Volume 31 Issue 5
May  2023
Turn off MathJax
Article Contents
GUO S X, DAI Z M, YANG R, JI C, SHI Y, ZHANG Y. Effects of nano-Si on tomota plant growth and carbohydrates accumulation at low temperature[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 742−749 doi: 10.12357/cjea.20220773
Citation: GUO S X, DAI Z M, YANG R, JI C, SHI Y, ZHANG Y. Effects of nano-Si on tomota plant growth and carbohydrates accumulation at low temperature[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 742−749 doi: 10.12357/cjea.20220773

Effects of nano-Si on tomota plant growth and carbohydrates accumulation at low temperature

doi: 10.12357/cjea.20220773
Funds:  This study was supported by the Shanxi Provincial Graduate Education Innovation Project (2021Y324), Shanxi Provincial Key Research and Development Program (201903D211011-03), and Shanxi Provincial College Students Innovation and Entrepreneurship Training Program (20220168).
More Information
  • Corresponding author: E-mail: harmony1228@163.com
  • Received Date: 2022-10-06
  • Accepted Date: 2022-11-08
  • Rev Recd Date: 2022-11-08
  • Available Online: 2022-11-21
  • Publish Date: 2023-05-10
  • Low temperatures are one of the main limiting factors in the development of agricultural facilities in North China. Farmers need cheap and convenient agronomic measures to improve tomato resistance to low temperatures. The aim of this study was to investigate the effects of nano-Si on root system architecture and the accumulation mechanism of non-structural carbohydrates of tomato seedlings at low temperatures. In this study, the tomato cultivar ‘Zhongza 9’ was cultivated by substrate cultivation and was used as the test material, and the effects of leaf spraying nano-Si (0 mg∙L−1 and 100 mg∙L−1) at room temperature (25 ℃/16 ℃, day/night) and low temperature (15 ℃/6 ℃, day/night) on tomato biomass, root system architecture, photosynthetic capacity, and non-structural carbohydrates contents were studied. The results showed that: 1) At low temperatures, the biomass, total root length, root tips number, photosynthetic pigment content, and net photosynthetic rate of tomatoes were significantly decreased (P<0.05), while the contents of soluble sugar, sucrose, and starch were significantly increased (P<0.05), and shoot fresh weight, net photosynthetic rate, and total root length were decreased by 48.60%, 66.88%, and 65.49%, respectively (P<0.05). 2) Application of nano-Si significantly increased tomato biomass, root activity, root tips number, fractal dimension, net photosynthetic rate, and non-structural carbohydrates contents at room temperature and low temperature (P<0.05), whereas application of nano-Si at low temperatures increased the root tips number, net photosynthetic rate, and leaf soluble sugar content by 35.25%, 48.24%, and 75.69%, respectively (P<0.05). In conclusion, low temperatures severely restrict photosynthesis, root growth, and transport of non-structural carbohydrates in tomato leaves, and root system architecture parameters tend to change in directions that are not conducive to plant growth. The application of nano-Si could improve the cold resistance of tomatoes by promoting the synthesis of photosynthetic pigments, increasing the photosynthetic rate and root activity, improving root system architecture, and increasing the synthesis of non-structural carbohydrates.
  • loading
  • [1]
    束胜, 汤园园, 罗佳音, 等. 外源24-表油菜素内酯对亚低温弱光胁迫下番茄叶片碳同化和抗氧化代谢的影响[J]. 植物生理学报, 2016, 52(8): 1295−1304 doi: 10.13592/j.cnki.ppj.2016.0262

    SHU S, TANG Y Y, LUO J Y, et al. Effects of exogenous 24-epibrassinolide on carbon assimilation and antioxidant metabolism of tomato leaves under sub-low temperatures and weak light stress[J]. Plant Physiology Journal, 2016, 52(8): 1295−1304 doi: 10.13592/j.cnki.ppj.2016.0262
    [2]
    孙锦, 高洪波, 田婧, 等. 我国设施园艺发展现状与趋势[J]. 南京农业大学学报, 2019, 42(4): 594−604 doi: 10.7685/jnau.201810027

    SUN J, GAO H B, TIAN J, et al. Development status and trends of protected horticulture in China[J]. Journal of Nanjing Agricultural University, 2019, 42(4): 594−604 doi: 10.7685/jnau.201810027
    [3]
    SETYAWATI M I, LEONG D T. Mesoporous silica nanoparticles as an antitumoral-angiogenesis strategy[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 6690−6703
    [4]
    MEHRABANJOUBANI P, ABDOLZADEH A, SADEGHIPOUR H R, et al. Silicon affects transcellular and apoplastic uptake of some nutrients in plants[J]. Pedosphere, 2015, 25(2): 192−201 doi: 10.1016/S1002-0160(15)60004-2
    [5]
    GREGER M, LANDBERG T, VACULÍK M. Silicon influences soil availability and accumulation of mineral nutrients in various plant species[J]. Plants (Basel, Switzerland), 2018, 7(2): 41
    [6]
    ALLEN D J, ORT D R. Impacts of chilling temperatures on photosynthesis in warm-climate plants[J]. Trends in Plant Science, 2001, 6(1): 36−42 doi: 10.1016/S1360-1385(00)01808-2
    [7]
    SUN D Q, HUSSAIN H I, YI Z F, et al. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles[J]. Plant Cell Reports, 2014, 33(8): 1389−1402 doi: 10.1007/s00299-014-1624-5
    [8]
    HARTMANN H, TRUMBORE S. Understanding the roles of nonstructural carbohydrates in forest trees — from what we can measure to what we want to know[J]. The New Phytologist, 2016, 211(2): 386−403 doi: 10.1111/nph.13955
    [9]
    BOUDA M, BRODERSEN C, SAIERS J. Whole root system water conductance responds to both axial and radial traits and network topology over natural range of trait variation[J]. Journal of Theoretical Biology, 2018, 456: 49−61 doi: 10.1016/j.jtbi.2018.07.033
    [10]
    王鹏, 牟溥, 李云斌. 植物根系养分捕获塑性与根竞争[J]. 植物生态学报, 2012, 36(11): 1184−1196

    WANG P, MOU P, LI Y B. Review of root nutrient foraging plasticity and root competition of plants[J]. Chinese Journal of Plant Ecology, 2012, 36(11): 1184−1196
    [11]
    李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000

    LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2000
    [12]
    DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350−356 doi: 10.1021/ac60111a017
    [13]
    陈秀玉. 外源海藻糖对盐胁迫下番茄糖代谢影响的研究[D]. 天津: 天津大学, 2019

    CHEN X Y. Effect of exogenous trehalose on sugar metabolism response to salt stress in tomato seedlings[D]. Tianjin: Tianjin University, 2019
    [14]
    HEWITT B R. Spectrophotometric determination of total carbohydrate[J]. Nature, 1958, 182(4630): 246−247
    [15]
    黄伟, 任华中, 张福墁. 低温弱光对番茄苗期生长和光合作用的影响[J]. 中国蔬菜, 2002(4): 15−17 doi: 10.3969/j.issn.1000-6346.2002.04.006

    HUANG W, REN H Z, ZHANG F M. Influences of low temperature and poor light on grwoth and photosynthesis of tomato seedling[J]. China Vegetables, 2002(4): 15−17 doi: 10.3969/j.issn.1000-6346.2002.04.006
    [16]
    黄奇娜, 江苏, 汪利民, 等. 低温胁迫后水分对水稻幼苗根系活力和水孔蛋白相关基因表达的影响[J]. 中国水稻科学, 2022, 36(4): 367−376 doi: 10.16819/j.1001-7216.2022.210805

    HUANG Q N, JIANG S, WANG L M, et al. Effects of moisture content on root vigor and the expression of aquaporin-related genes in rice seedlings under low temperature stress[J]. Chinese Journal of Rice Science, 2022, 36(4): 367−376 doi: 10.16819/j.1001-7216.2022.210805
    [17]
    郭树勋, 杨然, 胡晓辉, 等. 外源硅对不同低温胁迫下番茄根系生长及生理特性的影响[J]. 山西农业大学学报(自然科学版), 2021, 41(4): 50−57 doi: 10.13842/j.cnki.issn1671-8151.202103056

    GUO S X, YANG R, HU X H, et al. Effects of exogenous silicon on the growth and physiological characteristics of tomato seedlings under different low temperature stress[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2021, 41(4): 50−57 doi: 10.13842/j.cnki.issn1671-8151.202103056
    [18]
    ADEBAYO A R, KUTU F R, SEBETHA E T. Data on root system architecture of water efficient maize as affected by different nitrogen fertilizer rates and plant density[J]. Data in Brief, 2020, 30: 105561 doi: 10.1016/j.dib.2020.105561
    [19]
    KARAAGAÇ O. Hybrid Cucurbita rootstocks improve root architecture, yield, quality, and antioxidant defense systems of cucumber (Cucumis sativus) under low temperature conditions[J]. International Journal of Agriculture and Biology, 2020, 23: 613−622
    [20]
    ASGARI F, MAJD A, JONOUBI P, et al. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.)[J]. Plant Physiology and Biochemistry, 2018, 127: 152−160 doi: 10.1016/j.plaphy.2018.03.021
    [21]
    龚束芳, 刘阳, 速馨逸, 等. 纳米硅肥对远东芨芨草幼苗模拟抗旱的影响[J]. 草业科学, 2018, 35(12): 2924−2930 doi: 10.11829/j.issn.1001-0629.2018-0109

    GONG S F, LIU Y, SU X Y, et al. Influence of nano-silicon fertilizer on osmotic stress in Achnatherum extremiorientale[J]. Pratacultural Science, 2018, 35(12): 2924−2930 doi: 10.11829/j.issn.1001-0629.2018-0109
    [22]
    贾林巧, 陈光水, 张礼宏, 等. 常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应[J]. 应用生态学报, 2021, 32(2): 529−537

    JIA L Q, CHEN G S, ZHANG L H, et al. Plastic responses of fine root morphology and architecture traits to nitrogen addition in ectomycorrhizal and arbuscular mycorrhizal tree species in an evergreen broadleaved forest[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 529−537
    [23]
    TRIPATHI P, SUBEDI S, KHAN A L, et al. Silicon effects on the root system of diverse crop species using root phenotyping technology[J]. Plants (Basel, Switzerland), 2021, 10(5): 885
    [24]
    李秉钧, 颜耀, 吴文景, 等. 环境因子对植物根系及其构型的影响研究进展[J]. 亚热带水土保持, 2019, 31(3): 41−45 doi: 10.3969/j.issn.1002-2651.2019.03.008

    LI B J, YAN Y, WU W J, et al. Study progress on the impact of environment factor to the plant root system and configuration[J]. Subtropical Soil and Water Conservation, 2019, 31(3): 41−45 doi: 10.3969/j.issn.1002-2651.2019.03.008
    [25]
    李琬婷, 宁朋, 王菲, 等. 外源脱落酸对干旱胁迫下滇润楠幼苗生长及生理特性的影响[J]. 应用生态学报, 2020, 31(5): 1543−1550

    LI W T, NING P, WANG F, et al. Effects of exogenous abscisic acid (ABA) on growth and physiological characteristics of Machilus yunnanensis seedlings under drought stress[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1543−1550
    [26]
    MAI T H, SCHNEPF A, VEREECKEN H, et al. Continuum multiscale model of root water and nutrient uptake from soil with explicit consideration of the 3D root architecture and the rhizosphere gradients[J]. Plant and Soil, 2019, 439(1/2): 273−292
    [27]
    YANG Q C, CHENG W J, HAO Z, et al. Study on the fractal characteristics of the plant root system and its relationship with soil strength in tailing ponds[J]. Wireless Communications and Mobile Computing, 2022, 2022: 1−14
    [28]
    NAMJOYAN S, SOROOSHZADEH A, RAJABI A, et al. Improving root quality and yield of sugar beet by nano-silicon and tebuconazole under limited irrigation[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(4): 3378−3386 doi: 10.1007/s42729-021-00613-x
    [29]
    SIDDIQUI M H, AL-WHAIBI M H, FAISAL M, et al. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L.[J]. Environmental Toxicology and Chemistry, 2014, 33(11): 2429−2437 doi: 10.1002/etc.2697
    [30]
    杜清洁, 代侃韧, 李建明, 等. 亚低温与干旱胁迫对番茄叶片光合及荧光动力学特性的影响[J]. 应用生态学报, 2015, 26(6): 1687−1694

    DU Q J, DAI K R, LI J M, et al. Effects of sub-low temperature and drought stress on characteristics of photosynthetic and fluorescence kinetics in tomato leaves[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1687−1694
    [31]
    周星, 李博, 朱莜芸, 等. 齐穗后弱光胁迫对杂交籼稻节间非结构性碳水化合物积累转运的影响[J]. 中国生态农业学报(中英文), 2022, 30(10): 1610−1619 doi: 10.12357/cjea.20220187

    ZHOU X, LI B, ZHU Y Y, et al. Effects of shading stress after heading on the accumulation and remobilization characteristics of non-structural carbohydrates in internodes of indica hybrid rice[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1610−1619 doi: 10.12357/cjea.20220187
    [32]
    李娜妮, 何念鹏, 于贵瑞. 中国东北典型森林生态系统植物叶片的非结构性碳水化合物研究[J]. 生态学报, 2016, 36(2): 430−438

    LI N N, HE N P, YU G R. Evaluation of leaf non-structural carbohydrate contents in typical forest ecosystems in northeast China[J]. Acta Ecologica Sinica, 2016, 36(2): 430−438
    [33]
    陈凤琼, 陈秋森, 刘汉林, 等. 不同外源试剂对菜用大豆低温胁迫的调控效应[J]. 大豆科学, 2022, 41(2): 165−171 doi: 10.11861/j.issn.1000-9841.2022.02.0165

    CHEN F Q, CHEN Q S, LIU H L, et al. Regulatory effects of different exogenous reagent on vegetable soybean under low temperature stress[J]. Soybean Science, 2022, 41(2): 165−171 doi: 10.11861/j.issn.1000-9841.2022.02.0165
    [34]
    HOCH G, RICHTER A, KÖRNER C. Non-structural carbon compounds in temperate forest trees[J]. Plant, Cell & Environment, 2003, 26(7): 1067−1081
    [35]
    孙德权, 陆新华, 胡玉林, 等. 纳米硅材料对植物生长发育影响的研究进展[J]. 热带作物学报, 2019, 40(11): 2300−2311 doi: 10.3969/j.issn.1000-2561.2019.11.028

    SUN D Q, LU X H, HU Y L, et al. Research progress of silica nanoparticle effects on the growth and development of plants[J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2300−2311 doi: 10.3969/j.issn.1000-2561.2019.11.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(6)

    Article Metrics

    Article views (290) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return