Citation: | ZHOU J H, LI Y H, ZHANG X, HU R H, GUO H C. Growth and photosynthetic characteristics of different heat-sensitive potato genotypes during the tuberization stage under high-temperature stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 750−764 doi: 10.12357/cjea.20220658 |
[1] |
GRIGGS D, NOGUER M. Climate change 2001: the scientific basis. contribution of working group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change[J]. Weather, 2002, 57: 267−269 doi: 10.1256/004316502320517344
|
[2] |
LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980[J]. Science, 2011, 333(6042): 616−620 doi: 10.1126/science.1204531
|
[3] |
FOGELMAN E, OREN-SHAMIR M, HIRSCHBERG J, et al. Nutritional value of potato (Solanum tuberosum) in hot climates: anthocyanins, carotenoids, and steroidal glycoalkaloids[J]. Planta, 2019, 249(4): 1143−1155 doi: 10.1007/s00425-018-03078-y
|
[4] |
KOOMAN P L, HAVERKORT A J. Modelling development and growth of the potato crop influenced by temperature and daylength: LINTUL-POTATO[M]//HAVERKORT A J, MACKERRON D K L. Potato Ecology and Modelling of Crops Under Conditions Limiting Growth. Dordrecht: Springer, 1995: 41−59
|
[5] |
徐超, 王明田, 杨再强, 等. 高温对温室草莓光合生理特性的影响及胁迫等级构建[J]. 应用生态学报, 2021, 32(1): 231−240
XU C, WANG M T, YANG Z Q, et al. Effects of high temperature on photosynthetic physiological characteristics of strawberry seedlings in greenhouse and construction of stress level[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 231−240
|
[6] |
WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants: an overview[J]. Environmental and Experimental Botany, 2007, 61(3): 199−223 doi: 10.1016/j.envexpbot.2007.05.011
|
[7] |
江晓东, 华梦飞, 杨沈斌, 等. 喷施钾钙硅制剂改善高温胁迫水稻叶片光合性能提高产量[J]. 农业工程学报, 2019, 35(5): 126−133 doi: 10.11975/j.issn.1002-6819.2019.05.015
JIANG X D, HUA M F, YANG S B, et al. Spraying exogenous potassium, calcium and silicon solutions improve photosynthetic performance of flag leaf and increase the yield of rice under heat stress condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 126−133 doi: 10.11975/j.issn.1002-6819.2019.05.015
|
[8] |
POLLASTRI S, JORBA I, HAWKINS T J, et al. Leaves of isoprene-emitting tobacco plants maintain PSⅡ stability at high temperatures[J]. The New Phytologist, 2019, 223(3): 1307−1318 doi: 10.1111/nph.15847
|
[9] |
BURTON D. Physiological responses of melanophores and xanthophores of hypophysectomized and spinal winter flounder, Pseudopleuronectes americanus Walbaum[J]. Proceedings of the Royal Society of London Series B Biological Sciences, 1981, 213(1191): 217−231
|
[10] |
REYNOLDS M P, EWING E E, OWENS T G. Photosynthesis at high temperature in tuber-bearing Solanum species: a comparison between accessions of contrasting heat tolerance[J]. Plant Physiology, 1990, 93(2): 791−797 doi: 10.1104/pp.93.2.791
|
[11] |
WINKLER L, BUANGA N F, GOETZE E. Gas-liquid chromatographic analysis of cardiolipin from fetal and maternal liver of the rat[J]. Biochimica et Biophysica Acta, 1971, 231(3): 535−536 doi: 10.1016/0005-2760(71)90122-6
|
[12] |
WANG L X, XIN J, JIANPING L, et al. Effects of short-term high temperature stress on the photosynthesis of potato in different growth stages[J]. Agricultural Science and Technology Hunan, 2011, 12: 317−342
|
[13] |
郭新宇, 张光海, 李凯峰, 等. 不同马铃薯品种(系)苗期耐热性评价[J]. 云南农业大学学报(自然科学), 2020, 35(2): 196−205
GUO X Y, ZHANG G H, LI K F, et al. Evaluation of heat tolerance of different potato varieties (lines)[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(2): 196−205
|
[14] |
双升普, 张金燕, 寸竹, 等. 光照强度驱动典型阴生植物三七的生理生态响应特征[J]. 生态学报, 2022, 42(9): 3596−3612
SHUANG S P, ZHANG J Y, CUN Z, et al. Ecophysiological characteristics of a typically shade-tolerant species Panax notoginseng in response to different light intensities[J]. Acta Ecologica Sinica, 2022, 42(9): 3596−3612
|
[15] |
GRANDA E, SCOFFONI C, RUBIO-CASAL A E, et al. Leaf and stem physiological responses to summer and winter extremes of woody species across temperate ecosystems[J]. Oikos, 2014, 123(11): 1281−1290 doi: 10.1111/oik.01526
|
[16] |
LEHRETZ G G, SONNEWALD S, HORNYIK C, et al. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato[J]. Current Biology:CB, 2019, 29(10): 1614−1624.e3 doi: 10.1016/j.cub.2019.04.027
|
[17] |
HASTILESTARI B R, LORENZ J, REID S, et al. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures[J]. Plant, Cell & Environment, 2018, 41(11): 2600−2616
|
[18] |
KIM Y U, SEO B S, CHOI D H, et al. Impact of high temperatures on the marketable tuber yield and related traits of potato[J]. European Journal of Agronomy, 2017, 89: 46−52 doi: 10.1016/j.eja.2017.06.005
|
[19] |
KIM Y U, LEE B W. Differential mechanisms of potato yield loss induced by high day and night temperatures during tuber initiation and bulking: photosynthesis and tuber growth[J]. Frontiers in Plant Science, 2019, 10: 300 doi: 10.3389/fpls.2019.00300
|
[20] |
XIANG D B, SONG Y, WU Q, et al. Relationship between stem characteristics and lodging resistance of Tartary buckwheat (Fagopyrum tataricum)[J]. Plant Production Science, 2019, 22(2): 202−210 doi: 10.1080/1343943X.2019.1577143
|
[21] |
CHEN M Z, ZHANG Y L, LIANG F B, et al. The net photosynthetic rate of the cotton boll-leaf system determines boll weight under various plant densities[J]. European Journal of Agronomy, 2021, 125: 126251 doi: 10.1016/j.eja.2021.126251
|
[22] |
MITTLER R, BLUMWALD E. Genetic engineering for modern agriculture: challenges and perspectives[J]. Annual Review of Plant Biology, 2010, 61: 443−462 doi: 10.1146/annurev-arplant-042809-112116
|
[23] |
康华靖, 李红, 陶月良, 等. 气体交换与荧光同步测量估算植物光合电子流的分配[J]. 生态学报, 2015, 35(4): 1217−1224
KANG H J, LI H, TAO Y L, et al. Discussion on simultaneous measurements of leaf gas exchange and chlorophyll fluorescence for estimating photosynthetic electron allocation[J]. Acta Ecologica Sinica, 2015, 35(4): 1217−1224
|
[24] |
李娜, 张峰举, 许兴, 等. 增温对宁夏北部春小麦叶片光合作用的影响[J]. 生态学报, 2019, 39(24): 9101−9110
LI N, ZHANG F J, XU X, et al. Effects of elevated temperature on photosynthesis of spring wheat in northern Ningxia[J]. Acta Ecologica Sinica, 2019, 39(24): 9101−9110
|
[25] |
张迎辉, 王雪梅, 连巧霞. 5个彩叶树种光响应曲线特性研究[J]. 热带作物学报, 2019, 40(9): 1737−1741 doi: 10.3969/j.issn.1000-2561.2019.09.010
ZHANG Y H, WANG X M, LIAN Q X. Light response curve of photosynthesis of five colored-leaf trees[J]. Chinese Journal of Tropical Crops, 2019, 40(9): 1737−1741 doi: 10.3969/j.issn.1000-2561.2019.09.010
|
[26] |
于波, 秦嗣军, 吕德国. 锌对苹果果实膨大期叶片13C光合产物合成及向果实转移分配的影响[J]. 应用生态学报, 2021, 32(6): 2007−2013
YU B, QIN S J, LYU D G. Effects of zinc levels on synthesis and translocation of 13C-photoassimilates in leaves to fruit of apple during fruit expanding stage[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2007−2013
|
[27] |
LONG S P, BERNACCHI C J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error[J]. Journal of Experimental Botany, 2003, 54(392): 2393−2401 doi: 10.1093/jxb/erg262
|
[28] |
李彩斌, 郭华春. 耐弱光基因型马铃薯在遮阴条件下的光合和荧光特性分析[J]. 中国生态农业学报, 2017, 25(8): 1181−1189
LI C B, GUO H C. Analysis of photosynthetic and fluorescence characteristics of low-light tolerant genotype potato under shade condition[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8): 1181−1189
|
[29] |
孙谷畴, 赵平, 曾小平, 等. 不同光强下焕镛木和观光木的光合参数变化[J]. 植物生态学报, 2002, 26(3): 355−362
SUN G C, ZHAO P, ZENG X P, et al. Changes of leaf photosynthetic parameters in leaves of woonyoungia septentrionalis and tsoongiodendron lotungensis under different growth-irradiation[J]. Acta Phytoecologica Sinica, 2002, 26(3): 355−362
|
[30] |
徐祥增, 张金燕, 张广辉, 等. 光强对三七光合能力及能量分配的影响[J]. 应用生态学报, 2018, 29(1): 193−204
XU X Z, ZHANG J Y, ZHANG G H, et al. Effects of light intensity on photosynthetic capacity and light energy allocation in Panax notoginseng[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 193−204
|
[31] |
PONS T L, PEARCY R W, SEEMANN J R. Photosynthesis in flashing light in soybean leaves grown in different conditions. Ⅰ. Photosynthetic induction state and regulation of ribulose-1,5-bisphosphate carboxylase activity[J]. Plant, Cell and Environment, 1992, 15(5): 569−576 doi: 10.1111/j.1365-3040.1992.tb01490.x
|
[32] |
张东升, 韩硕, 王旗, 等. 枣棉间作条件下棉花密度对棉花光合特性及产量影响[J]. 棉花学报, 2014, 26(4): 334−341 doi: 10.3969/j.issn.1002-7807.2014.04.008
ZHANG D S, HAN S, WANG Q, et al. Effect of plant density on photosynthesis characters and yield of cotton in the jujube-cotton intercropping systems[J]. Cotton Science, 2014, 26(4): 334−341 doi: 10.3969/j.issn.1002-7807.2014.04.008
|
[33] |
SPERLING O, LAZAROVITCH N, SCHWARTZ A, et al. Effects of high salinity irrigation on growth, gas-exchange, and photoprotection in date palms (Phoenix dactylifera L., cv. Medjool)[J]. Environmental and Experimental Botany, 2014, 99: 100−109 doi: 10.1016/j.envexpbot.2013.10.014
|
[34] |
王日明, 王志强, 向佐湘. γ-氨基丁酸对高温胁迫下黑麦草光合特性及碳水化合物代谢的影响[J]. 草业学报, 2019, 28(2): 168−178 doi: 10.11686/cyxb2018167
WANG R M, WANG Z Q, XIANG Z X. Effect of γ-aminobutyric acid on photosynthetic characteristics and carbohydrate metabolism under high temperature stress in perennial ryegrass[J]. Acta Prataculturae Sinica, 2019, 28(2): 168−178 doi: 10.11686/cyxb2018167
|
[35] |
史彦江, 罗青红, 宋锋惠, 等. 高温胁迫对新疆榛光合参数和叶绿素荧光特性的影响[J]. 应用生态学报, 2012, 23(9): 2477−2482
SHI Y J, LUO Q H, SONG F H, et al. Effects of high temperature stress on photosynthetic parameters and chlorophyll fluorescence characteristics of Xinjiang hybrid hazels[J]. Chinese Journal of Applied Ecology, 2012, 23(9): 2477−2482
|
[36] |
邵宇航, 石祖梁, 张姗, 等. 高温胁迫下镁对小麦旗叶光合特性及产量的影响[J]. 麦类作物学报, 2018, 38(7): 802−808 doi: 10.7606/j.issn.1009-1041.2018.07.07
SHAO Y H, SHI Z L, ZHANG S, et al. Effect of magnesium rates on photosynthetic characteristics of flag leaf and grain yield in winter wheat under heat stress[J]. Journal of Triticeae Crops, 2018, 38(7): 802−808 doi: 10.7606/j.issn.1009-1041.2018.07.07
|
[37] |
HERAUD P, BEARDALL J. Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes[J]. Photosynthesis Research, 2004, 63: 123−134
|
[38] |
CHAFFIN J D, BRIDGEMAN T B, HECKATHORN S A, et al. Role of suspended sediments and mixing in reducing photoinhibition in the bloom-forming cyanobacterium Microcystis[J]. Journal of Water Resource and Protection, 2012, 4(12): 1029−1041 doi: 10.4236/jwarp.2012.412119
|
[39] |
KUSAMA Y, INOUE S, JIMBO H, et al. Zeaxanthin and echinenone protect the repair of photosystem Ⅱ from inhibition by singlet oxygen in Synechocystis sp. PCC 6803[J]. Plant and Cell Physiology, 2015, 56(5): 906−916 doi: 10.1093/pcp/pcv018
|
[40] |
李恺, 张丽丽, 邵长勇, 等. 亚高温下冷等离子体处理番茄种子对幼苗生长和光能利用的影响[J]. 园艺学报, 2021, 48(11): 2286−2298
LI K, ZHANG L L, SHAO C Y, et al. Effects of cold plasma seed treatment on tomato seedling growth and light energy utilization under daytime sub-high temperature environment[J]. Acta Horticulturae Sinica, 2021, 48(11): 2286−2298
|
[41] |
SUN C X, YUAN F, ZHANG Y L, et al. Unintended effects of genetic transformation on photosynthetic gas exchange, leaf reflectance and plant growth properties in barley (Hordeum vulgare L.)[J]. Photosynthetica, 2013, 51(1): 22−32 doi: 10.1007/s11099-013-0002-9
|
[42] |
王军, 赵桂琴, 柴继宽, 等. 大麦黄矮病毒侵染对燕麦光合及叶绿素荧光参数的影响[J]. 草地学报, 2020, 28(4): 923−931
WANG J, ZHAO G Q, CHAI J K, et al. Effect of barley yellow dwarf virus infection on photosynthesis and chlorophyll fluorescence parameters of oat[J]. Acta Agrestia Sinica, 2020, 28(4): 923−931
|
[43] |
DEMMIG-ADAMS B, COHU C M, MULLER O, et al. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons[J]. Photosynthesis Research, 2012, 113(1/2/3): 75−88
|
[44] |
HALLIK L, NIINEMETS, KULL O. Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field[J]. Plant Biology, 2012, 14(1): 88−99
|