Volume 31 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
HE M K, GUO J M, YANG J X, ZHENG G D, CHEN T B, MENG X F, LI Y F, LIU J. Screening of accumulating plants in farmland surrounding typical lead and zinc smelting enterprises[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 954−966 doi: 10.12357/cjea.20220711
Citation: HE M K, GUO J M, YANG J X, ZHENG G D, CHEN T B, MENG X F, LI Y F, LIU J. Screening of accumulating plants in farmland surrounding typical lead and zinc smelting enterprises[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 954−966 doi: 10.12357/cjea.20220711

Screening of accumulating plants in farmland surrounding typical lead and zinc smelting enterprises

doi: 10.12357/cjea.20220711
Funds:  This study was supported by the National Natural Science Foundation of China (4227071531), National Key R&D Program of China (2018YFC1802604), Personnel Training Quality Construction-Cross Training Plan for High-level Talents-Practical Training Program of Beijing, China (PXM2020_014207_000009) and Innovation Practice Training Program for College Students of Chinese Academy of Sciences (20224000892).
More Information
  • Corresponding author: E-mail: yangajx@igsnrr.ac.cn
  • Received Date: 2022-09-16
  • Accepted Date: 2023-02-09
  • Available Online: 2023-02-16
  • Publish Date: 2023-06-10
  • As one of the most important lead (Pb) and zinc (Zn) smelting production bases in China, the heavy metal content in the farmland surrounding the enterprises in Jiyuan City of Henan Province seriously exceeded the national standard due to the backward technology and large pollutant discharge. In order to explore the characteristics of heavy metal contamination in farmland around Pb and Zn smelting enterprises in Jiyuan City, select the dominant plants for remediation and safe utilization of heavy metal-contaminated farmland, and establish a preliminary remediation model, field experiments were conducted on farmland surrounding Pb and Zn smelting enterprises in Jiyuan City. The study included investigating the characteristics of cadmium (Cd), Pb, and arsenic (As) pollution in soil, analyzing the heavy metal content in main agricultural products, selecting 17 kinds of heavy metal-accumulating plants for field cultivation, and studying their biomass, heavy metal contents, bioconcentration factor, extraction amount, and remediation efficiency. The results showed that the average content of Cd, Pb, and As in soil was 2.22 mg·kg−1, 173.1 mg·kg−1 and 18.38 mg∙kg−1, respectively, which were mainly distributed in the cultivated layer. Among them, the content of Cd and Pb exceeded the risk screening values in the Environmental Quality Standard for Soils (GB 15618—2018), and the single factor pollution index reached 3.71 and 1.02, respectively. In terms of the wheat and maize cultivated on the contaminated farmland, the content of Cd, Pb, and As in maize seeds did not exceed the values in the National Food Safety Standards (GB 2762—2022), but the Cd and Pb content in wheat seeds exceeded the standards, while the exceeding rates both reached 100%. In plant cultivation experiments, the biomass and heavy metal enrichment capacities of the 17 kinds of accumulating plants differed significantly. The biomass of Amaranthus hypochondriacus was the highest, reaching 29 598 kg·hm−2, which was 46.61 times that of Noccaea caerulescens (635 kg·hm−2). The contents of Cd, Pb, and As in the 17 plant species were 2.90−30.90 mg·kg−1, 7.81−93.07 mg·kg−1, and 3.76−22.90 mg·kg−1, respectively. The bioconcentration factors of Cd, Pb, and As were 1.31 to 13.92, 0.05 to 0.54, and 0.20 to 1.24, respectively. Helianthus annuus ‘S606’ had the largest Cd, Pb, and As comprehensive bio-concentration index of 2.3. Combining plant biomass and enrichment capacity, 17 plant species showed clear differences in the removal efficiency of contaminated soil. Cluster analysis showed that Amaranthus hypochondriacus, Brassica napus ‘Zhongyou 1000’, and Helianthus annuus ‘S606’ had higher Cd and Pb accumulation and remediation capacities in soil. The removal efficiency of these three species was higher than 1.90% for Cd and 0.07% for Pb, showing a promising potential for remediation of Cd and Pb-contaminated soils. In addition, Brassica napus and Helianthus annuus can be further processed to produce edible oil, feed, or fertilizer, which can bring economic benefits while remediating soil. In conclusion, the farmland surrounding the Pb and Zn smelting enterprise in Jiyuan City was typically light to moderately contaminated with Cd and Pb. In response to this situation, two technical modes of heavy metals-contaminated farmland remediation were proposed: Amaranthus hypochondriacus-Brassica napus rotation remediation mode and Helianthus annuus monoculture remediation mode. Both modes can achieve high remediation efficiency and were viable and extendable.
  • loading
  • [1]
    CAI L M, WANG Q S, LUO J, et al. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China[J]. Science of the Total Environment, 2019(650): 725−733
    陈劲松, 张颖, 蒲生彦. 某炼铁厂遗留场地重金属污染空间分布特征及风险评价[J]. 安全与环境工程, 2021, 28(3): 162−169

    CHEN J S, ZHANG Y, PU S Y. Spatial distribution characteristics and risk assessment of heavy metal pollution in a legacy site of an iron-making plant[J]. Safety and Environmental Engineering, 2021, 28(3): 162−169
    田美玲, 钟雪梅, 张云霞, 等. 矿业活动影响区稻田土壤和稻米中重金属含量及健康风险[J]. 环境科学, 2018, 39(6): 2919−2926

    TIAN M L, ZHONG X M, ZHANG Y X, et al. Concentrations and health risk assessments of heavy metal contents in soil and rice of mine contaminated areas[J]. Environmental Science, 2018, 39(6): 2919−2926
    SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives[J]. Chemosphere, 2017, 171: 710−721 doi: 10.1016/j.chemosphere.2016.12.116
    RAI P K, LEE S S, ZHANG M, et al. Heavy metals in food crops: health risks, fate, mechanisms, and management[J]. Environment International, 2019, 125: 365−385 doi: 10.1016/j.envint.2019.01.067
    ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals — Concepts and applications[J]. Chemosphere, 2013, 91(7): 869−881 doi: 10.1016/j.chemosphere.2013.01.075
    郭松明, 余海波, 袁龙义. 近20年我国重金属超积累植物种质资源筛选研究进展[J]. 生态毒理学报, 2022, 17(2): 96−108

    GUO S M, YU H B, YUAN L Y. Research progress of screening of germplasm resources of heavy metal hyperaccumulator in recent 20 years in China[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 96−108
    谢运河, 纪雄辉, 吴家梅, 等. 镉砷污染土壤“三高”富集植物筛选与修复成本分析[J]. 环境科学与技术, 2020, 43(S1): 116−121

    XIE Y H, JI X H, WU J M, et al. The “Three Highs” hyperaccumulators screening and repair cost analysis of cadmium and arsenic contaminate soil[J]. Environmental Science & Technology, 2020, 43(S1): 116−121
    郭嘉航, 李亚兰, 杨云, 等. 不同活化剂强化超富集植物鬼针草吸收Cd的比较分析[J]. 安徽农业大学学报, 2022, 49(3): 483−490

    GUO J H, LI Y L, YANG Y, et al. Comparative analysis of different activators for enhancing Cd absorption from the contaminated soil by hyperaccumulator Bidens pilosa[J]. Journal of Anhui Agricultural University, 2022, 49(3): 483−490
    REEVES R D, BAKER A J M, JAFFRÉ T, et al. A global database for plants that hyperaccumulate metal and metalloid trace elements[J]. New Phytologist, 2018, 218(2): 407−411 doi: 10.1111/nph.14907
    WEI S H, ZHOU Q X, KOVAL P V. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation[J]. Science of the Total Environment, 2006, 369(1/2/3): 441−446
    GONG Y Y, ZHAO D Y, WANG Q L. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade[J]. Water Research, 2018, 147: 440−460 doi: 10.1016/j.watres.2018.10.024
    ADESODUN J K, ATAYESE M O, AGBAJE T A, et al. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates[J]. Water, Air, and Soil Pollution, 2010, 207(1/2/3/4): 195−201
    ALABOUDI K A, AHMED B, BRODIE G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant[J]. Annals of Agricultural Sciences, 2018, 63(1): 123−127 doi: 10.1016/j.aoas.2018.05.007
    NAKAMURA S I, WONGKAEW A, NAKAI Y J, et al. Foliar-applied glutathione activates zinc transport from roots to shoots in oilseed rape[J]. Plant Science, 2019, 283: 424−434 doi: 10.1016/j.plantsci.2018.10.018
    REN X M, GUO S J, TIAN W, et al. Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil[J]. Frontiers in Microbiology, 2019, 10: 1455 doi: 10.3389/fmicb.2019.01455
    济源产城融合示范区发展改革和统计局. 2021年济源国民经济和社会发展统计公报[EB/OL]. (2022-03-29) [2022-09-10]. http://fgw.jiyuan.gov.cn/14186/17304/20647/t829953.html

    Development, Reform and Statistics Bureau of Jiyuan Production-City Integration Demonstration Zone. Statistical bulletin of Jiyuan national economic and social development in 2021[EB/OL]. (2022-03-29) [2022-09-10]. http://fgw.jiyuan.gov.cn/14186/17304/20647/t829953.html
    XING W Q, ZHENG Y L, SCHECKEL K G, et al. Spatial distribution of smelter emission heavy metals on farmland soil[J]. Environmental Monitoring and Assessment, 2019, 191(2): 115 doi: 10.1007/s10661-019-7254-1
    XING W Q, ZHANG H Y, SCHECKEL K G, et al. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan Province, China[J]. Environmental Monitoring and Assessment, 2015, 188(1): 1−10
    QIU K Y, XING W Q, SCHECKEL K G, et al. Temporal and seasonal variations of As, Cd and Pb atmospheric deposition flux in the vicinity of lead smelters in Jiyuan, China[J]. Atmospheric Pollution Research, 2016, 7(1): 170−179 doi: 10.1016/j.apr.2015.09.003
    河南省人民政府. 关于印发河南省清洁土壤行动计划的通知[EB/OL]. (2017-04-28) [2022-09-10]. http://www.henan.gov.cn/2017/05-15/239729.html

    Henan Provincial People’s Government. Notice on printing and distributing the action plan of clean soil in Henan Province[EB/OL]. (2017-04-28) [2022-09-10]. http://www.henan.gov.cn/2017/05-15/239729.html
    全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 农业出版社, 1992: 111–112

    Nationwide Soil Survey Office. Chinese Soil Census Technology[M]. Beijing: China Agriculture Press, 1992: 111–112
    鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000
    殷永超, 吉普辉, 宋雪英, 等. 龙葵(Solanum nigrum L.)野外场地规模Cd污染土壤修复试验[J]. 生态学杂志, 2014, 33(11): 3060−3067

    YIN Y C, JI P H, SONG X Y, et al. Field experiment on phytoremediation of cadmium contaminated soils using Solanum nigrum L.[J]. Chinese Journal of Ecology, 2014, 33(11): 3060−3067
    杨艳, 吴攀, 李学先, 等. 贵州织金县贯城河上游煤矿区富硒高镉土壤重金属的分布特征及生态风险评价[J]. 生态学杂志, 2018, 37(6): 1797−1806

    YANG Y, WU P, LI X X, et al. Distribution and ecological risk assessment of heavy metals in selenium-rich soil with high cadmium content of coal mining area in upper reaches of Guancheng River in Zhijin County, Guizhou[J]. Chinese Journal of Ecology, 2018, 37(6): 1797−1806
    ZHAO X L, LIU J F, XIA X L, et al. The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China[J]. Environmental Science and Pollution Research, 2014, 21(7): 5076−5085 doi: 10.1007/s11356-013-2393-3
    屈吉鸿, 梁奇, 胡亚男, 等. 济源某铅锌产业区土壤重金属空间变异特征及污染评价[J]. 华北水利水电大学学报(自然科学版), 2016, 37(2): 47−51

    QU J H, LIANG Q, HU Y N, et al. Spatial variability and pollution evaluation of heavy metals in the soil in a lead and zinc industry district in Jiyuan[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2016, 37(2): 47−51
    宋高峰. 济源市有色金属产业发展研究[J]. 中国金属通报, 2018(5): 23−24

    SONG G F. Research on the development of nonferrous metals industry in Jiyuan City[J]. China Metal Bulletin, 2018(5): 23−24
    李姣姣, 赵学强, 王嘉林, 等. 废旧电器拆解场地周边污染区土壤-植物系统重金属积累特征和生态风险[J]. 生态学杂志, 2022, 41(12): 2432–2439

    LI J J, ZHAO X Q, WANG J L, et al. Accumulation and ecological risk of heavy metals in soil-plant system of the contaminated area around the E-waste dismantling site[J]. Chinese Journal of Ecology, 2022, 41(12): 2432–2439
    成永霞, 赵宗生, 王亚洲, 等. 河南省某铅冶炼厂附近农田土壤重金属污染特征[J]. 土壤通报, 2014, 45(6): 1505−1510

    CHENG Y X, ZHAO Z S, WANG Y Z, et al. Soil heavy metals pollution in the farmland near a lead smelter in Henan Province[J]. Chinese Journal of Soil Science, 2014, 45(6): 1505−1510
    MAESTRI E, MARMIROLI M, VISIOLI G, et al. Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment[J]. Environmental and Experimental Botany, 2010, 68(1): 1−13 doi: 10.1016/j.envexpbot.2009.10.011
    DENG T H B, VAN DER ENT A, TANG Y T, et al. Nickel hyperaccumulation mechanisms: a review on the current state of knowledge[J]. Plant and Soil, 2018, 423(1/2): 1−11
    BOTHE H, SŁOMKA A. Divergent biology of facultative heavy metal plants[J]. Journal of Plant Physiology, 2017, 219: 45−61 doi: 10.1016/j.jplph.2017.08.014
    关海燕. 三种景天属植物对Cd、Pb胁迫的响应及富集特征研究[D]. 北京: 北京林业大学, 2019

    GUAN H Y. Response and accumulation of 3 sedums to cadmium and lead stress[D]. Beijing: Beijing Forestry University, 2019
    王珊, 白瑞琴. 重金属镉对两种景天的生长和积累研究[J]. 北方园艺, 2016(7): 60−65

    WANG S, BAI R Q. Study on growth and accumulation of two Sedum under cadmium stress[J]. Northern Horticulture, 2016(7): 60−65
    吴佳玲, 陈喆, 游少鸿, 等. 硫肥对伴矿景天修复镉污染土壤的影响[J]. 农业环境科学学报, 2022, 41(6): 1241−1250

    WU J L, CHEN Z, YOU S H, et al. Phytoremediation efficiency of cadmium-contaminated arable land by planted Sedum plumbizincicola with sulfur fertilization[J]. Journal of Agro-Environment Science, 2022, 41(6): 1241−1250
    刘沙沙, 李兵, 冯翔, 等. 3种植物对镉污染土壤修复的试验研究[J]. 中国农学通报, 2018, 34(22): 103−108

    LIU S S, LI B, FENG X, et al. Three kinds of plants: remediation on soil contaminated by cadmium[J]. Chinese Agricultural Science Bulletin, 2018, 34(22): 103−108
    张云霞, 周浪, 肖乃川, 等. 鬼针草(Bidens pilosa L.)对镉污染农田的修复潜力[J]. 生态学报, 2020, 40(16): 5805−5813

    ZHANG Y X, ZHOU L, XIAO N C, et al. Remediation potential of Bidens pilosa L. in cadmium-contaminated farmland[J]. Acta Ecologica Sinica, 2020, 40(16): 5805−5813
    韩少华, 黄沈发, 唐浩, 等. 3种植物对Cd污染农田土壤的修复效果比较试验研究[J]. 环境污染与防治, 2012, 34(12): 22−25, 30

    HAN S H, HUANG S F, TANG H, et al. comparative study on the performance of 3 plants for remediation of cadmium contaminated farmland soil[J]. Environmental Pollution & Control, 2012, 34(12): 22−25, 30
    游梦, 邹茸, 王丽, 等. 不同富集植物与小麦间作对镉吸收转运的影响[J]. 中国土壤与肥料, 2022(4): 201−208

    YOU M, ZOU R, WANG L, et al. Effects of intercropping different accumulators with wheat on Cd absorption and transport under Cd stress[J]. Soil and Fertilizer Sciences in China, 2022(4): 201−208
    龙玉梅, 刘杰, 傅校锋, 等. 4种Cd超富集/富集植物修复性能的比较[J]. 江苏农业科学, 2019, 47(8): 296−300

    LONG Y M, LIU J, FU X F, et al. Comparative study on remediation performance of 4 kinds of Cd hyperaccumulators[J]. Jiangsu Agricultural Sciences, 2019, 47(8): 296−300
    陈苏, 陈宁, 晁雷, 等. 土霉素、镉复合污染土壤的植物-微生物联合修复实验研究[J]. 生态环境学报, 2015, 24(9): 1554−1559

    CHEN S, CHEN N, CHAO L, et al. The experimental study of polluted soils with oxytetracycline and cadmium by plant microbial remediation[J]. Ecology and Environmental Sciences, 2015, 24(9): 1554−1559
    郑瑞伦, 石东, 刘文菊, 等. 两种能源草田间条件下对镉和锌的吸收累积[J]. 环境科学, 2021, 42(3): 1158−1165

    ZHENG R L, SHI D, LIU W J, et al. Uptake and accumulation of cadmium and zinc by two energy grasses: a field experiment[J]. Environmental Science, 2021, 42(3): 1158−1165
    陈璘涵, 曾红远, 葛一陈, 等. 2种轮作模式对镉污染土壤修复潜力的比较[J]. 环境工程学报, 2017, 11(6): 3873−3878

    CHEN L H, ZENG H Y, GE Y C, et al. Comparison of remediation potential for two crop rotation patterns on Cd contaminated soils[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3873−3878
    刘桂华, 胡岗, 秦松, 等. 贵州典型酸性黄壤中3种叶菜类蔬菜对Cd累积特性及低累积品种筛选[J]. 安全与环境学报, 2018, 18(1): 396−401

    LIU G H, HU G, QIN S, et al. On the Cd accumulation risk features in the 3 leaf-vegetables in the typical acid brown soil of Guizhou and the corresponding choice for better lower accumulated cultivars instead[J]. Journal of Safety and Environment, 2018, 18(1): 396−401
    王泓博, 苟文贤, 吴玉清, 等. 重金属污染土壤修复研究进展: 原理与技术[J]. 生态学杂志, 2021, 40(8): 2277−2288

    WANG H B, GOU W X, WU Y Q, et al. Progress in remediation technologies of heavy metals contaminated soil: principles and technologies[J]. Chinese Journal of Ecology, 2021, 40(8): 2277−2288
    CAO X R, LUO J P, WANG X Z, et al. Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system[J]. Science of the Total Environment, 2020, 723: 138152 doi: 10.1016/j.scitotenv.2020.138152
    CAO X R, WANG X Z, TONG W B, et al. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties[J]. Environmental Pollution (Barking, Essex: 1987), 2019, 252(Pt A): 733–741
    GONG X M, HUANG D L, LIU Y G, et al. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: for heavy metals stabilization and dye adsorption[J]. Bioresource Technology, 2018, 253: 64−71 doi: 10.1016/j.biortech.2018.01.018
    ZHOU J W, ZHOU T, LI Z, et al. Differences in phytoextraction by the cadmium and zinc hyperaccumulator Sedum plumbizincicola in greenhouse, polytunnel and field conditions[J]. International Journal of Phytoremediation, 2018, 20(14): 1400−1407 doi: 10.1080/15226514.2018.1488808
    赵冰, 沈丽波, 程苗苗, 等. 麦季间作伴矿景天对不同土壤小麦-水稻生长及锌镉吸收性的影响[J]. 应用生态学报, 2011, 22(10): 2725−2731

    ZHAO B, SHEN L B, CHENG M M, et al. Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2725−2731
    ZEHRA A, SAHITO Z A, TONG W B, et al. Assessment of sunflower germplasm for phytoremediation of lead-polluted soil and production of seed oil and seed meal for human and animal consumption[J]. Journal of Environmental Sciences (China), 2020, 87: 24−38 doi: 10.1016/j.jes.2019.05.031
    张慧敏, 鲍广灵, 周晓天, 等. 严格管控类耕地特定农作物重金属安全性评估[J]. 中国农学通报, 2022, 38(3): 52−58 doi: 10.11924/j.issn.1000-6850.casb2021-0209

    ZHANG H M, BAO G L, ZHOU X T, et al. Safety assessment of heavy metals in specific crops of strictly controlled farmland[J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 52−58 doi: 10.11924/j.issn.1000-6850.casb2021-0209
    王敏捷, 盛光遥, 王锐. 土壤重金属污染修复植物处置技术进展[J]. 农业资源与环境学报, 2021, 38(2): 151−159

    WANG M J, SHENG G Y, WANG R. Progress in disposal technologies for plants polluted with heavy metals after phytoextraction[J]. Journal of Agricultural Resources and Environment, 2021, 38(2): 151−159
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (201) PDF downloads(24) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint