses[J]. Plant Methods, 2017, 13: 54 doi: 10.1186/s13007-017-0204-4
|
[37] |
范元芳, 杨峰, 刘沁林, 等. 套作荫蔽对苗期大豆叶片结构和光合荧光特性的影响[J]. 作物学报, 2017, 43(2): 277−285 doi: 10.3724/SP.J.1006.2017.00277
FAN Y F, YANG F, LIU Q L, et al. Effects of shading on leaf structure and photosynthetic fluorescence characteristics of soybean seedlings in maize-soybean relay intercropping system[J]. Acta Agronomica Sinica, 2017, 43(2): 277−285 doi: 10.3724/SP.J.1006.2017.00277
|
1. |
朱永兴,田野,马慧慧,孙冲,蒋昕晨,刘奕清,周弦. 生姜应答间/套作的生理生化研究进展. 云南农业大学学报(自然科学). 2024(03): 182-187 .
![]() |