Citation: | ZHANG L, WANG H G, WANG W S, WANG X, LI J, LI L, GUO W T, LIU S, WANG H, LU Y L, MA L. Accelerating carbon conversion in garden waste composting with food waste-expanding microbial inoculants[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 785−795 doi: 10.12357/cjea.20220744 |
[1] |
刘瑜, 戚智勇, 赵佳颖, 等. 我国城市园林废弃物及其资源化利用现状[J]. 再生资源与循环经济, 2020, 13(8): 38−44 doi: 10.3969/j.issn.1674-0912.2020.08.009
LIU Y, QI Z Y, ZHAO J Y, et al. Urban garden waste and its resource utilization in China[J]. Recyclable Resources and Circular Economy, 2020, 13(8): 38−44 doi: 10.3969/j.issn.1674-0912.2020.08.009
|
[2] |
GABHANE J, WILLIAM S P, BIDYADHAR R, et al. Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost[J]. Bioresource Technology, 2012, 114: 382−388 doi: 10.1016/j.biortech.2012.02.040
|
[3] |
HUANG G F, WU Q T, WONG J W C, et al. Transformation of organic matter during co-composting of pig manure with sawdust[J]. Bioresource Technology, 2006, 97(15): 1834−1842 doi: 10.1016/j.biortech.2005.08.024
|
[4] |
CHEN M L, HUANG Y M, LIU H J, et al. Impact of different nitrogen source on the compost quality and greenhouse gas emissions during composting of garden waste[J]. Process Safety and Environmental Protection, 2019, 124: 326−335 doi: 10.1016/j.psep.2019.03.006
|
[5] |
薛晶晶, 李彦明, 常瑞雪, 等. 厨余与园林废物共堆肥过程氮素转化及损失[J]. 农业工程学报, 2021, 37(10): 192−197 doi: 10.11975/j.issn.1002-6819.2021.10.023
XUE J J, LI Y M, CHANG R X, et al. Nitrogen transformation and loss during co-composting of kitchen and garden wastes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(10): 192−197 doi: 10.11975/j.issn.1002-6819.2021.10.023
|
[6] |
ZHANG L, SUN X Y. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste[J]. Waste Management, 2016, 48: 115−126 doi: 10.1016/j.wasman.2015.11.032
|
[7] |
WU D, WEI Z M, ZHAO Y, et al. Improved lignocellulose degradation efficiency based on Fenton pretreatment during rice straw composting[J]. Bioresource Technology, 2019, 294: 122132 doi: 10.1016/j.biortech.2019.122132
|
[8] |
NAKHSHINIEV B, BIDDINIKA M K, GONZALES H B, et al. Evaluation of hydrothermal treatment in enhancing rice straw compost stability and maturity[J]. Bioresource Technology, 2014, 151: 306−313 doi: 10.1016/j.biortech.2013.10.083
|
[9] |
WEI Y Q, WU D, WEI D, et al. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities[J]. Bioresource Technology, 2019, 271: 66−74 doi: 10.1016/j.biortech.2018.09.081
|
[10] |
HARINDINTWALI J D, ZHOU J L, YU X B. Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria: a novel tool for environmental sustainability[J]. Science of the Total Environment, 2020, 715: 136912 doi: 10.1016/j.scitotenv.2020.136912
|
[11] |
WANG C, DONG D, WANG H S, et al. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition[J]. Biotechnology for Biofuels, 2016, 9: 22 doi: 10.1186/s13068-016-0440-2
|
[12] |
WU J Q, ZHAO Y, ZHAO W, et al. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting[J]. Bioresource Technology, 2017, 226: 191−199 doi: 10.1016/j.biortech.2016.12.031
|
[13] |
ZHANG Z C, ZHAO Y, YANG T X, et al. Effects of exogenous protein-like precursors on humification process during lignocellulose-like biomass composting: amino acids as the key linker to promote humification process[J]. Bioresource Technology, 2019, 291: 121882 doi: 10.1016/j.biortech.2019.121882
|
[14] |
ZHAO Y, ZHAO Y, ZHANG Z C, et al. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting[J]. Waste Management, 2017, 68: 64−73 doi: 10.1016/j.wasman.2017.06.022
|
[15] |
曹玉博, 张陆, 王选, 等. 畜禽废弃物堆肥氨气与温室气体协同减排研究[J]. 农业环境科学学报, 2020, 39(4): 923−932 doi: 10.11654/jaes.2020-0104
CAO Y B, ZHANG L, WANG X, et al. Synergistic mitigation of ammonia and greenhouse gas emissions during livestock waste composting[J]. Journal of Agro-Environment Science, 2020, 39(4): 923−932 doi: 10.11654/jaes.2020-0104
|
[16] |
赵彬涵, 孙宪昀, 黄俊, 等. 微生物在有机固废堆肥中的作用与应用[J]. 微生物学通报, 2021, 48(1): 223−240 doi: 10.13344/j.microbiol.china.200506
ZHAO B H, SUN X Y, HUANG J, et al. Application and effects of microbial additives in aerobic composting of organic solid wastes: a review[J]. Microbiology China, 2021, 48(1): 223−240 doi: 10.13344/j.microbiol.china.200506
|
[17] |
WANG X, BAI Z H, YAO Y, et al. Composting with negative pressure aeration for the mitigation of ammonia emissions and global warming potential[J]. Journal of Cleaner Production, 2018, 195: 448−457 doi: 10.1016/j.jclepro.2018.05.146
|
[18] |
田微微. 平板菌落计数法对食品微生物检验的作用研究[J]. 质量安全与检验检测, 2021, 31(4): 75−76
TIAN W W. Study on the effect of plate colony counting method on microbial testing of food hygiene[J]. Quality Safety Inspection and Testing, 2021, 31(4): 75−76
|
[19] |
姜兴林. 纤维素酶—木聚糖酶—漆酶的酶学性质及共固定化研究[D]. 长春: 吉林农业大学, 2016
JIANG X L. Study on enzymatic characteristic and co-immobilization of cellulase xylanase and laccase[D]. Changchun: Jilin Agricultural University, 2016
|
[20] |
田林双. 木质素降解相关酶类测定标准方法研究[J]. 畜牧与饲料科学, 2009, 30(10): 13−15 doi: 10.3969/j.issn.1672-5190.2009.10.005
TIAN L S. Research on standard method for determining ligninolytic enzyme activity[J]. Animal Husbandry and Feed Science, 2009, 30(10): 13−15 doi: 10.3969/j.issn.1672-5190.2009.10.005
|
[21] |
CAO Y, CHANG Z Z, WANG J D, et al. The fate of antagonistic microorganisms and antimicrobial substances during anaerobic digestion of pig and dairy manure[J]. Bioresource Technology, 2013, 136: 664−671 doi: 10.1016/j.biortech.2013.01.052
|
[22] |
BADDI G A, CEGARRA J, MERLINA G, et al. Qualitative and quantitative evolution of polyphenolic compounds during composting of an olive-mill waste-wheat straw mixture[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 1119−1123
|
[23] |
VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583−3597 doi: 10.3168/jds.S0022-0302(91)78551-2
|
[24] |
BERNAL M P, ALBURQUERQUE J A, MORAL R. Composting of animal manures and chemical criteria for compost maturity assessment. A review[J]. Bioresource Technology, 2009, 100(22): 5444−5453 doi: 10.1016/j.biortech.2008.11.027
|
[25] |
阎晓莉, 杨中平, 朱新华. 苹果渣的开发利用途径[J]. 农机化研究, 2002, 24(4): 175−177 doi: 10.3969/j.issn.1003-188X.2002.04.071
YAN X L, YANG Z P, ZHU X H. The utilize approaches of apple residue[J]. Journal of Agricultural Mechanization Research, 2002, 24(4): 175−177 doi: 10.3969/j.issn.1003-188X.2002.04.071
|
[26] |
姜慧燕, 邹礼根, 翁丽萍, 等. 豆渣营养成分分析及蛋白质营养价值评价[J]. 食品工业, 2020, 41(6): 325−328
JIANG H Y, ZOU L G, WENG L P, et al. Nutritional components analyzation and protein nutrition evaluation of soybean residue[J]. The Food Industry, 2020, 41(6): 325−328
|
[27] |
WU D, WEI Z M, MOHAMED T A, et al. Lignocellulose biomass bioconversion during composting: mechanism of action of lignocellulase, pretreatment methods and future perspectives[J]. Chemosphere, 2022, 286(Pt 1): 131635
|
[28] |
王晓芳, 徐旭士, 吴敏, 等. 不同碳源对两株真菌纤维素酶合成的诱导和调控[J]. 应用与环境生物学报, 2002, 8(6): 653−657 doi: 10.3321/j.issn:1006-687X.2002.06.019
WANG X F, XU X S, WU M, et al. Induction and regulation of cellulase formation in two strains of fungi by different carbon sources[J]. Chinese Journal of Applied and Environmental Biology, 2002, 8(6): 653−657 doi: 10.3321/j.issn:1006-687X.2002.06.019
|
[29] |
于俊杰, 赫荣琳, 武改红, 等. 复合木质纤维素酶菌株筛选及其培养条件优化[J]. 生物技术通报, 2013(4): 101−109 doi: 10.13560/j.cnki.biotech.bull.1985.2013.04.010
YU J J, HE R L, WU G H, et al. Isolation of strain producing complex lignocellulase and the optimization of culture conditions[J]. Biotechnology Bulletin, 2013(4): 101−109 doi: 10.13560/j.cnki.biotech.bull.1985.2013.04.010
|
[30] |
毕杨, 张志才. 青霉菌液体发酵合成木质素过氧化物酶条件优化[J]. 饲料研究, 2017(16): 36−41 doi: 10.13557/j.cnki.issn1002-2813.2017.16.008
BI Y, ZHANG Z C. Optimization of lignin peroxidase synthesis by penicillium liquid fermentation[J]. Feed Research, 2017(16): 36−41 doi: 10.13557/j.cnki.issn1002-2813.2017.16.008
|
[31] |
ZHU N, ZHU Y Y, LI B Q, et al. Increased enzyme activities and fungal degraders by Gloeophyllum trabeum inoculation improve lignocellulose degradation efficiency during manure-straw composting[J]. Bioresource Technology, 2021, 337: 125427 doi: 10.1016/j.biortech.2021.125427
|
[32] |
STRAATHOF A L, COMANS R N J. Input materials and processing conditions control compost dissolved organic carbon quality[J]. Bioresource Technology, 2015, 179: 619−623 doi: 10.1016/j.biortech.2014.12.054
|
[33] |
DUAN M L, ZHANG Y H, ZHOU B B, et al. Effects of Bacillus subtilis on carbon components and microbial functional metabolism during cow manure-straw composting[J]. Bioresource Technology, 2020, 303: 122868 doi: 10.1016/j.biortech.2020.122868
|
[34] |
WU J Q, ZHAO Y, WANG F, et al. Identifying the action ways of function materials in catalyzing organic waste transformation into humus during chicken manure composting[J]. Bioresource Technology, 2020, 303: 122927 doi: 10.1016/j.biortech.2020.122927
|
[35] |
CHANG R X, GUO Q Y, CHEN Q, et al. Effect of initial material bulk density and easily-degraded organic matter content on temperature changes during composting of cucumber stalk[J]. Journal of Environmental Sciences, 2019, 80: 306−315 doi: 10.1016/j.jes.2017.10.004
|
[36] |
ZHANG S, WEI Z M, ZHAO M Y, et al. Influence of malonic acid and manganese dioxide on humic substance formation and inhibition of CO2 release during composting[J]. Bioresource Technology, 2020, 318: 124075 doi: 10.1016/j.biortech.2020.124075
|
[37] |
GAO X T, TAN W B, ZHAO Y, et al. Diversity in the mechanisms of humin formation during composting with different materials[J]. Environmental Science & Technology, 2019, 53(7): 3653−3662
|
[38] |
WEI Z M, MOHAMED A T, ZHAO L, et al. Microhabitat drive microbial anabolism to promote carbon sequestration during composting[J]. Bioresource Technology, 2022, 346: 126577 doi: 10.1016/j.biortech.2021.126577
|
[39] |
SERRAMIÁ N, SÁNCHEZ-MONEDERO M A, FERNÁNDEZ-HERNÁNDEZ A, et al. Contribution of the lignocellulosic fraction of two-phase olive-mill wastes to the degradation and humification of the organic matter during composting[J]. Waste Management, 2010, 30(10): 1939−1947 doi: 10.1016/j.wasman.2010.04.031
|
[40] |
BOONYUEN N, MANOCH L, LUANGSA-ARD J J, et al. Decomposition of sugarcane bagasse with lignocellulose-derived thermotolerant and thermoresistant penicillia and aspergilli[J]. International Biodeterioration & Biodegradation, 2014, 92: 86−100
|
[41] |
TIAN X P, YANG T, HE J Z, et al. Fungal community and cellulose-degrading genes in the composting process of Chinese medicinal herbal residues[J]. Bioresource Technology, 2017, 241: 374−383 doi: 10.1016/j.biortech.2017.05.116
|
[42] |
HU T, WANG X J, ZHEN L S, et al. Effects of inoculating with lignocellulose-degrading consortium on cellulose-degrading genes and fungal community during co-composting of spent mushroom substrate with swine manure[J]. Bioresource Technology, 2019, 291: 121876 doi: 10.1016/j.biortech.2019.121876
|
[43] |
张陆, 曹玉博, 王惟帅, 等. 鸡粪添加对蔬菜废弃物堆肥腐殖化过程的影响[J]. 中国生态农业学报(中英文), 2022, 30(2): 258−267 doi: 10.12357/cjea.20210536
ZHANG L, CAO Y B, WANG W S, et al. Effect of chicken manure addition on humification of vegetable waste in composting process[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 258−267 doi: 10.12357/cjea.20210536
|
[44] |
劳德坤, 张陇利, 李永斌, 等. 不同接种量的微生物秸秆腐熟剂对蔬菜副产物堆肥效果的影响[J]. 环境工程学报, 2015, 9(6): 2979−2985 doi: 10.12030/j.cjee.20150672
LAO D K, ZHANG L L, LI Y B, et al. Effect of different inoculation amounts of microbial straw decomposition agents on vegetable byproducts composting[J]. Chinese Journal of Environmental Engineering, 2015, 9(6): 2979−2985 doi: 10.12030/j.cjee.20150672
|