Volume 31 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHOU J H, LI Y H, ZHANG X, HU R H, GUO H C. Growth and photosynthetic characteristics of different heat-sensitive potato genotypes during the tuberization stage under high-temperature stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 750−764 doi: 10.12357/cjea.20220658
Citation: ZHOU J H, LI Y H, ZHANG X, HU R H, GUO H C. Growth and photosynthetic characteristics of different heat-sensitive potato genotypes during the tuberization stage under high-temperature stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 750−764 doi: 10.12357/cjea.20220658

Growth and photosynthetic characteristics of different heat-sensitive potato genotypes during the tuberization stage under high-temperature stress

doi: 10.12357/cjea.20220658
Funds:  This study was supported by China Agriculture Research System (CARS-09-15P) and the Special Project of Yunnan (Kunming) Academician Expert Workstation (YSZJGZZ-2021058).
More Information
  • Corresponding author: E-mail: ynghc@126.com
  • Received Date: 2022-08-26
  • Accepted Date: 2022-11-14
  • Rev Recd Date: 2022-11-14
  • Available Online: 2022-11-25
  • Publish Date: 2023-05-10
  • The potato (Solanum tuberosum L.) is an important grain and vegetable crop. Global warming affects its growth and production owing to its high temperature sensitivity. Investigating the physiological differences between heat-tolerant and heat-sensitive resources can help rationalize the mechanism of high-temperature resistance in potatoes. The parameters related to the morphology and photosynthesis of the heat-tolerant line ‘Dian 187’ (D187) and the heat-sensitive cultivar ‘Qingshu 9’ (QS9) were measured and analyzed after two weeks of high-temperature stress at 30 ℃. Under high-temperature stress, the plant height and internode length were increased, the leaves were upright, the length and area of leaves were reduced, and the plant architecture was more compact. The extent of change in the leaf number and bend angle in D187 was greater than that in QS9. The high-temperature affected potato net photosynthetic rate, water use efficiency, maximum net photosynthetic rate, apparent quantum yield, carboxylation efficiency, maximum carboxylation rate, and maximum electron transport rate, which were lower in QS9 than those in D187 under high-temperature stress. Furthermore, D187 had a lower light compensation point and dark respiration rate than the heat-sensitive cultivar (QS9), and as a result of its strong adaptability, the number of indexes with phenotypic plasticity index exceeding 0.5 in D187 was more than that in QS9. The mean phenotypic plasticity index of morphology, photosynthesis, and yield was 0.448 in D187, which was higher than that in QS9 (0.418). Furthermore, under high-temperature stress, the ability to absorb CO2 and low-concentration CO2 utilization were weakened, along with the acceleration of water loss and the reduction of water use efficiency in potato plants. Consequently, respiratory consumption increased, and the regeneration abilities of ribulose 1,5-diphosphate (RuBP) and chlorophyll fluorescence parameters were reduced in the dark. In contrast, chlorophyll fluorescence parameters increased under light, and the utilization ability of limited light was also enhanced. Differences in morphology and photosynthetic self-adaptation abilities are the main reasons for the difference in high-temperature resistance between heat-tolerant and heat-sensitive resources, which will help clarify the mechanism of high-temperature adaptability in potato plants and provide references for the selection of cultivars with high-temperature resistance and innovation in cultivation techniques.
  • loading
  • [1]
    GRIGGS D, NOGUER M. Climate change 2001: the scientific basis. contribution of working group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change[J]. Weather, 2002, 57: 267−269 doi: 10.1256/004316502320517344
    [2]
    LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980[J]. Science, 2011, 333(6042): 616−620 doi: 10.1126/science.1204531
    [3]
    FOGELMAN E, OREN-SHAMIR M, HIRSCHBERG J, et al. Nutritional value of potato (Solanum tuberosum) in hot climates: anthocyanins, carotenoids, and steroidal glycoalkaloids[J]. Planta, 2019, 249(4): 1143−1155 doi: 10.1007/s00425-018-03078-y
    [4]
    KOOMAN P L, HAVERKORT A J. Modelling development and growth of the potato crop influenced by temperature and daylength: LINTUL-POTATO[M]//HAVERKORT A J, MACKERRON D K L. Potato Ecology and Modelling of Crops Under Conditions Limiting Growth. Dordrecht: Springer, 1995: 41−59
    [5]
    徐超, 王明田, 杨再强, 等. 高温对温室草莓光合生理特性的影响及胁迫等级构建[J]. 应用生态学报, 2021, 32(1): 231−240

    XU C, WANG M T, YANG Z Q, et al. Effects of high temperature on photosynthetic physiological characteristics of strawberry seedlings in greenhouse and construction of stress level[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 231−240
    [6]
    WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants: an overview[J]. Environmental and Experimental Botany, 2007, 61(3): 199−223 doi: 10.1016/j.envexpbot.2007.05.011
    [7]
    江晓东, 华梦飞, 杨沈斌, 等. 喷施钾钙硅制剂改善高温胁迫水稻叶片光合性能提高产量[J]. 农业工程学报, 2019, 35(5): 126−133 doi: 10.11975/j.issn.1002-6819.2019.05.015

    JIANG X D, HUA M F, YANG S B, et al. Spraying exogenous potassium, calcium and silicon solutions improve photosynthetic performance of flag leaf and increase the yield of rice under heat stress condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 126−133 doi: 10.11975/j.issn.1002-6819.2019.05.015
    [8]
    POLLASTRI S, JORBA I, HAWKINS T J, et al. Leaves of isoprene-emitting tobacco plants maintain PSⅡ stability at high temperatures[J]. The New Phytologist, 2019, 223(3): 1307−1318 doi: 10.1111/nph.15847
    [9]
    BURTON D. Physiological responses of melanophores and xanthophores of hypophysectomized and spinal winter flounder, Pseudopleuronectes americanus Walbaum[J]. Proceedings of the Royal Society of London Series B Biological Sciences, 1981, 213(1191): 217−231
    [10]
    REYNOLDS M P, EWING E E, OWENS T G. Photosynthesis at high temperature in tuber-bearing Solanum species: a comparison between accessions of contrasting heat tolerance[J]. Plant Physiology, 1990, 93(2): 791−797 doi: 10.1104/pp.93.2.791
    [11]
    WINKLER L, BUANGA N F, GOETZE E. Gas-liquid chromatographic analysis of cardiolipin from fetal and maternal liver of the rat[J]. Biochimica et Biophysica Acta, 1971, 231(3): 535−536 doi: 10.1016/0005-2760(71)90122-6
    [12]
    WANG L X, XIN J, JIANPING L, et al. Effects of short-term high temperature stress on the photosynthesis of potato in different growth stages[J]. Agricultural Science and Technology Hunan, 2011, 12: 317−342
    [13]
    郭新宇, 张光海, 李凯峰, 等. 不同马铃薯品种(系)苗期耐热性评价[J]. 云南农业大学学报(自然科学), 2020, 35(2): 196−205

    GUO X Y, ZHANG G H, LI K F, et al. Evaluation of heat tolerance of different potato varieties (lines)[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(2): 196−205
    [14]
    双升普, 张金燕, 寸竹, 等. 光照强度驱动典型阴生植物三七的生理生态响应特征[J]. 生态学报, 2022, 42(9): 3596−3612

    SHUANG S P, ZHANG J Y, CUN Z, et al. Ecophysiological characteristics of a typically shade-tolerant species Panax notoginseng in response to different light intensities[J]. Acta Ecologica Sinica, 2022, 42(9): 3596−3612
    [15]
    GRANDA E, SCOFFONI C, RUBIO-CASAL A E, et al. Leaf and stem physiological responses to summer and winter extremes of woody species across temperate ecosystems[J]. Oikos, 2014, 123(11): 1281−1290 doi: 10.1111/oik.01526
    [16]
    LEHRETZ G G, SONNEWALD S, HORNYIK C, et al. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato[J]. Current Biology:CB, 2019, 29(10): 1614−1624.e3 doi: 10.1016/j.cub.2019.04.027
    [17]
    HASTILESTARI B R, LORENZ J, REID S, et al. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures[J]. Plant, Cell & Environment, 2018, 41(11): 2600−2616
    [18]
    KIM Y U, SEO B S, CHOI D H, et al. Impact of high temperatures on the marketable tuber yield and related traits of potato[J]. European Journal of Agronomy, 2017, 89: 46−52 doi: 10.1016/j.eja.2017.06.005
    [19]
    KIM Y U, LEE B W. Differential mechanisms of potato yield loss induced by high day and night temperatures during tuber initiation and bulking: photosynthesis and tuber growth[J]. Frontiers in Plant Science, 2019, 10: 300 doi: 10.3389/fpls.2019.00300
    [20]
    XIANG D B, SONG Y, WU Q, et al. Relationship between stem characteristics and lodging resistance of Tartary buckwheat (Fagopyrum tataricum)[J]. Plant Production Science, 2019, 22(2): 202−210 doi: 10.1080/1343943X.2019.1577143
    [21]
    CHEN M Z, ZHANG Y L, LIANG F B, et al. The net photosynthetic rate of the cotton boll-leaf system determines boll weight under various plant densities[J]. European Journal of Agronomy, 2021, 125: 126251 doi: 10.1016/j.eja.2021.126251
    [22]
    MITTLER R, BLUMWALD E. Genetic engineering for modern agriculture: challenges and perspectives[J]. Annual Review of Plant Biology, 2010, 61: 443−462 doi: 10.1146/annurev-arplant-042809-112116
    [23]
    康华靖, 李红, 陶月良, 等. 气体交换与荧光同步测量估算植物光合电子流的分配[J]. 生态学报, 2015, 35(4): 1217−1224

    KANG H J, LI H, TAO Y L, et al. Discussion on simultaneous measurements of leaf gas exchange and chlorophyll fluorescence for estimating photosynthetic electron allocation[J]. Acta Ecologica Sinica, 2015, 35(4): 1217−1224
    [24]
    李娜, 张峰举, 许兴, 等. 增温对宁夏北部春小麦叶片光合作用的影响[J]. 生态学报, 2019, 39(24): 9101−9110

    LI N, ZHANG F J, XU X, et al. Effects of elevated temperature on photosynthesis of spring wheat in northern Ningxia[J]. Acta Ecologica Sinica, 2019, 39(24): 9101−9110
    [25]
    张迎辉, 王雪梅, 连巧霞. 5个彩叶树种光响应曲线特性研究[J]. 热带作物学报, 2019, 40(9): 1737−1741 doi: 10.3969/j.issn.1000-2561.2019.09.010

    ZHANG Y H, WANG X M, LIAN Q X. Light response curve of photosynthesis of five colored-leaf trees[J]. Chinese Journal of Tropical Crops, 2019, 40(9): 1737−1741 doi: 10.3969/j.issn.1000-2561.2019.09.010
    [26]
    于波, 秦嗣军, 吕德国. 锌对苹果果实膨大期叶片13C光合产物合成及向果实转移分配的影响[J]. 应用生态学报, 2021, 32(6): 2007−2013

    YU B, QIN S J, LYU D G. Effects of zinc levels on synthesis and translocation of 13C-photoassimilates in leaves to fruit of apple during fruit expanding stage[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2007−2013
    [27]
    LONG S P, BERNACCHI C J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error[J]. Journal of Experimental Botany, 2003, 54(392): 2393−2401 doi: 10.1093/jxb/erg262
    [28]
    李彩斌, 郭华春. 耐弱光基因型马铃薯在遮阴条件下的光合和荧光特性分析[J]. 中国生态农业学报, 2017, 25(8): 1181−1189

    LI C B, GUO H C. Analysis of photosynthetic and fluorescence characteristics of low-light tolerant genotype potato under shade condition[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8): 1181−1189
    [29]
    孙谷畴, 赵平, 曾小平, 等. 不同光强下焕镛木和观光木的光合参数变化[J]. 植物生态学报, 2002, 26(3): 355−362

    SUN G C, ZHAO P, ZENG X P, et al. Changes of leaf photosynthetic parameters in leaves of woonyoungia septentrionalis and tsoongiodendron lotungensis under different growth-irradiation[J]. Acta Phytoecologica Sinica, 2002, 26(3): 355−362
    [30]
    徐祥增, 张金燕, 张广辉, 等. 光强对三七光合能力及能量分配的影响[J]. 应用生态学报, 2018, 29(1): 193−204

    XU X Z, ZHANG J Y, ZHANG G H, et al. Effects of light intensity on photosynthetic capacity and light energy allocation in Panax notoginseng[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 193−204
    [31]
    PONS T L, PEARCY R W, SEEMANN J R. Photosynthesis in flashing light in soybean leaves grown in different conditions. Ⅰ. Photosynthetic induction state and regulation of ribulose-1,5-bisphosphate carboxylase activity[J]. Plant, Cell and Environment, 1992, 15(5): 569−576 doi: 10.1111/j.1365-3040.1992.tb01490.x
    [32]
    张东升, 韩硕, 王旗, 等. 枣棉间作条件下棉花密度对棉花光合特性及产量影响[J]. 棉花学报, 2014, 26(4): 334−341 doi: 10.3969/j.issn.1002-7807.2014.04.008

    ZHANG D S, HAN S, WANG Q, et al. Effect of plant density on photosynthesis characters and yield of cotton in the jujube-cotton intercropping systems[J]. Cotton Science, 2014, 26(4): 334−341 doi: 10.3969/j.issn.1002-7807.2014.04.008
    [33]
    SPERLING O, LAZAROVITCH N, SCHWARTZ A, et al. Effects of high salinity irrigation on growth, gas-exchange, and photoprotection in date palms (Phoenix dactylifera L., cv. Medjool)[J]. Environmental and Experimental Botany, 2014, 99: 100−109 doi: 10.1016/j.envexpbot.2013.10.014
    [34]
    王日明, 王志强, 向佐湘. γ-氨基丁酸对高温胁迫下黑麦草光合特性及碳水化合物代谢的影响[J]. 草业学报, 2019, 28(2): 168−178 doi: 10.11686/cyxb2018167

    WANG R M, WANG Z Q, XIANG Z X. Effect of γ-aminobutyric acid on photosynthetic characteristics and carbohydrate metabolism under high temperature stress in perennial ryegrass[J]. Acta Prataculturae Sinica, 2019, 28(2): 168−178 doi: 10.11686/cyxb2018167
    [35]
    史彦江, 罗青红, 宋锋惠, 等. 高温胁迫对新疆榛光合参数和叶绿素荧光特性的影响[J]. 应用生态学报, 2012, 23(9): 2477−2482

    SHI Y J, LUO Q H, SONG F H, et al. Effects of high temperature stress on photosynthetic parameters and chlorophyll fluorescence characteristics of Xinjiang hybrid hazels[J]. Chinese Journal of Applied Ecology, 2012, 23(9): 2477−2482
    [36]
    邵宇航, 石祖梁, 张姗, 等. 高温胁迫下镁对小麦旗叶光合特性及产量的影响[J]. 麦类作物学报, 2018, 38(7): 802−808 doi: 10.7606/j.issn.1009-1041.2018.07.07

    SHAO Y H, SHI Z L, ZHANG S, et al. Effect of magnesium rates on photosynthetic characteristics of flag leaf and grain yield in winter wheat under heat stress[J]. Journal of Triticeae Crops, 2018, 38(7): 802−808 doi: 10.7606/j.issn.1009-1041.2018.07.07
    [37]
    HERAUD P, BEARDALL J. Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes[J]. Photosynthesis Research, 2004, 63: 123−134
    [38]
    CHAFFIN J D, BRIDGEMAN T B, HECKATHORN S A, et al. Role of suspended sediments and mixing in reducing photoinhibition in the bloom-forming cyanobacterium Microcystis[J]. Journal of Water Resource and Protection, 2012, 4(12): 1029−1041 doi: 10.4236/jwarp.2012.412119
    [39]
    KUSAMA Y, INOUE S, JIMBO H, et al. Zeaxanthin and echinenone protect the repair of photosystem Ⅱ from inhibition by singlet oxygen in Synechocystis sp. PCC 6803[J]. Plant and Cell Physiology, 2015, 56(5): 906−916 doi: 10.1093/pcp/pcv018
    [40]
    李恺, 张丽丽, 邵长勇, 等. 亚高温下冷等离子体处理番茄种子对幼苗生长和光能利用的影响[J]. 园艺学报, 2021, 48(11): 2286−2298

    LI K, ZHANG L L, SHAO C Y, et al. Effects of cold plasma seed treatment on tomato seedling growth and light energy utilization under daytime sub-high temperature environment[J]. Acta Horticulturae Sinica, 2021, 48(11): 2286−2298
    [41]
    SUN C X, YUAN F, ZHANG Y L, et al. Unintended effects of genetic transformation on photosynthetic gas exchange, leaf reflectance and plant growth properties in barley (Hordeum vulgare L.)[J]. Photosynthetica, 2013, 51(1): 22−32 doi: 10.1007/s11099-013-0002-9
    [42]
    王军, 赵桂琴, 柴继宽, 等. 大麦黄矮病毒侵染对燕麦光合及叶绿素荧光参数的影响[J]. 草地学报, 2020, 28(4): 923−931

    WANG J, ZHAO G Q, CHAI J K, et al. Effect of barley yellow dwarf virus infection on photosynthesis and chlorophyll fluorescence parameters of oat[J]. Acta Agrestia Sinica, 2020, 28(4): 923−931
    [43]
    DEMMIG-ADAMS B, COHU C M, MULLER O, et al. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons[J]. Photosynthesis Research, 2012, 113(1/2/3): 75−88
    [44]
    HALLIK L, NIINEMETS, KULL O. Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field[J]. Plant Biology, 2012, 14(1): 88−99
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (344) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return