Volume 31 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
LI Z Z, LIU L, MA L, BAI Z H. Impact of aquatic product trade on land use, carbon emissions and biodiversity[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1301−1310 doi: 10.12357/cjea.20230009
Citation: LI Z Z, LIU L, MA L, BAI Z H. Impact of aquatic product trade on land use, carbon emissions and biodiversity[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1301−1310 doi: 10.12357/cjea.20230009

Impact of aquatic product trade on land use, carbon emissions and biodiversity

doi: 10.12357/cjea.20230009
Funds:  This study was supported by the National Natural Science Foundation of China (32102496) and China Postdoctoral Science Foundation (2021M693395).
More Information
  • Corresponding author: E-mail: baizh1986@126.com
  • Received Date: 2023-01-04
  • Accepted Date: 2023-03-08
  • Rev Recd Date: 2023-03-08
  • Available Online: 2023-03-14
  • Publish Date: 2023-08-22
  • Currently, the aquatic product trade plays an increasingly important role in global resources and the environment because 37% of global aquatic products are traded rather than consumed locally. Previous studies have mainly analyzed the resource and environmental costs caused by the substitution of aquatic products for livestock products. However, little is known about the impacts of aquatic product trade on the ‘resource-environment-biodiversity’ system. Here, a review was conducted using a combined method of environmental footprint and life-cycle assessment. This review focuses on (1) the changes in trade volume, trade species, and trade countries, and (2) the impact of the aquatic product trade on land use, greenhouse gas emissions (GHG), and biodiversity. The results showed that the export volume of aquatic products in 2020 increased five-fold compared with that in 1976, and the growth rate of trade followed a profile termed ‘fast and then stable’. The aquatic product trade has expanded from southern Europe to the rest of the world. The major trade species are capture products (including sardines, cod, and tuna). However, the share of aquaculture products in total aquatic trade products has increased linearly since 1976: from 5% in 1976 to 25% in 2020. The increase in the aquaculture product trade affects global land-use change, virtual GHG emissions, and biodiversity in aquatic and terrestrial systems. Therefore, to achieve the sustainability of global aquatic products in the future, it is necessary to share advanced production technologies, optimize trade structures, and adjust trade species globally. More specifically, producers should optimize aquaculture structure, technology, and the industrial chain, and consumers should reduce the consumption and trade of aquatic products with high resource and environmental costs.
  • loading
  • [1]
    ZHANG W B, BELTON B, EDWARDS P, et al. Aquaculture will continue to depend more on land than sea[J]. Nature, 2022, 603(7900): E2−E4 doi: 10.1038/s41586-021-04331-3
    孙瑞杰, 李双建. 世界海洋渔业发展趋势研究及对我国的启示[J]. 海洋开发与管理, 2014, 31(5): 85−89 doi: 10.3969/j.issn.1005-9857.2014.05.021

    SUN R J, LI S J. The development trend research of the world marine fishery and its enlightenment to our country[J]. Ocean Development and Management, 2014, 31(5): 85−89 doi: 10.3969/j.issn.1005-9857.2014.05.021
    Food and Agriculture Organisation of the United Nations. The State of World Fisheries and Aquaculture 2020[M]. Rome: FAO, 2020
    COSTELLO C, CAO L, GELCICH S, et al. The future of food from the sea[J]. Nature, 2020, 588(7836): 95−100 doi: 10.1038/s41586-020-2616-y
    Food and Agriculture Organisation of the United Nations. The State of World Fisheries and Aquaculture 2022[M]. Rome: FAO, 2022
    DELGADO C L, WADA N, ROSEGRANT M W, et al. Fish to 2020: Supply and Demand in Changing Global Markets[M]. Washington, Penang: The WorldFish Center, 2003
    WAITE R, BEVERIDGE M C M, BRUMMETT R E, et al. Improving Productivity and Environmental Performance of Aquaculture[R]. Washington: World Resources Institute, 2014
    BÉNÉ C, LAWTON R, ALLISON E H. “Trade matters in the fight against poverty” : narratives, perceptions, and (lack of) evidence in the case of fish trade in Africa[J]. World Development, 2010, 38(7): 933−954 doi: 10.1016/j.worlddev.2009.12.010
    EDWARD P. Examining inequality: who really benefits from global growth?[J]. World Development, 2006, 34(10): 1667−1695 doi: 10.1016/j.worlddev.2006.02.006
    SMITH M D, ROHEIM C A, CROWDER L B, et al. Sustainability and global seafood[J]. Science, 2010, 327(5967): 784−786 doi: 10.1126/science.1185345
    MACLEOD M J, HASAN M R, ROBB D H F, et al. Quantifying greenhouse gas emissions from global aquaculture[J]. Scientific Reports, 2020, 10(1): 11679 doi: 10.1038/s41598-020-68231-8
    TROELL M, NAYLOR R L, METIAN M, et al. Does aquaculture add resilience to the global food system?[J]. Proceedings of the National Academy of Sciences, 2014, 111(37): 13257−13263 doi: 10.1073/pnas.1404067111
    WIEDMANN T. Impacts embodied in global trade flows[M]//CLIFT R, DRUCKMAN A. Taking Stock of Industrial Ecology. Cham: Springer International Publishing, 2016: 159–180
    ASCHE F, BELLEMARE M F, ROHEIM C, et al. Fair enough? food security and the international trade of seafood[J]. World Development, 2015, 67: 151−160 doi: 10.1016/j.worlddev.2014.10.013
    TVETERÅS S, ASCHE F, BELLEMARE M F, et al. Fish is food — the FAO’s fish price index[J]. PloS One, 2012, 7(5): e36731 doi: 10.1371/journal.pone.0036731
    清光照夫, 岩奇寿南. 水产经济学[M]. 北京: 海洋出版社, 1996

    SEIMITSU T, IWASAKI K. Fishery Economics[M]. Beijing: China Ocean Press, 1996
    黄季焜, 徐志刚, 李宁辉, 等. 新一轮贸易自由化与中国农业、贫困和环境[J]. 中国科学基金, 2005(3): 142−146 doi: 10.3969/j.issn.1000-8217.2005.03.005

    HUANG J K, XU Z G, LI N H, et al. A new round of trade liberalization, China’s agriculture, poverty and environment[J]. Bulletin of National Natural Science Foundation of China, 2005(3): 142−146 doi: 10.3969/j.issn.1000-8217.2005.03.005
    黄季焜, 解伟, 盛誉, 等. 全球农业发展趋势及2050年中国农业发展展望[J]. 中国工程科学, 2022, 24(1): 29−37

    HUANG J K, XIE W, SHENG Y, et al. Trends of global agriculture and prospects of China’s agriculture toward 2050[J]. Strategic Study of Chinese Academy of Engineering, 2022, 24(1): 29−37
    DAVIS K F, GEPHART J A, EMERY K A, et al. Meeting future food demand with current agricultural resources[J]. Global Environmental Change, 2016, 39: 125−132 doi: 10.1016/j.gloenvcha.2016.05.004
    BRUNNER E J, JONES P J S, FRIEL S, et al. Fish, human health and marine ecosystem health: policies in collision[J]. International Journal of Epidemiology, 2009, 38(1): 93−100 doi: 10.1093/ije/dyn157
    ANDERSON J L, MARTÍNEZ-GARMENDIA J. Trends in international seafood trade[M]//ANDERDON J J. International Seafood Trade. Cambridge: Woodhead Publishing, 2003: 39–54
    BOSTOCK J, MCANDREW B, RICHARDS R, et al. Aquaculture: global status and trends[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1554): 2897−2912 doi: 10.1098/rstb.2010.0170
    ASCHE F, YANG B X, GEPHART J A, et al. China’s seafood imports — Not for domestic consumption?[J]. Science, 2022, 375(6579): 386−388 doi: 10.1126/science.abl4756
    ANDERSON J L, ASCHE F, GARLOCK T. Globalization and commoditization: the transformation of the seafood market[J]. Journal of Commodity Markets, 2018, 12: 2−8 doi: 10.1016/j.jcomm.2017.12.004
    第17届上海国际渔业博览会. 欧盟、中国、美国推动全球海鲜需求增长[EB/OL]. [2022-06-01]. https://www.worldseafoodshanghai.com/xinwenmeiti/2425.html

    Seventeenth Shanghai International Fisheries and Seafood Exhibition. EU, China and the United States promote the growth of global seafood demand[EB/OL]. [2022-06-01]. https://www.worldseafoodshanghai.com/xinwenmeiti/2425.html
    史磊, 秦宏, 刘龙腾. 世界海洋捕捞业发展概况、趋势及对我国的启示[J]. 海洋科学, 2018, 42(11): 126−134 doi: 10.11759/hykx20181011002

    SHI L, QIN H, LIU L T. Development situation and trend of world marine fishing industry and its enlightenment to China[J]. Marine Sciences, 2018, 42(11): 126−134 doi: 10.11759/hykx20181011002
    ZHANG W B, LIU M, YVONNE S, et al. Fishing for feed in China: facts, impacts and implications[J]. Fish and Fisheries, 2020, 21(1): 47−62 doi: 10.1111/faf.12414
    Food and Agriculture Organisation of the United Nations. The State of World Fisheries and Aquaculture 2016[M]. Rome: FAO, 2016
    TVETERåS S, ASCHE F. International fish trade and exchange rates: an application to the trade with salmon and fishmeal[J]. Applied Economics, 2008, 40(13): 1745−1755 doi: 10.1080/00036840600905134
    NAYLOR R L, GOLDBURG R J, MOONEY H, et al. Nature’s subsidies to shrimp and salmon farming[J]. Science, 1998, 282(5390): 883−884 doi: 10.1126/science.282.5390.883
    Food and Agriculture Organisation of the United Nations. The State of World Fisheries and Aquaculture 1998[M]. Rome: FAO, 1998
    Food and Agriculture Organisation of the United Nations. The State of World Fisheries and Aquaculture 2006[M]. Rome: FAO, 2006
    KUMAR M S. Erratum to: sustainable management of fisheries and aquaculture for food security and nutrition: policies requirements and actions[J]. Agricultural Research, 2014, 3: 278 doi: 10.1007/s40003-014-0122-x
    SWARTZ W, SUMAILA R, WATSON R, et al. Sourcing seafood for the three major markets the EU, Japan and the USA[J]. Marine Policy, 2010, 34: 1366−1373 doi: 10.1016/j.marpol.2010.06.011
    THARA SRINIVASAN U, CHEUNG W W L, WATSON R, et al. Food security implications of global marine catch losses due to overfishing[J]. Journal of Bioeconomics, 2010, 12(3): 183−200 doi: 10.1007/s10818-010-9090-9
    李晨, 汪琳琳, 邵桂兰. 水产品贸易对渔业碳排放强度的影响−基于中介模型与门槛模型的检验[J]. 资源科学, 2021, 43(10): 2130−2145 doi: 10.18402/resci.2021.10.16

    LI C, WANG L L, SHAO G L. The impact of aquatic product trade on the intensity of fishery carbon emissions: based on intermediary and threshold models[J]. Resources Science, 2021, 43(10): 2130−2145 doi: 10.18402/resci.2021.10.16
    YUAN J J, XIANG J, LIU D Y, et al. Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture[J]. Nature Climate Change, 2019, 9(4): 318−322 doi: 10.1038/s41558-019-0425-9
    PAPROCKI K, CONS J. Life in a shrimp zone: aqua- and other cultures of Bangladesh’s coastal landscape[J]. The Journal of Peasant Studies, 2014, 41(6): 1109−1130 doi: 10.1080/03066150.2014.937709
    ELTHOLTH M, FORNACE K, GRACE D, et al. Characterisation of production, marketing and consumption patterns of farmed tilapia in the Nile Delta of Egypt[J]. Food Policy, 2015, 51: 131−143 doi: 10.1016/j.foodpol.2015.01.002
    BÉNÉ C, BARANGE M, SUBASINGHE R, et al. Feeding 9 billion by 2050— Putting fish back on the menu[J]. Food Security, 2015, 7(2): 261−274 doi: 10.1007/s12571-015-0427-z
    TACON A G J, METIAN M. Feed matters: satisfying the feed demand of aquaculture[J]. Reviews in Fisheries Science & Aquaculture, 2015, 23(1): 1−10
    严志强, 颜章雄, 胡宝清, 等. 虚拟土地、虚拟土地战略与区域土地资源优化配置管理的理论探讨[J]. 广西社会科学, 2007(10): 70−74 doi: 10.3969/j.issn.1004-6917.2007.10.018

    YAN Z Q, YAN Z X, HU B Q, et al. Virtual land, virtual land strategy and optimal allocation management of regional land resources[J]. Social Sciences in Guangxi, 2007(10): 70−74 doi: 10.3969/j.issn.1004-6917.2007.10.018
    PARKER R W R, BLANCHARD J L, GARDNER C, et al. Fuel use and greenhouse gas emissions of world fisheries[J]. Nature Climate Change, 2018, 8(4): 333−337 doi: 10.1038/s41558-018-0117-x
    COTTRELL R S, FLEMING A, FULTON E A, et al. Considering land-sea interactions and trade-offs for food and biodiversity[J]. 2018, 24(2): 580–596
    JIANG Q T, BHATTARAI N, PAHLOW M, et al. Environmental sustainability and footprints of global aquaculture[J]. Resources, Conservation and Recycling, 2022, 180: 106183 doi: 10.1016/j.resconrec.2022.106183
    ZIEGLER F, WINTHER U, HOGNES E S, et al. The carbon footprint of Norwegian seafood products on the global seafood market[J]. Journal of Industrial Ecology, 2013, 17(1): 103−116 doi: 10.1111/j.1530-9290.2012.00485.x
    KASTNER T, CHAUDHARY A, GINGRICH S, et al. Global agricultural trade and land system sustainability: Implications for ecosystem carbon storage, biodiversity, and human nutrition[J]. One Earth, 2021, 4(10): 1425−1443 doi: 10.1016/j.oneear.2021.09.006
    LENZEN M, MORAN D, KANEMOTO K, et al. International trade drives biodiversity threats in developing nations[J]. Nature, 2012, 486(7401): 109−112 doi: 10.1038/nature11145
    RITCHIE H, ROSER M. Fish and Overfishing[EB/OL]. Our World in Data. [2021-10]. https://ourworldindata.org/fish-and-overfishing#what-does-sustainable-fishing-mean
    GUILLEN J, NATALE F, CARVALHO N, et al. Global seafood consumption footprint[J]. Ambio, 2019, 48(2): 111−122 doi: 10.1007/s13280-018-1060-9
    AKAWA T, NASHIMA F P. A sustainability analysis of Namibian marine fishery[J]. Journal of Human Resource and Sustainability Studies, 2013, 1(1): 1−7 doi: 10.4236/jhrss.2013.11001
    XIA W T, QU X, ZHANG Y X, et al. Effects of aquaculture on lakes in the central Yangtze River Basin, China, Ⅲ: heavy metals[J]. North American Journal of Aquaculture, 2018, 80(4): 436−446 doi: 10.1002/naaq.10060
    黄永汉, 王桃新, 马从丽. 水产养殖发展与生物多样性保护[J]. 中国农业信息, 2015(3): 86

    HUANG Y H, WANG T X, MA C L. Aquaculture development and biodiversity protection[J]. China Agricultural Informatics, 2015(3): 86
    王光辉, 余云军, 于会国. 水产养殖发展与生物多样性保护[J]. 海洋开发与管理, 2007(5): 110−114 doi: 10.3969/j.issn.1005-9857.2007.05.022

    WANG G H, YU Y J, YU H G. Aquaculture development and biodiversity protection[J]. Ocean Development and Management, 2007(5): 110−114 doi: 10.3969/j.issn.1005-9857.2007.05.022
    MOLNAR J L, GAMBOA R L, REVENGA C, et al. Assessing the global threat of invasive species to marine biodiversity[J]. Frontiers in Ecology and the Environment, 2008, 6(9): 485−492 doi: 10.1890/070064
    FROEHLICH H E, RUNGE C A, GENTRY R R, et al. Comparative terrestrial feed and land use of an aquaculture-dominant world[J]. Proceedings of the National Academy of Sciences, 2018, 115(20): 5295–5300
    WILLIAMS D R, CLARK M, BUCHANAN G M, et al. Proactive conservation to prevent habitat losses to agricultural expansion[J]. Nature Sustainability, 2021, 4(4): 314−322
    ZABEL F, DELZEIT R, SCHNEIDER J M, et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity[J]. Nature Communications, 2019, 10(1): 2844 doi: 10.1038/s41467-019-10775-z
    POORE J, NEMECEK T. Reducing food’s environmental impacts through producers and consumers[J]. Science, 2018, 360(6392): 987−992 doi: 10.1126/science.aaq0216
    VÖRÖSMARTY C J, MCINTYRE P B, GESSNER M O, et al. Global threats to human water security and river biodiversity[J]. Nature, 2010, 467(7315): 555−561 doi: 10.1038/nature09440
    MCINTYRE P B, REIDY LIERMANN C A, REVENGA C. Linking freshwater fishery management to global food security and biodiversity conservation[J]. Proceedings of the National Academy of Sciences, 2016, 113(45): 12880−12885 doi: 10.1073/pnas.1521540113
    TILMAN D, CLARK M. Global diets link environmental sustainability and human health[J]. Nature, 2014, 515(7528): 518−522 doi: 10.1038/nature13959
    SCARBOROUGH P, APPLEBY P N, MIZDRAK A, et al. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK[J]. Climatic Change, 2014, 125(2): 179−192 doi: 10.1007/s10584-014-1169-1
    NAYLOR R L, KISHORE A, SUMAILA U R, et al. Blue food demand across geographic and temporal scales[J]. Nature Communications, 2021, 12: 5413 doi: 10.1038/s41467-021-25516-4
    WILLETT W, ROCKSTRÖM J, LOKEN B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems[J]. The Lancet, 2019, 393(10170): 447−492 doi: 10.1016/S0140-6736(18)31788-4
    GEPHART J A, HENRIKSSON P J G, PARKER R W R, et al. Environmental performance of blue foods[J]. Nature, 2021, 597(7876): 360−365 doi: 10.1038/s41586-021-03889-2
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (213) PDF downloads(45) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint