Citation: | ZHANG Q, HU C S, LIU B B, ZHANG Y M, DONG W X, LI X X, LIU X P, WANG J, ZHANG R Y, WU K Y, WU J. Influence of combined application of bioorganic fertilizer and chemical fertilizer on lettuce growth and soil environment[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 725−741 doi: 10.12357/cjea.20220642 |
[1] |
JIN S Q, ZHOU F. Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges[J]. Journal of Resources and Ecology, 2018, 9(sp1): 50−58 doi: 10.5814/j.issn.1674-764x.2018.01.006
|
[2] |
SAVCI S. An agricultural pollutant: chemical fertilizer[J]. International Journal of Environmental Science and Development, 2012, 3(1): 77−80
|
[3] |
SHARMA B, VAISH B, MONIKA, et al. Recycling of organic wastes in agriculture: an environmental perspective[J]. International Journal of Environmental Research, 2019, 13(2): 409−429 doi: 10.1007/s41742-019-00175-y
|
[4] |
LU Q, LI C L. Comprehensive utilization of Chinese medicine residues for industry and environment protection: turning waste into treasure[J]. Journal of Cleaner Production, 2021, 279: 123856 doi: 10.1016/j.jclepro.2020.123856
|
[5] |
宁川川, 王建武, 蔡昆争. 有机肥对土壤肥力和土壤环境质量的影响研究进展[J]. 生态环境学报, 2016, 25(1): 175−181
NING C C, WANG J W, CAI K Z. The effects of organic fertilizers on soil fertility and soil environmental quality: a review[J]. Ecology and Environmental Sciences, 2016, 25(1): 175−181
|
[6] |
SYED S, WANG X X, PRASAD T N V K V, et al. Bio-organic mineral fertilizer for sustainable agriculture: current trends and future perspectives[J]. Minerals, 2021, 11(12): 1336 doi: 10.3390/min11121336
|
[7] |
LIN W W, LIN M H, ZHOU H Y, et al. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards[J]. PLoS One, 2019, 14(5): e0217018 doi: 10.1371/journal.pone.0217018
|
[8] |
GUO J K, MUHAMMAD H, LV X, et al. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: a review[J]. Chemosphere, 2020, 246: 125823 doi: 10.1016/j.chemosphere.2020.125823
|
[9] |
HU Z M, JI L F, WAN Q, et al. Short-term effects of bio-organic fertilizer on soil fertility and bacterial community composition in tea plantation soils[J]. Agronomy, 2022, 12(9): 2168 doi: 10.3390/agronomy12092168
|
[10] |
LI W X, ZHANG F Y, CUI G H, et al. Effects of bio-organic fertilizer on soil fertility, microbial community composition, and potato growth[J]. ScienceAsia, 2021, 47(3): 347 doi: 10.2306/scienceasia1513-1874.2021.039
|
[11] |
ZHENG X F, ZHU Y J, WANG Z R, et al. Effects of a novel bio-organic fertilizer on the composition of rhizobacterial communities and bacterial wilt outbreak in a continuously mono-cropped tomato field[J]. Applied Soil Ecology, 2020, 156: 103717 doi: 10.1016/j.apsoil.2020.103717
|
[12] |
GAO C H, EL-SAWAH A M, ALI D F I, et al. The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.)[J]. Agronomy, 2020, 10(3): 319 doi: 10.3390/agronomy10030319
|
[13] |
SAXENA A K, KUMAR M, CHAKDAR H, et al. Bacillus species in soil as a natural resource for plant health and nutrition[J]. Journal of Applied Microbiology, 2020, 128(6): 1583−1594 doi: 10.1111/jam.14506
|
[14] |
ASARI S, TARKOWSKÁ D, ROLČÍK J, et al. Analysis of plant growth-promoting properties of Bacillus[J]. Planta, 2017, 245(1): 15−30 doi: 10.1007/s00425-016-2580-9
|
[15] |
王波, 沈其荣, 赖涛, 等. 不同铵硝比营养液对生菜生长发育影响的研究[J]. 土壤学报, 2007, 44(3): 561−565
WANG B, SHEN Q R, LAI T, et al. Effects of NH4+-N/NO3−-N ratio in nutrient solution on growth of lettuce in hydroponics[J]. Acta Pedologica Sinica, 2007, 44(3): 561−565
|
[16] |
FENG N X, LIANG Q F, FENG Y X, et al. Improving yield and quality of vegetable grown in PAEs-contaminated soils by using novel bioorganic fertilizer[J]. Science of the Total Environment, 2020, 739: 139883 doi: 10.1016/j.scitotenv.2020.139883
|
[17] |
JIN N, JIN L, WANG S Y, et al. Reduced chemical fertilizer combined with bio-organic fertilizer affects the soil microbial community and yield and quality of lettuce[J]. Frontiers in Microbiology, 2022, 13: 863325 doi: 10.3389/fmicb.2022.863325
|
[18] |
YE L, ZHAO X, BAO E C, et al. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality[J]. Scientific Reports, 2020, 10: 177 doi: 10.1038/s41598-019-56954-2
|
[19] |
MIRANSARI M. Soil microbes and the availability of soil nutrients[J]. Acta Physiologiae Plantarum, 2013, 35(11): 3075−3084 doi: 10.1007/s11738-013-1338-2
|
[20] |
俞元春, 何晟, 李炳凯, 等. 杉林土壤溶解有机碳吸附及影响因素分析[J]. 南京林业大学学报(自然科学版), 2005, 29(2): 15−18
YU Y C, HE S, LI B K, et al. The dissolved organic carbon (DOC) adsorption and its influence factor on the soil of Chinese fir plantation[J]. Journal of Nanjing Forestry University, 2005, 29(2): 15−18
|
[21] |
刘子刚, 卢海博, 赵海超, 等. 旱作区春玉米秸秆还田方式对土壤微生物量碳氮磷及酶活性的影响[J]. 西北农业学报, 2022, 31(2): 183−192 doi: 10.7606/j.issn.1004-1389.2022.02.007
LIU Z G, LU H B, ZHAO H C, et al. Effects of methods for spring maize straw-returning to field on soil microbial biomass C, N, P and enzyme activities in dry farming area[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(2): 183−192 doi: 10.7606/j.issn.1004-1389.2022.02.007
|
[22] |
MAHAJAN N C, MRUNALINI K, PRASAD K S K, et al. Soil quality indicators, building soil organic matter and microbial derived inputs to soil organic matter under conservation agriculture ecosystem: a review[J]. International Journal of Current Microbiology and Applied Sciences, 2019, 8(2): 1859−1879 doi: 10.20546/ijcmas.2019.802.218
|
[23] |
陈芬, 余高, 张红丽, 等. 中药渣生物有机肥对Hg-Cd复合污染土壤重金属、微生物量碳氮含量及酶活性的影响[J]. 河南农业科学, 2021, 50(7): 66−75
CHEN F, YU G, ZHANG H L, et al. Effects of bio-organic fertilizer made from Chinese traditional herb residues on the content of heavy metals, microbial biomass carbon and nitrogen and enzyme activity in Hg and Cd compound contaminated soil[J]. Journal of Henan Agricultural Sciences, 2021, 50(7): 66−75
|
[24] |
ZECHMEISTER-BOLTENSTERN S, KEIBLINGER K M, MOOSHAMMER M, et al. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations[J]. Ecological Monographs, 2015, 85(2): 133−155 doi: 10.1890/14-0777.1
|
[25] |
DI GIOIA F, GONNELLA M, BUONO V, et al. Agronomic, physiological and quality response of romaine and red oak-leaf lettuce to nitrogen input[J]. Italian Journal of Agronomy, 2017, 12(1): 806
|
[26] |
BARGAZ A, LYAMLOULI K, CHTOUKI M, et al. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system[J]. Frontiers in Microbiology, 2018, 9: 1606 doi: 10.3389/fmicb.2018.01606
|
[27] |
WILPISZESKI R L, AUFRECHT J A, RETTERER S T, et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales[J]. Applied and Environmental Microbiology, 2019, 85(14): e00324−19
|
[28] |
SHI R, WANG S, XIONG B J, et al. Application of bioorganic fertilizer on Panax notoginseng improves plant growth by altering the rhizosphere microbiome structure and metabolism[J]. Microorganisms, 2022, 10(2): 275 doi: 10.3390/microorganisms10020275
|
[29] |
ZHAO J, LIU J, LIANG H, et al. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health[J]. PLoS One, 2018, 13(2): e0192967 doi: 10.1371/journal.pone.0192967
|
[30] |
KÖNIG S, VOGEL H J, HARMS H, et al. Physical, chemical and biological effects on soil bacterial dynamics in microscale models[J]. Frontiers in Ecology and Evolution, 2020, 8: 53 doi: 10.3389/fevo.2020.00053
|
[31] |
TRABELSI D, MHAMDI R. Microbial inoculants and their impact on soil microbial communities: a review[J]. BioMed Research International, 2013, 2013: 863240
|
[32] |
熊悯梓, 钞亚鹏, 赵盼, 等. 不同生境马铃薯根际土壤细菌多样性分析[J]. 微生物学报, 2020, 60(11): 2434−2449
XIONG M Z, CHAO Y P, ZHAO P, et al. Comparison of bacterial diversity in rhizosphere soil of potato in different habitats[J]. Acta Microbiologica Sinica, 2020, 60(11): 2434−2449
|
[33] |
黄穗萍, 金德才, 李其利, 等. 香蕉根际及非根际土壤细菌群落特征及共性规律研究[J]. 南方农业学报, 2022, 53(5): 1253−1262
HUANG S P, JIN D C, LI Q L, et al. Study on the characteristics and common rule of bacteria community in banana rhizosphere and non-rhizosphere soil[J]. Journal of Southern Agriculture, 2022, 53(5): 1253−1262
|
[34] |
DINCĂ L C, GRENNI P, ONET C, et al. Fertilization and soil microbial community: a review[J]. Applied Sciences, 2022, 12(3): 1198 doi: 10.3390/app12031198
|
[35] |
VAN NULAND M E, WOOLIVER R C, PFENNIGWERTH A A, et al. Plant-soil feedbacks: connecting ecosystem ecology and evolution[J]. Functional Ecology, 2016, 30(7): 1032−1042 doi: 10.1111/1365-2435.12690
|
[36] |
CHAPARRO J M, SHEFLIN A M, MANTER D K, et al. Manipulating the soil microbiome to increase soil health and plant fertility[J]. Biology and Fertility of Soils, 2012, 48(5): 489−499 doi: 10.1007/s00374-012-0691-4
|
[37] |
孙薇, 钱勋, 付青霞, 等. 生物有机肥对秦巴山区核桃园土壤微生物群落和酶活性的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1224−1233
SUN W, QIAN X, FU Q X, et al. Effects of bio-organic fertilizer on soil microbial community and enzymes activities in walnut orchards of the Qinling-Bashan Region[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1224−1233
|
[38] |
张明宇, 刘高峰, 李小龙, 等. 施用生物有机肥对烟草根际土壤微生物区系的影响[J]. 河南农业大学学报, 2020, 54(2): 317−325
ZHANG M Y, LIU G F, LI X L, et al. Effects of bio-organic fertilizer on the microflora in plant rhizosphere soil and bacterial wilt control of tobacco[J]. Journal of Henan Agricultural University, 2020, 54(2): 317−325
|
[39] |
SHARMA P, KUMAR T, YADAV M, et al. Plant-microbe interactions for the sustainable agriculture and food security[J]. Plant Gene, 2021, 28: 100325 doi: 10.1016/j.plgene.2021.100325
|
[40] |
LIU S B, HE F K, KUZYAKOV Y, et al. Nutrients in the rhizosphere: a meta-analysis of content, availability, and influencing factors[J]. Science of the Total Environment, 2022, 826: 153908 doi: 10.1016/j.scitotenv.2022.153908
|
[41] |
王莹, 史振声, 王志斌, 等. 植物对氨基酸的吸收利用及氨基酸在农业中的应用[J]. 中国土壤与肥料, 2008(1): 6−11 doi: 10.3969/j.issn.1673-6257.2008.01.002
WANG Y, SHI Z S, WANG Z B, et al. Absorption and utilization of amino acids by plant and application of amino acids on agiculture[J]. Soil and Fertilizer Sciences in China, 2008(1): 6−11 doi: 10.3969/j.issn.1673-6257.2008.01.002
|
[42] |
YANG X, FENG L, ZHAO L, et al. Effect of glycine nitrogen on lettuce growth under soilless culture: a metabolomics approach to identify the main changes occurred in plant primary and secondary metabolism[J]. Journal of the Science of Food and Agriculture, 2018, 98(2): 467−477 doi: 10.1002/jsfa.8482
|
[43] |
NEINA D. The role of soil pH in plant nutrition and soil remediation[J]. Applied and Environmental Soil Science, 2019, 2019: 1−9
|
[44] |
YADAV N, NATH YADAV A. Actinobacteria for sustainable agriculture[J]. Journal of Applied Biotechnology & Bioengineering, 2019, 6(1): 38−41
|
[45] |
BRUTO M, PRIGENT-COMBARET C, MULLER D, et al. Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria[J]. Scientific Reports, 2014, 4: 6261 doi: 10.1038/srep06261
|
[46] |
SINGH J S, KUMAR A, RAI A N, et al. Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability[J]. Frontiers in Microbiology, 2016, 7: 529
|
[47] |
LÓPEZ-MONDÉJAR R, ALGORA C, BALDRIAN P. Lignocellulolytic systems of soil bacteria: a vast and diverse toolbox for biotechnological conversion processes[J]. Biotechnology Advances, 2019, 37(6): 107374 doi: 10.1016/j.biotechadv.2019.03.013
|
[48] |
PUOPOLO G, TOMADA S, PERTOT I. The impact of the omics era on the knowledge and use of Lysobacter species to control phytopathogenic micro-organisms[J]. Journal of Applied Microbiology, 2018, 124(1): 15−27 doi: 10.1111/jam.13607
|
[49] |
陈德乐, 王兴祥, 张亚楠, 等. 持续施用生物有机肥对花生产量和根际细菌群落的影响[J]. 土壤, 2021, 53(3): 537−544 doi: 10.13758/j.cnki.tr.2021.03.013
CHEN D L, WANG X X, ZHANG Y N, et al. Effect of persistent application of bioorganic fertilizer on peanut yield and rhizosphere bacterial community[J]. Soils, 2021, 53(3): 537−544 doi: 10.13758/j.cnki.tr.2021.03.013
|
[50] |
YAO F, YANG S, WANG Z R, et al. Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient[J]. Frontiers in Microbiology, 2017, 8: 2071 doi: 10.3389/fmicb.2017.02071
|