Citation: | ZHANG L, WANG H G, WANG W S, WANG X, GUO W T, LIU S, WANG H, MA L. Effects of new acidification methods on nitrogen conversion during agricultural waste composting[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 796−806 doi: 10.12357/cjea.20220746 |
[1] |
CUI X H, GUO L Y, LI C H, et al. The total biomass nitrogen reservoir and its potential of replacing chemical fertilizers in China[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110215 doi: 10.1016/j.rser.2020.110215
|
[2] |
WANG Q, WANG Z, AWASTHI M K, et al. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting[J]. Bioresource Technology, 2016, 220: 297−304 doi: 10.1016/j.biortech.2016.08.081
|
[3] |
CAO Y B, WANG X, BAI Z H, et al. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: a meta-analysis[J]. Journal of Cleaner Production, 2019, 235: 626−635 doi: 10.1016/j.jclepro.2019.06.288
|
[4] |
LU Y S, GU W J, XU P Z, et al. Effects of sulphur and Thiobacillus thioparus 1904 on nitrogen cycle genes during chicken manure aerobic composting[J]. Waste Management, 2018, 80: 10−16 doi: 10.1016/j.wasman.2018.08.050
|
[5] |
CAO Y B, WANG X, LIU L, et al. Acidification of manure reduces gaseous emissions and nutrient losses from subsequent composting process[J]. Journal of Environmental Management, 2020, 264: 110454 doi: 10.1016/j.jenvman.2020.110454
|
[6] |
SHAN G C, LI W G, GAO Y J, et al. Additives for reducing nitrogen loss during composting: a review[J]. Journal of Cleaner Production, 2021, 307: 127308 doi: 10.1016/j.jclepro.2021.127308
|
[7] |
PAN J T, CAI H Z, ZHANG Z Q, et al. Comparative evaluation of the use of acidic additives on sewage sludge composting quality improvement, nitrogen conservation, and greenhouse gas reduction[J]. Bioresource Technology, 2018, 270: 467−475 doi: 10.1016/j.biortech.2018.09.050
|
[8] |
WU J, HE S Z, LIANG Y, et al. Effect of phosphate additive on the nitrogen transformation during pig manure composting[J]. Environmental Science and Pollution Research, 2017, 24(21): 17760−17768 doi: 10.1007/s11356-017-9285-x
|
[9] |
MAO H, ZHANG T, LI R, et al. Apple pomace improves the quality of pig manure aerobic compost by reducing emissions of NH3 and N2O[J]. Scientific Reports, 2017, 7: 870 doi: 10.1038/s41598-017-00987-y
|
[10] |
程志翔. 食品加工制造企业固体废弃物处置分析[D]. 上海: 上海海洋大学, 2019
CHENG Z X. Analysis of solid waste disposal in food processing and manufacturing enterprises[D]. Shanghai: Shanghai Ocean University, 2019
|
[11] |
GEZAE DAFUL A, GÖRGENS J F. Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production[J]. Chemical Engineering Science, 2017, 162: 53−65 doi: 10.1016/j.ces.2016.12.054
|
[12] |
曹玉博, 张陆, 王选, 等. 畜禽废弃物堆肥氨气与温室气体协同减排研究[J]. 农业环境科学学报, 2020, 39(4): 923−932 doi: 10.11654/jaes.2020-0104
CAO Y B, ZHANG L, WANG X, et al. Synergistic mitigation of ammonia and greenhouse gas emissions during livestock waste composting[J]. Journal of Agro-Environment Science, 2020, 39(4): 923−932 doi: 10.11654/jaes.2020-0104
|
[13] |
ZHANG J M, BU Y S, ZHANG C C, et al. Development of a low-cost and high-efficiency culture medium for bacteriocin lac-B23 production by Lactobacillus plantarum J23[J]. Biology, 2020, 9(7): 171 doi: 10.3390/biology9070171
|
[14] |
WANG X, BAI Z H, YAO Y, et al. Composting with negative pressure aeration for the mitigation of ammonia emissions and global warming potential[J]. Journal of Cleaner Production, 2018, 195: 448−457 doi: 10.1016/j.jclepro.2018.05.146
|
[15] |
ZHAO Y, ZHAO Y, ZHANG Z C, et al. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting[J]. Waste Management, 2017, 68: 64−73 doi: 10.1016/j.wasman.2017.06.022
|
[16] |
BERNAL M P, ALBURQUERQUE J A, MORAL R. Composting of animal manures and chemical criteria for compost maturity assessment. A review[J]. Bioresource Technology, 2009, 100(22): 5444−5453 doi: 10.1016/j.biortech.2008.11.027
|
[17] |
HUIJBREGTS M A J, STEINMANN Z J N, ELSHOUT P M F, et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level[J]. The International Journal of Life Cycle Assessment, 2017, 22(2): 138−147 doi: 10.1007/s11367-016-1246-y
|
[18] |
ELWELL D L, HONG J H, KEENER H M. Composting hog manure/sawdust mixtures using intermittent and continuous aeration: ammonia emissions[J]. Compost Science & Utilization, 2002, 10(2): 142−149
|
[19] |
GU W J, ZHANG F B, XU P Z, et al. Effects of sulphur and Thiobacillus thioparus on cow manure aerobic composting[J]. Bioresource Technology, 2011, 102(11): 6529−6535 doi: 10.1016/j.biortech.2011.03.049
|
[20] |
FANGUEIRO D, HJORTH M, GIOELLI F. Acidification of animal slurry— A review[J]. Journal of Environmental Management, 2015, 149: 46−56
|
[21] |
GARCÍA C, HERNÁNDEZ T, COSTA F. Study on water extract of sewage sludge composts[J]. Soil Science and Plant Nutrition, 1991, 37(3): 399−408 doi: 10.1080/00380768.1991.10415052
|
[22] |
常瑞雪, 王骞, 甘晶晶, 等. 易降解有机质含量对黄瓜秧堆肥腐熟和氮损失的影响[J]. 农业工程学报, 2017, 33(1): 231−237 doi: 10.11975/j.issn.1002-6819.2017.01.032
CHANG R X, WANG Q, GAN J J, et al. Influence of easily-degraded organic matter content on maturity and nitrogen loss during composting of cucumber vine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 231−237 doi: 10.11975/j.issn.1002-6819.2017.01.032
|
[23] |
LI R H, WANG Q, ZHANG Z Q, et al. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures[J]. Environmental Technology, 2015, 36(7): 815−826 doi: 10.1080/09593330.2014.963692
|
[24] |
NIE E Q, GAO D, ZHENG G D. Effects of lactic acid on modulating the ammonia emissions in co-composts of poultry litter with slaughter sludge[J]. Bioresource Technology, 2020, 315: 123812 doi: 10.1016/j.biortech.2020.123812
|
[25] |
FUKUMOTO Y, SUZUKI K, KURODA K, et al. Effects of struvite formation and nitratation promotion on nitrogenous emissions such as NH3, N2O and NO during swine manure composting[J]. Bioresource Technology, 2011, 102(2): 1468−1474 doi: 10.1016/j.biortech.2010.09.089
|
[26] |
JIANG J S, HUANG Y M, LIU X L, et al. The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting[J]. Waste Management, 2014, 34(9): 1595−1602 doi: 10.1016/j.wasman.2014.05.002
|
[27] |
赵梦竹, 潘燕辉, 马金珠, 等. 餐厨垃圾和污泥联合好氧堆肥中的氮素转化及损失[J]. 兰州大学学报(自然科学版), 2016, 52(3): 301−306, 312
ZHAO M Z, PAN Y H, MA J Z, et al. Nitrogen transformation and loss during the co-composting of food waste and sludge[J]. Journal of Lanzhou University (Natural Sciences), 2016, 52(3): 301−306, 312
|
[28] |
CHEN M L, HUANG Y M, LIU H J, et al. Impact of different nitrogen source on the compost quality and greenhouse gas emissions during composting of garden waste[J]. Process Safety and Environmental Protection, 2019, 124: 326−335 doi: 10.1016/j.psep.2019.03.006
|
[29] |
YANG F, LI G X, SHI H, et al. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting[J]. Waste Management, 2015, 36: 70−76 doi: 10.1016/j.wasman.2014.11.012
|