Volume 31 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
GAO R, LUO Z Z, HE R Y, NIU Y N, LIU J H, CAI L Q, HAI L. Soil AMF community structure and assembly mechanism of Medicago sativa field in Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 835−844 doi: 10.12357/cjea.20220697
Citation: GAO R, LUO Z Z, HE R Y, NIU Y N, LIU J H, CAI L Q, HAI L. Soil AMF community structure and assembly mechanism of Medicago sativa field in Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 835−844 doi: 10.12357/cjea.20220697

Soil AMF community structure and assembly mechanism of Medicago sativa field in Loess Plateau

doi: 10.12357/cjea.20220697
Funds:  This study was supported by the National Natural Science Foundation of China (31860364, 32160526), the Science and Technology Plan Program of Gansu Province (21JR7RA830), and the Special Program for Local Science and Technology Development Guided by Central Government of Gansu Province (ZCYD-2021-16).
More Information
  • Corresponding author: E-mail: luozz@gsau.edu.cn
  • Received Date: 2022-09-10
  • Accepted Date: 2022-12-27
  • Available Online: 2023-02-07
  • Publish Date: 2023-06-10
  • Arbuscular mycorrhizal fungi (AMF) mediate the interactions between plants and soils, play crucial roles in terrestrial symbiosis, and are important components of soil microbial communities. However, information on the variations of soil AMF communities with respect to the loess soil properties is limited. Therefore, the present study investigated soil AMF diversity, community structure, and physicochemical properties in Medicago sativa fields and farmland in the Loess Plateau semi-arid area. Soil samples (0–20 cm) were collected in June 2021 from four treatments: maize (Zea mays) field (Farmland) and M. sativa fields established in 2019 (L2019), 2012 (L2012), and 2003 (L2003). Illumina MiSeq high-throughput sequencing and real-time fluorescent quantitative PCR were used to explore the structure and diversity of the AMF communities under the four treatments (Farmland, L2003, L2012, and L2019). Statistical methods (redundancy analysis and molecular ecological network analysis) were used to explore the relationship between soil physicochemical properties and the AMF community. Zero-model analysis was used to reveal the assembly process of the soil AMF community. The results showed that long-term alfalfa planting decreased soil total phosphorus and available phosphorus contents. The AMF gene abundance ranged from 1.02×104 to 1.50×104 copies∙g−1 in dry soil, which was significantly higher in M. sativa field planted in 2003 than in other treatments (P<0.05). Correlation analysis between the abundance of AMF genes and physicochemical factors showed that soil AMF gene abundance was positively correlated with total nitrogen content and negatively correlated with total phosphorus and available phosphorus contents. One class, four orders, seven families, and seven genera of AMF were identified. Glomus, Diversispora, and Paraglomus were the common genera of M. sativa fields and Farmland, and the dominant genera of M. sativa fields and Farmland were Glomus (65.15%−99.12%), mainly contributing to the changes of soil AMF community structure in different treatment groups. Long-term cultivation of M. sativa propagated rare microbial taxa, including Ambispora and Scutellospora, whereas Pacispora and Acaulospora were sterilized. Ambispora was significantly higher in M. sativa field planted in 2019 than in the other treatments (P<0.05). The analysis of the molecular ecological network showed that there were highly abundant genera (Glomus and Paraglomus) that had cooperative relationships in the ecological network, whereas the low-abundance genera (Pacispora and Acaulospora) had competitive relationships in the ecological network. RDA showed no main environmental factors affecting the AMF community structure. The null model was used to infer AMF community assembly processes. In Farmland and M. sativa field established in 2019, community mechanisms were dominantly assembled with deterministic processes (66.67%), with heterogeneous selection contributing the most. For the M. sativa field established in 2012 and 2003, the community mechanisms were dominantly assembled with random processes (100.00%); the undominated processes contributed the most to M. sativa field planted in 2012, and dispersal limitation contributed the most to M. sativa field planted in 2003. The Mantel test showed no main environmental factors driving AMF community assembly. Long-term cultivation of M. sativa increases the number of random processes. This is beneficial for maintaining the sustainability and stability of the artificial grassland ecosystem functions. In summary, long-term M. sativa planting significantly affected the composition of soil AMF communities. This study provides basic data and a theoretical basis for further studies on the microbial mechanisms of AMF on the Loess Plateau after years of M. sativa planting.
  • loading
  • [1]
    PAN S, WANG Y, QIU Y P, et al. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi[J]. Global Change Biology, 2020, 26(11): 6568−6580 doi: 10.1111/gcb.15311
    [2]
    LUKAS S, GATTINGER A, MEIER M, et al. Improving crop yield and nutrient use eficiency via biofertilization — A global Meta-analysis[J]. Frontiers in Plant Science, 2018, 8(12): 2204
    [3]
    VOLPIN H, PHILLIPS D A. Respiratory elicitors from Rhizobium meliloti affect intact alfalfa roots[J]. Plant Physiology, 1998, 116(2): 777−783 doi: 10.1104/pp.116.2.777
    [4]
    MASSA N, CESARO P, TODESCHINI V, et al. Selected autochthonous rhizobia, applied in combination with AM fungi, improve seed quality of common bean cultivated in reduced fertilization condition[J]. Applied Soil Ecology, 2020, 148: 103507 doi: 10.1016/j.apsoil.2020.103507
    [5]
    赵丹丹, 李涛, 赵之伟. 丛枝菌根真菌-豆科植物-根瘤菌共生体系的研究进展[J]. 生态学杂志, 2006, 25(3): 327−333 doi: 10.3321/j.issn:1000-4890.2006.03.020

    ZHAO D D, LI T, ZHAO Z W. Research advances in arbuscular mycorrhizal fungi-legumes-rhizobia symbiosis[J]. Chinese Journal of Ecology, 2006, 25(3): 327−333 doi: 10.3321/j.issn:1000-4890.2006.03.020
    [6]
    ABD-ALLA M H, ELSADEK EL-ENANY A W, NAFADY N A, et al. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil[J]. Microbiological Research, 2014, 169(1): 49−58 doi: 10.1016/j.micres.2013.07.007
    [7]
    李元敬, 刘智蕾, 何兴元, 等. 丛枝菌根共生体的氮代谢运输及其生态作用[J]. 应用生态学报, 2013, 24(3): 861−868

    LI Y J, LIU Z L, HE X Y, et al. Nitrogen metabolism and translocation in arbuscular mycorrhizal symbiote and its ecological implications[J]. Chinese Journal of Applied Ecology, 2013, 24(3): 861−868
    [8]
    CHALK P M, DE F SOUZA R, URQUIAGA S, et al. The role of arbuscular mycorrhiza in legume symbiotic performance[J]. Soil Biology and Biochemistry, 2006, 38(9): 2944−2951 doi: 10.1016/j.soilbio.2006.05.005
    [9]
    伏云珍, 马琨, 崔慧珍, 等. 间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响[J]. 生态学杂志, 2021, 40(1): 131−139 doi: 10.13292/j.1000-4890.202101.030

    FU Y Z, MA K, CUI H Z, et al. Effects of interspecific interactions between intercropping crops on arbuscular mycorrhizal fungi in potato rhizosphere soil in the intercropping system[J]. Chinese Journal of Ecology, 2021, 40(1): 131−139 doi: 10.13292/j.1000-4890.202101.030
    [10]
    LEIBOLD M A, MCPEEK M A. Coexistence of the niche and neutral perspectives in community ecology[J]. Ecology, 2006, 87(6): 1399−1410 doi: 10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2
    [11]
    柴宇星. 祁连山阴阳坡丛枝菌根真菌多样性及群落构建机制研究[D]. 兰州: 兰州大学, 2018

    CHAI Y X. The species diversity and community assembly of arbuscular mycorrhizal fungi in Qilianshan Mountains on a northwest-facing slope and a southeast-facing slope[D]. Lanzhou: Lanzhou University, 2018
    [12]
    VÁLYI K, MARDHIAH U, RILLIG M C, et al. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi[J]. The ISME Journal, 2016, 10(10): 2341−2351 doi: 10.1038/ismej.2016.46
    [13]
    李洁, 李杏春, 郭良栋. 真菌群落构建机制研究进展[J]. 菌物学报, 2023, 42(1): 13−25

    LI J, LI X C, GUO L D. Research progress on community assembly mechanisms of fungi[J]. Mycosystema, 2023, 42(1): 13−25
    [14]
    倪红, 杨宪龙, 王刚, 等. 施氮及添加硝化抑制剂对苜蓿草地N2O排放的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 317−327

    NI H, YANG X L, WANG G, et al. Effects of nitrogen application and nitrification inhibitor addition on N2O emissions in Medicago sativa L. grassland[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 317−327
    [15]
    江影舟, 南志标, 王丽佳. 基于钻石模型理论的甘肃省苜蓿产业竞争力分析[J]. 草业科学, 2016, 33(4): 813−820 doi: 10.11829/j.issn.1001-0629.2015-0363

    JIANG Y Z, NAN Z B, WANG L J. Competitiveness of alfalfa industry in Gansu Province— A diamond model[J]. Pratacultural Science, 2016, 33(4): 813−820 doi: 10.11829/j.issn.1001-0629.2015-0363
    [16]
    WANG L L, XIE J H, LUO Z Z, et al. Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China[J]. Agricultural Water Management, 2021, 243: 106415 doi: 10.1016/j.agwat.2020.106415
    [17]
    RECORBET G, CALABRESE S, BALLIAU T, et al. Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network[J]. Fungal Genetics and Biology, 2021, 147: 103517 doi: 10.1016/j.fgb.2021.103517
    [18]
    ZHANG L, FENG G, DECLERCK S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium[J]. The ISME Journal, 2018, 12(10): 2339−2351 doi: 10.1038/s41396-018-0171-4
    [19]
    ZHANG L, FAN J Q, DING X D, et al. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil[J]. Soil Biology and Biochemistry, 2014, 74: 177−183 doi: 10.1016/j.soilbio.2014.03.004
    [20]
    杨文莹, 孙露莹, 宋凤斌, 等. 陆地农业生态系统丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报, 2019, 30(11): 3971−3979

    YANG W Y, SUN L Y, SONG F B, et al. Research advances in species diversity of arbuscular mycorrhizal fungi in terrestrial agro-ecosystem[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3971−3979
    [21]
    张旭红, 朱永官, 王幼珊, 等. 不同施肥处理对丛枝菌根真菌生态分布的影响[J]. 生态学报, 2006, 26(9): 3081−3087 doi: 10.3321/j.issn:1000-0933.2006.09.038

    ZHANG X H, ZHU Y G, WANG Y S, et al. Effect of long-term fertilization on the diversity and distribution of arbuscular mycorrhiza fungi in Northeast China[J]. Acta Ecologica Sinica, 2006, 26(9): 3081−3087 doi: 10.3321/j.issn:1000-0933.2006.09.038
    [22]
    WILLIAMS A, MANOHARAN L, ROSENSTOCK N P, et al. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange[J]. The New Phytologist, 2017, 213(2): 874−885 doi: 10.1111/nph.14196
    [23]
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000
    [24]
    STEGEN J C, LIN X J, FREDRICKSON J K, et al. Quantifying community assembly processes and identifying features that impose them[J]. The ISME Journal, 2013, 7(11): 2069−2079 doi: 10.1038/ismej.2013.93
    [25]
    刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000

    LIU R J, LI X L. Application of Arbuscular Mycorrhizal[M]. Beijing: Science Press, 2000
    [26]
    WU M N, QIN H L, CHEN Z, et al. Effect of long-term fertilization on bacterial composition in rice paddy soil[J]. Biology and Fertility of Soils, 2011, 47(4): 397−405 doi: 10.1007/s00374-010-0535-z
    [27]
    URCOVICHE R C, GAZIM Z C, DRAGUNSKI D C, et al. Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus[J]. Industrial Crops and Products, 2015, 67: 103−107 doi: 10.1016/j.indcrop.2015.01.016
    [28]
    吴强盛, 夏仁学, 邹英宁. 柑橘丛枝菌根真菌生长与根际有效磷和磷酸酶活性的相关性[J]. 应用生态学报, 2006, 17(4): 4685−4689 doi: 10.3321/j.issn:1001-9332.2006.04.025

    WU Q S, XIA R X, ZOU Y N. Arbuscular mycorrhizal fungal growth on citrus roots and its correlations with soil available phosphorus content and phosphatase activity[J]. Chinese Journal of Applied Ecology, 2006, 17(4): 4685−4689 doi: 10.3321/j.issn:1001-9332.2006.04.025
    [29]
    王永明, 范洁群, 石兆勇. 中国丛枝菌根真菌分子多样性[J]. 微生物学通报, 2018, 45(11): 2399−2408 doi: 10.13344/j.microbiol.china.171093

    WANG Y M, FAN J Q, SHI Z Y. Molecular diversity of arbuscular mycorrhizal fungal in China[J]. Microbiology China, 2018, 45(11): 2399−2408 doi: 10.13344/j.microbiol.china.171093
    [30]
    薛壮壮, 冯童禹, 王超, 等. 土地利用方式对酸性红壤丛枝菌根真菌群落的影响[J]. 土壤, 2022, 54(4): 733−739 doi: 10.13758/j.cnki.tr.2022.04.010

    XUE Z Z, FENG T Y, WANG C, et al. Effects of land-use patterns on arbuscular mycorrhizal fungi community in acidic red soil[J]. Soils, 2022, 54(4): 733−739 doi: 10.13758/j.cnki.tr.2022.04.010
    [31]
    彭岳林, 杨敏娜, 蔡晓布. 西藏高原针茅草地土壤因子对丛枝菌根真菌物种多样性的影响[J]. 应用生态学报, 2010, 21(5): 1258−1263 doi: 10.13287/j.1001-9332.2010.0192

    PENG Y L, YANG M N, CAI X B. Influence of soil factors on species diversity of arbuscular mycorrhizal (AM) fungi in Stipa steppe of Tibet Plateau[J]. Chinese Journal of Applied Ecology, 2010, 21(5): 1258−1263 doi: 10.13287/j.1001-9332.2010.0192
    [32]
    高威, 王连峰, 贾仲君. 长期不同施肥模式对农田黑土微生物群落构建的影响[J]. 生态与农村环境学报, 2021, 37(11): 1437−1448 doi: 10.19741/j.issn.1673-4831.2020.0807

    GAO W, WANG L F, JIA Z J. Changes in community assembly of microbiomes in black soil under distinct scenarios of long-term field fertilization[J]. Journal of Ecology and Rural Environment, 2021, 37(11): 1437−1448 doi: 10.19741/j.issn.1673-4831.2020.0807
    [33]
    FENG Y Z, GUO Z Y, ZHONG L H, et al. Balanced fertilization decreases environmental filtering on soil bacterial community assemblage in North China[J]. Frontiers in Microbiology, 2017, 8: 2376 doi: 10.3389/fmicb.2017.02376
    [34]
    ZHANG B G, ZHANG J, LIU Y, et al. Biogeography and ecological processes affecting root-associated bacterial communities in soybean fields across China[J]. Science of the Total Environment, 2018, 627: 20−27 doi: 10.1016/j.scitotenv.2018.01.230
    [35]
    JIAO S, LU Y H. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems[J]. Environmental Microbiology, 2020, 22(3): 1052−1065 doi: 10.1111/1462-2920.14815
    [36]
    KNELMAN J E, NEMERGUT D R. Changes in community assembly may shift the relationship between biodiversity and ecosystem function[J]. Frontiers in Microbiology, 2014, 5: 424
    [37]
    GRAHAM E, STEGEN J. Dispersal-based microbial community assembly decreases biogeochemical function[J]. Processes, 2017, 5(4): 65 doi: 10.3390/pr5040065
    [38]
    SOLIVERES S, VAN DER PLAS F, MANNING P, et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality[J]. Nature, 2016, 536(7617): 456−459 doi: 10.1038/nature19092
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (455) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return