Citation: | GAO R, LUO Z Z, HE R Y, NIU Y N, LIU J H, CAI L Q, HAI L. Soil AMF community structure and assembly mechanism of Medicago sativa field in Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 835−844 doi: 10.12357/cjea.20220697 |
[1] |
PAN S, WANG Y, QIU Y P, et al. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi[J]. Global Change Biology, 2020, 26(11): 6568−6580 doi: 10.1111/gcb.15311
|
[2] |
LUKAS S, GATTINGER A, MEIER M, et al. Improving crop yield and nutrient use eficiency via biofertilization — A global Meta-analysis[J]. Frontiers in Plant Science, 2018, 8(12): 2204
|
[3] |
VOLPIN H, PHILLIPS D A. Respiratory elicitors from Rhizobium meliloti affect intact alfalfa roots[J]. Plant Physiology, 1998, 116(2): 777−783 doi: 10.1104/pp.116.2.777
|
[4] |
MASSA N, CESARO P, TODESCHINI V, et al. Selected autochthonous rhizobia, applied in combination with AM fungi, improve seed quality of common bean cultivated in reduced fertilization condition[J]. Applied Soil Ecology, 2020, 148: 103507 doi: 10.1016/j.apsoil.2020.103507
|
[5] |
赵丹丹, 李涛, 赵之伟. 丛枝菌根真菌-豆科植物-根瘤菌共生体系的研究进展[J]. 生态学杂志, 2006, 25(3): 327−333 doi: 10.3321/j.issn:1000-4890.2006.03.020
ZHAO D D, LI T, ZHAO Z W. Research advances in arbuscular mycorrhizal fungi-legumes-rhizobia symbiosis[J]. Chinese Journal of Ecology, 2006, 25(3): 327−333 doi: 10.3321/j.issn:1000-4890.2006.03.020
|
[6] |
ABD-ALLA M H, ELSADEK EL-ENANY A W, NAFADY N A, et al. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil[J]. Microbiological Research, 2014, 169(1): 49−58 doi: 10.1016/j.micres.2013.07.007
|
[7] |
李元敬, 刘智蕾, 何兴元, 等. 丛枝菌根共生体的氮代谢运输及其生态作用[J]. 应用生态学报, 2013, 24(3): 861−868
LI Y J, LIU Z L, HE X Y, et al. Nitrogen metabolism and translocation in arbuscular mycorrhizal symbiote and its ecological implications[J]. Chinese Journal of Applied Ecology, 2013, 24(3): 861−868
|
[8] |
CHALK P M, DE F SOUZA R, URQUIAGA S, et al. The role of arbuscular mycorrhiza in legume symbiotic performance[J]. Soil Biology and Biochemistry, 2006, 38(9): 2944−2951 doi: 10.1016/j.soilbio.2006.05.005
|
[9] |
伏云珍, 马琨, 崔慧珍, 等. 间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响[J]. 生态学杂志, 2021, 40(1): 131−139 doi: 10.13292/j.1000-4890.202101.030
FU Y Z, MA K, CUI H Z, et al. Effects of interspecific interactions between intercropping crops on arbuscular mycorrhizal fungi in potato rhizosphere soil in the intercropping system[J]. Chinese Journal of Ecology, 2021, 40(1): 131−139 doi: 10.13292/j.1000-4890.202101.030
|
[10] |
LEIBOLD M A, MCPEEK M A. Coexistence of the niche and neutral perspectives in community ecology[J]. Ecology, 2006, 87(6): 1399−1410 doi: 10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2
|
[11] |
柴宇星. 祁连山阴阳坡丛枝菌根真菌多样性及群落构建机制研究[D]. 兰州: 兰州大学, 2018
CHAI Y X. The species diversity and community assembly of arbuscular mycorrhizal fungi in Qilianshan Mountains on a northwest-facing slope and a southeast-facing slope[D]. Lanzhou: Lanzhou University, 2018
|
[12] |
VÁLYI K, MARDHIAH U, RILLIG M C, et al. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi[J]. The ISME Journal, 2016, 10(10): 2341−2351 doi: 10.1038/ismej.2016.46
|
[13] |
李洁, 李杏春, 郭良栋. 真菌群落构建机制研究进展[J]. 菌物学报, 2023, 42(1): 13−25
LI J, LI X C, GUO L D. Research progress on community assembly mechanisms of fungi[J]. Mycosystema, 2023, 42(1): 13−25
|
[14] |
倪红, 杨宪龙, 王刚, 等. 施氮及添加硝化抑制剂对苜蓿草地N2O排放的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 317−327
NI H, YANG X L, WANG G, et al. Effects of nitrogen application and nitrification inhibitor addition on N2O emissions in Medicago sativa L. grassland[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 317−327
|
[15] |
江影舟, 南志标, 王丽佳. 基于钻石模型理论的甘肃省苜蓿产业竞争力分析[J]. 草业科学, 2016, 33(4): 813−820 doi: 10.11829/j.issn.1001-0629.2015-0363
JIANG Y Z, NAN Z B, WANG L J. Competitiveness of alfalfa industry in Gansu Province— A diamond model[J]. Pratacultural Science, 2016, 33(4): 813−820 doi: 10.11829/j.issn.1001-0629.2015-0363
|
[16] |
WANG L L, XIE J H, LUO Z Z, et al. Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China[J]. Agricultural Water Management, 2021, 243: 106415 doi: 10.1016/j.agwat.2020.106415
|
[17] |
RECORBET G, CALABRESE S, BALLIAU T, et al. Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network[J]. Fungal Genetics and Biology, 2021, 147: 103517 doi: 10.1016/j.fgb.2021.103517
|
[18] |
ZHANG L, FENG G, DECLERCK S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium[J]. The ISME Journal, 2018, 12(10): 2339−2351 doi: 10.1038/s41396-018-0171-4
|
[19] |
ZHANG L, FAN J Q, DING X D, et al. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil[J]. Soil Biology and Biochemistry, 2014, 74: 177−183 doi: 10.1016/j.soilbio.2014.03.004
|
[20] |
杨文莹, 孙露莹, 宋凤斌, 等. 陆地农业生态系统丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报, 2019, 30(11): 3971−3979
YANG W Y, SUN L Y, SONG F B, et al. Research advances in species diversity of arbuscular mycorrhizal fungi in terrestrial agro-ecosystem[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3971−3979
|
[21] |
张旭红, 朱永官, 王幼珊, 等. 不同施肥处理对丛枝菌根真菌生态分布的影响[J]. 生态学报, 2006, 26(9): 3081−3087 doi: 10.3321/j.issn:1000-0933.2006.09.038
ZHANG X H, ZHU Y G, WANG Y S, et al. Effect of long-term fertilization on the diversity and distribution of arbuscular mycorrhiza fungi in Northeast China[J]. Acta Ecologica Sinica, 2006, 26(9): 3081−3087 doi: 10.3321/j.issn:1000-0933.2006.09.038
|
[22] |
WILLIAMS A, MANOHARAN L, ROSENSTOCK N P, et al. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange[J]. The New Phytologist, 2017, 213(2): 874−885 doi: 10.1111/nph.14196
|
[23] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000
|
[24] |
STEGEN J C, LIN X J, FREDRICKSON J K, et al. Quantifying community assembly processes and identifying features that impose them[J]. The ISME Journal, 2013, 7(11): 2069−2079 doi: 10.1038/ismej.2013.93
|
[25] |
刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000
LIU R J, LI X L. Application of Arbuscular Mycorrhizal[M]. Beijing: Science Press, 2000
|
[26] |
WU M N, QIN H L, CHEN Z, et al. Effect of long-term fertilization on bacterial composition in rice paddy soil[J]. Biology and Fertility of Soils, 2011, 47(4): 397−405 doi: 10.1007/s00374-010-0535-z
|
[27] |
URCOVICHE R C, GAZIM Z C, DRAGUNSKI D C, et al. Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus[J]. Industrial Crops and Products, 2015, 67: 103−107 doi: 10.1016/j.indcrop.2015.01.016
|
[28] |
吴强盛, 夏仁学, 邹英宁. 柑橘丛枝菌根真菌生长与根际有效磷和磷酸酶活性的相关性[J]. 应用生态学报, 2006, 17(4): 4685−4689 doi: 10.3321/j.issn:1001-9332.2006.04.025
WU Q S, XIA R X, ZOU Y N. Arbuscular mycorrhizal fungal growth on citrus roots and its correlations with soil available phosphorus content and phosphatase activity[J]. Chinese Journal of Applied Ecology, 2006, 17(4): 4685−4689 doi: 10.3321/j.issn:1001-9332.2006.04.025
|
[29] |
王永明, 范洁群, 石兆勇. 中国丛枝菌根真菌分子多样性[J]. 微生物学通报, 2018, 45(11): 2399−2408 doi: 10.13344/j.microbiol.china.171093
WANG Y M, FAN J Q, SHI Z Y. Molecular diversity of arbuscular mycorrhizal fungal in China[J]. Microbiology China, 2018, 45(11): 2399−2408 doi: 10.13344/j.microbiol.china.171093
|
[30] |
薛壮壮, 冯童禹, 王超, 等. 土地利用方式对酸性红壤丛枝菌根真菌群落的影响[J]. 土壤, 2022, 54(4): 733−739 doi: 10.13758/j.cnki.tr.2022.04.010
XUE Z Z, FENG T Y, WANG C, et al. Effects of land-use patterns on arbuscular mycorrhizal fungi community in acidic red soil[J]. Soils, 2022, 54(4): 733−739 doi: 10.13758/j.cnki.tr.2022.04.010
|
[31] |
彭岳林, 杨敏娜, 蔡晓布. 西藏高原针茅草地土壤因子对丛枝菌根真菌物种多样性的影响[J]. 应用生态学报, 2010, 21(5): 1258−1263 doi: 10.13287/j.1001-9332.2010.0192
PENG Y L, YANG M N, CAI X B. Influence of soil factors on species diversity of arbuscular mycorrhizal (AM) fungi in Stipa steppe of Tibet Plateau[J]. Chinese Journal of Applied Ecology, 2010, 21(5): 1258−1263 doi: 10.13287/j.1001-9332.2010.0192
|
[32] |
高威, 王连峰, 贾仲君. 长期不同施肥模式对农田黑土微生物群落构建的影响[J]. 生态与农村环境学报, 2021, 37(11): 1437−1448 doi: 10.19741/j.issn.1673-4831.2020.0807
GAO W, WANG L F, JIA Z J. Changes in community assembly of microbiomes in black soil under distinct scenarios of long-term field fertilization[J]. Journal of Ecology and Rural Environment, 2021, 37(11): 1437−1448 doi: 10.19741/j.issn.1673-4831.2020.0807
|
[33] |
FENG Y Z, GUO Z Y, ZHONG L H, et al. Balanced fertilization decreases environmental filtering on soil bacterial community assemblage in North China[J]. Frontiers in Microbiology, 2017, 8: 2376 doi: 10.3389/fmicb.2017.02376
|
[34] |
ZHANG B G, ZHANG J, LIU Y, et al. Biogeography and ecological processes affecting root-associated bacterial communities in soybean fields across China[J]. Science of the Total Environment, 2018, 627: 20−27 doi: 10.1016/j.scitotenv.2018.01.230
|
[35] |
JIAO S, LU Y H. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems[J]. Environmental Microbiology, 2020, 22(3): 1052−1065 doi: 10.1111/1462-2920.14815
|
[36] |
KNELMAN J E, NEMERGUT D R. Changes in community assembly may shift the relationship between biodiversity and ecosystem function[J]. Frontiers in Microbiology, 2014, 5: 424
|
[37] |
GRAHAM E, STEGEN J. Dispersal-based microbial community assembly decreases biogeochemical function[J]. Processes, 2017, 5(4): 65 doi: 10.3390/pr5040065
|
[38] |
SOLIVERES S, VAN DER PLAS F, MANNING P, et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality[J]. Nature, 2016, 536(7617): 456−459 doi: 10.1038/nature19092
|