Volume 31 Issue 5
May  2023
Turn off MathJax
Article Contents
WANG G Q, HAO X F, GUO E H, YANG H Q, ZHANG A Y, CHENG Q L, QIN Y Z, WANG J. Distribution characteristics of the soil fungi community in the rhizosphere of foxtail millet under different planting patterns[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 677−689 doi: 10.12357/cjea.20220577
Citation: WANG G Q, HAO X F, GUO E H, YANG H Q, ZHANG A Y, CHENG Q L, QIN Y Z, WANG J. Distribution characteristics of the soil fungi community in the rhizosphere of foxtail millet under different planting patterns[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 677−689 doi: 10.12357/cjea.20220577

Distribution characteristics of the soil fungi community in the rhizosphere of foxtail millet under different planting patterns

doi: 10.12357/cjea.20220577
Funds:  This study was supported by the National Key Research and Development Project of China (2020YFD1000803-2), the China Agriculture Research System (CARS-06-13.5-A21) and the Biological Breeding Project of Shanxi Agricultural University (YZGC028).
More Information
  • Corresponding author: E-mail: 128wan@163.com
  • Received Date: 2022-07-26
  • Accepted Date: 2022-11-16
  • Rev Recd Date: 2022-11-16
  • Available Online: 2022-11-25
  • Publish Date: 2023-05-10
  • Continuous cropping obstacles occur in foxtail millet. To understand the effects of continuous cropping of foxtail millet on the soil fungal community structure, we explored the distribution characteristics of the fungal community of the rhizosphere soil using the fungal ITS high-throughput sequencing technology under different cropping strategies, including foxtail millet-maize rotation, foxtail millet continuous cropping for three years and five years, and the abandoned land taken as a control. The results showed that a total of ten phyla, 24 classes, 46 orders, 79 families, 136 genera, and 146 species of fungi were detected in the rhizosphere soil of foxtail millet under different cropping strategies. The population structure was relatively stable at the phylum and class levels. The dominant phyla in the soil mainly consisted of Ascomycota and Basidiomycota, whereas the dominant classes were Sordariomycetes, Dothideomycetes, and Pezizomycetes. At the order level, the relative abundance of Sordariales in the rhizosphere of foxtail millet was two times greater than that in abandoned land. At the family and genus levels, the relative abundance of Mortierellaceae and Mycosphaerellaceae was higher, whereas the relative abundance of Alternaria, Didymella, and Clonostachys was lower in the rotation soil than in the continuous cropping soil. Alpha diversity analysis showed that the fungal abundance of the rhizosphere soil was significantly different under foxtail millet-maize rotation and foxtail millet continuous cropping (P<0.05), and that under that rotation, soil diversity was the highest. Beta diversity analysis revealed that the fungal structures of the rhizosphere soil under continuous cropping for three and five years were similar, and they were different from those under abandoned land or rotating cropping, indicating that the fungal community structure in the rhizosphere soil of foxtail millet changed under different cropping strategies. Correlation analysis showed that alkali-hydrolyzed nitrogen was significantly positively correlated with organic matter (P<0.01) and significantly correlated with available phosphorus and urease activities (P<0.05), while the activity of polyphenol oxidase was positively correlated with available potassium (P<0.05) and significantly positively correlated with the Chao1 index and the observed species index (P<0.01). Redundancy analysis (RDA) indicated that CK were affected by Chaetomium, CR was affected by Mycosphaerella and Microdochium, TC and FC were affected by Botryotrichum, Chaetomidium, and Didymella. LEfSe analysis identified distinctly specific markers in the rhizosphere soil of foxtail millet under different cropping strategies. The markers of rhizosphere soil contained Mortierella and Mycosphaerella for the rotating cropping, Botryotrichum, Didymella, and Clonostachys for three years of continuous cropping, and Alternaria and Didymella for five years of continuous cropping. Overall, the soil fungal community structure under millet-maize rotation cropping, exhibiting more saprophytic fungi and fewer pathogenic fungi, was significantly different from that under foxtail millet continuous cropping, which provided useful information for the study of the continuous cropping obstacles of foxtail millet.
  • loading
  • [1]
    MARTIN L, MESSAGER E, BEDIANASHVILI G, et al. The place of millet in food globalization during Late Prehistory as evidenced by new bioarchaeological data from the Caucasus[J]. Scientific Reports, 2021, 11(1): 13124 doi: 10.1038/s41598-021-92392-9
    [2]
    POSPIESZNY Ł, MAKAROWICZ P, LEWIS J, et al. Isotopic evidence of millet consumption in the Middle Bronze Age of East-Central Europe[J]. Journal of Archaeological Science, 2021, 126: 105292 doi: 10.1016/j.jas.2020.105292
    [3]
    DIAO X M. Production and genetic improvement of minor cereals in China[J]. The Crop Journal, 2017, 5(2): 103−114 doi: 10.1016/j.cj.2016.06.004
    [4]
    HOU D Z, CHEN J, REN X, et al. A whole foxtail millet diet reduces blood pressure in subjects with mild hypertension[J]. Journal of Cereal Science, 2018, 84: 13−19 doi: 10.1016/j.jcs.2018.09.003
    [5]
    李锐, 刘瑜, 褚贵新, 等. 棉花连作对北疆土壤酶活性、致病菌及拮抗菌多样性的影响[J]. 中国生态农业学报, 2015, 23(4): 432−440

    LI R, LIU Y, CHU G X, et al. Response of soil enzyme activity and microbial community structure, diversity to continuous cotton cropping in northern Xinjiang[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 432−440
    [6]
    XIONG W, LI Z G, LIU H J, et al. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing[J]. PLoS ONE, 2015, 10(8): e0136946 doi: 10.1371/journal.pone.0136946
    [7]
    URASHIMA Y, SONODA T, FUJITA Y, et al. Application of PCR-denaturing-gradient gel electrophoresis (DGGE) method to examine microbial community structure in asparagus fields with growth inhibition due to continuous cropping[J]. Microbes and Environments, 2011, 27: 43−48
    [8]
    ZHOU X G, GAO D M, LIU J, et al. Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (Cucumis sativus L.) system[J]. European Journal of Soil Biology, 2014, 60: 1−80
    [9]
    LIU W X, WANG Q L, WANG B Z, et al. Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system[J]. Plant and Soil, 2015, 395(1/2): 415−427
    [10]
    QIN S H, YEBOAH S, XU X X, et al. Analysis on fungal diversity in rhizosphere soil of continuous cropping potato subjected to different furrow-ridge mulching managements[J]. Frontiers in Microbiology, 2017, 8: 845
    [11]
    LEI H Y, LIU A K, HOU Q W, et al. Diversity patterns of soil microbial communities in the Sophora flavescens rhizosphere in response to continuous monocropping[J]. BMC Microbiology, 2020, 20(1): 272 doi: 10.1186/s12866-020-01956-8
    [12]
    侯慧, 董坤, 杨智仙, 等. 连作障碍发生机理研究进展[J]. 土壤, 2016, 48(6): 1068−1076

    HOU H, DONG K, YANG Z X, et al. Advance in mechanism of continuous cropping obstacle[J]. Soils, 2016, 48(6): 1068−1076
    [13]
    YING Y X, DING W L, ZHOU Y Q, et al. Influence of panax ginseng continuous cropping on metabolic function of soil microbial communities[J]. Chinese Herbal Medicines, 2012, 4(4): 329−334
    [14]
    刘建国, 张伟, 李彦斌, 等. 新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响[J]. 中国农业科学, 2009, 42(2): 725−733 doi: 10.3864/j.issn.0578-1752.2009.02.044

    LIU J G, ZHANG W, LI Y B, et al. Effects of long-term continuous cropping system of cotton on soil physical-chemical properties and activities of soil enzyme in oasis in Xinjiang[J]. Scientia Agricultura Sinica, 2009, 42(2): 725−733 doi: 10.3864/j.issn.0578-1752.2009.02.044
    [15]
    LI X G, DING C F, HUA K, et al. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biology and Biochemistry, 2014, 78: 149−159 doi: 10.1016/j.soilbio.2014.07.019
    [16]
    张晓玲, 潘振刚, 周晓锋, 等. 自毒作用与连作障碍[J]. 土壤通报, 2007, 38(4): 781−784 doi: 10.3321/j.issn:0564-3945.2007.04.033

    ZHANG X L, PAN Z G, ZHOU X F, et al. Autotoxicity and continuous cropping obstacles: A review[J]. Chinese Journal of Soil Science, 2007, 38(4): 781−784 doi: 10.3321/j.issn:0564-3945.2007.04.033
    [17]
    WU Z J, XIE Z K, YANG L, et al. Identification of autotoxins from root exudates of Lanzhou lily (Lilium davidii var unicolor)[J]. Allelopathy Journal, 2015, 35: 35−48
    [18]
    LI X G, DING C F, ZHANG T L, et al. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut mono culturing[J]. Soil Biology and Biochemistry, 2014, 72: 11−18 doi: 10.1016/j.soilbio.2014.01.019
    [19]
    LU F G, WANG L, LIU Y N, et al. Analysis of culturable fungal diversity in rhizosphere soil of healthy and diseased cotton in Southern Xinjiang[J]. African Journal of Microbiology Research, 2012, 6: 7357−7364 doi: 10.5897/AJMR12.1146
    [20]
    NAIR A, NGOUAJIO M. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system[J]. Applied Soil Ecology, 2012, 58: 45−55 doi: 10.1016/j.apsoil.2012.03.008
    [21]
    WANG Y, XU J, SHEN J H, et al. Tillage, residue burning and crop rotation alter soil fungal community and water-stable aggregation in arable fields[J]. Soil and Tillage Research, 2010, 107(2): 71−79 doi: 10.1016/j.still.2010.02.008
    [22]
    DE BOER W, FOLMAN L B, SUMMERBELL R C, et al. Living in a fungal world: impact of fungi on soil bacterial niche development[J]. FEMS Microbiology Reviews, 2005, 29(4): 795−811 doi: 10.1016/j.femsre.2004.11.005
    [23]
    SOBEK E, ZAK J. The Soil FungiLog procedure: method and analytical approaches toward understanding fungal functional diversity[J]. Mycologia, 2003, 95: 590−602 doi: 10.1080/15572536.2004.11833063
    [24]
    李夏, 妙佳源, 高小丽, 等. 连作条件下谷子叶片衰老与活性氧代谢研究[J]. 中国农业大学学报, 2016, 21(4): 1−9 doi: 10.11841/j.issn.1007-4333.2016.04.01

    LI X, MIAO J Y, GAO X L, et al. Leaf senescence and reactive oxygen metabolism of millet under continuous cropping[J]. Journal of China Agricultural University, 2016, 21(4): 1−9 doi: 10.11841/j.issn.1007-4333.2016.04.01
    [25]
    卢成达, 郭志利, 李阳, 等. 长期定点连作及单序轮作处理对旱地谷子的光合特性、根系构型和产量的影响[J]. 农学学报, 2019, 9(5): 10−14 doi: 10.11923/j.issn.2095-4050.cjas18090004

    LU C D, GUO Z L, LI Y, et al. Long-term continuous and rotation cropping: effect on photosynthetic characteristics, root configuration and yield of dry-land millet[J]. Journal of Agriculture, 2019, 9(5): 10−14 doi: 10.11923/j.issn.2095-4050.cjas18090004
    [26]
    妙佳源, 李夏, 周达, 等. 连作对谷子土壤酶活性及养分的影响[J]. 干旱地区农业研究, 2016, 34(3): 123−126, 152 doi: 10.7606/j.issn.1000-7601.2016.03.19

    MIAO J Y, LI X, ZHOU D, et al. Effects of foxtail millet continuous cropping on soil enzyme activities and nutrients[J]. Agricultural Research in the Arid Areas, 2016, 34(3): 123−126, 152 doi: 10.7606/j.issn.1000-7601.2016.03.19
    [27]
    DEBENPORT S J, ASSIGBETSE K, BAYALA R, et al. Association of shifting populations in the root zone microbiome of millet with enhanced crop productivity in the Sahel Region (Africa)[J]. Applied and Environmental Microbiology, 2015, 81(8): 2841−2851 doi: 10.1128/AEM.04122-14
    [28]
    DANG K, GONG X W, ZHAO G, et al. Intercropping alters the soil microbial diversity and community to facilitate nitrogen assimilation: a potential mechanism for increasing proso millet grain yield[J]. Frontiers in Microbiology, 2020, 11: 601054 doi: 10.3389/fmicb.2020.601054
    [29]
    牛倩云, 韩彦莎, 徐丽霞, 等. 作物轮作对谷田土壤理化性质及谷子根际土壤细菌群落的影响[J]. 农业环境科学学报, 2018, 37(12): 2802−2809 doi: 10.11654/jaes.2018-0128

    NIU Q Y, HAN Y S, XU L X, et al. Effects of crop rotation on soil physicochemical properties and bacterial community of foxtail millet rhizosphere soil[J]. Journal of Agro-Environment Science, 2018, 37(12): 2802−2809 doi: 10.11654/jaes.2018-0128
    [30]
    孙倩, 吴宏亮, 陈阜, 等. 不同轮作模式下作物根际土壤养分及真菌群落组成特征[J]. 环境科学, 2020, 41(10): 4682−4689

    SUN Q, WU H L, CHEN F, et al. Characteristics of soil nutrients and fungal community composition in crop rhizosphere under different rotation patterns[J]. Environmental Science, 2020, 41(10): 4682−4689
    [31]
    STRICKLAND M S, ROUSK J. Considering fungal: bacterial dominance in soils— Methods, controls, and ecosystem implications[J]. Soil Biology and Biochemistry, 2010, 42(9): 1385−1395 doi: 10.1016/j.soilbio.2010.05.007
    [32]
    LIU R R, XIAO Z Y, HASHEM A, et al. Mycorrhizal fungal diversity and its relationship with soil properties in Camellia oleifera[J]. Agriculture, 2021, 11: 470 doi: 10.3390/agriculture11060470
    [33]
    CALLAHAN B, MCMURDIE P, ROSEN M J, et al. DADA2: High resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13: 581−583 doi: 10.1038/nmeth.3869
    [34]
    CHAO A. Nonparametric estimation of the number of classes in a population[J]. Scandinavian Journal of Statistics, 1984, 11: 265−270
    [35]
    RAMETTE A. Multivariate analyses in microbial ecology[J]. FEMS Microbiology Ecology, 2007, 62(2): 142−160 doi: 10.1111/j.1574-6941.2007.00375.x
    [36]
    郝晓芬, 王根全, 郭二虎, 等. 连作、轮作对谷子根际细菌群落结构的影响[J]. 农业环境科学学报, 2022, 41(3): 585−596 doi: 10.11654/jaes.2021-0649

    HAO X F, WANG G Q, GUO E H, et al. Effects of continuous cropping and rotation on rhizosphere bacterial community structure of millet[J]. Journal of Agro-Environment Science, 2022, 41(3): 585−596 doi: 10.11654/jaes.2021-0649
    [37]
    KANG S M, KHAN A L, WAQAS M, et al. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus[J]. Journal of Plant Interactions, 2014, 9(1): 673−682 doi: 10.1080/17429145.2014.894587
    [38]
    BANNING N, GLEESON D, GRIGG A, et al. Soil microbial community successional patterns during forest ecosystem restoration[J]. Applied and Environmental Microbiology, 2011, 77: 6158−6164 doi: 10.1128/AEM.00764-11
    [39]
    HARRIS J. Soil microbial communities and restoration ecology: facilitators or followers?[J]. Science, 2009, 325(5940): 573−574 doi: 10.1126/science.1172975
    [40]
    KIM Y C, LEVEAU J, GARDENER B M, et al. The multifactorial basis for plant health promotion by plant-associated bacteria[J]. Applied and Environmental Microbiology, 2011, 77(5): 1548−1555 doi: 10.1128/AEM.01867-10
    [41]
    CAO G F, ZHAO K. Effect of different prevention and control technology combinations of succession cropping obstacle on main diseases of Radix pseudostellariae[J]. Acta Agriculturae Jiangxi, 2013, 25(12): 66−68 doi: 10.19386/j.cnki.jxnyxb.2013.12.017
    [42]
    保丽美, 丁亚芳, 魏云林, 等. 三七连作与休闲土壤真菌群落组成与多样性分析[J]. 中药材, 2021, 44(1): 7−12

    BAO L M, DING Y F, WEI Y L. Analysis on the composition and diversity of fungi community in the continuous cropping and fallow soil ofPanax notoginseng[J]. Journal of Chinese Medicinal Materials, 2021, 44(1): 7−12
    [43]
    ROUSK J, BROOKES P C, BÅÅTH E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization[J]. Applied and Environmental Microbiology, 2009, 75(6): 1589−1596 doi: 10.1128/AEM.02775-08
    [44]
    WU H M, QIN X J, WANG J Y, et al. Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes[J]. Agriculture, Ecosystems & Environment, 2019, 270/271: 19−31
    [45]
    孙倩, 吴宏亮, 陈阜, 等. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构[J]. 微生物学通报, 2019, 46(11): 2963−2972

    SUN Q, WU H L, CHEN F, et al. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia[J]. Microbiology China, 2019, 46(11): 2963−2972
    [46]
    王海英, 郭守玉, 黄满荣, 等. 子囊菌较担子菌具有更快的进化速率和更高的物种多样性[J]. 中国科学: 生命科学, 2010, 40(8): 731–737

    WANG H Y, GUO S Y, HUANG M R, et al. Ascomycota has faster evolutionary rate and higher species diversity than Basidiomycota (Fungi)[J]. Scientia Sinica Vitae, 2010, 40(8): 731–737
    [47]
    YELLE D J, RALPH J, LU F, et al. Evidence for cleavage of lignin by a brown rot basidiomycete[J]. Environmental Microbiology, 2010, 10(7): 1844−1849 doi: 10.1007/s00203-016-1301-x
    [48]
    WANG Y Z, XU X M, LIU T M, et al. Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea L. Gaud) fields in different areas in China[J]. Scientific Reports, 2020, 10(1): 3264 doi: 10.1038/s41598-020-58608-0
    [49]
    SHANTHIYAA V, SARAVANAKUMAR D, RAJENDRAN L, et al. Use of chaetomium globosum for biocontrol of potato late blight disease[J]. Crop Prot, 2013, 25: 33−38
    [50]
    宁琪, 陈林, 李芳, 等. 被孢霉对土壤养分有效性和秸秆降解的影响[J]. 土壤学报, 2022, 59(1): 206−217

    NING Q, CHEN L, LI F, et al. Effects of Mortierella on nutrient availability and straw decomposition in soil[J]. Acta Pedologica Sinica, 2022, 59(1): 206−217
    [51]
    ZHANG H S, WU X, LI G, et al. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities[J]. Biology and Fertility of Soils, 2011, 47: 543−554 doi: 10.1007/s00374-011-0563-3
    [52]
    KOECHLI C, CAMPBELL A N, PEPE-RANNEY C, et al. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing[J]. Soil Biology and Biochemistry, 2019, 130: 150−158 doi: 10.1016/j.soilbio.2018.12.013
    [53]
    LIAO X G, FANG W G, LIN L C, et al. Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization[J]. PLoS One, 2013, 8(10): e78118 doi: 10.1371/journal.pone.0078118
    [54]
    代鹏, 陈海琴, 顾震南, 等. 高山被孢霉生产多不饱和脂肪酸发酵条件的研究进展[J]. 食品工业科技, 2014, 35(5): 354−359

    DAI P, CHEN H Q, GU Z N, et al. Research progress in fermentation condition for polyunsaturated fatty acids by Mortierella alpina[J]. Science and Technology of Food Industry, 2014, 35(5): 354−359
    [55]
    沈钰森, 王建升, 盛小光, 等. 十字花科植物黑斑病的研究进展[J]. 核农学报, 2021, 35(3): 623−634 doi: 10.11869/j.issn.100-8551.2021.03.0623

    SHEN Y S, WANG J S, SHENG X G, et al. Research progress on black spot in cruciferous plants[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(3): 623−634 doi: 10.11869/j.issn.100-8551.2021.03.0623
    [56]
    康子腾, 姜黎明, 罗义勇, 等. 植物病原链格孢属真菌的致病机制研究进展[J]. 生命科学, 2013, 25(9): 908−914

    KANG Z T, JIANG L M, LUO Y Y, et al. The research advances of mechanism of pathogenicity of Alternaria phytopathogenic fungi[J]. Chinese Bulletin of Life Sciences, 2013, 25(9): 908−914
    [57]
    吴海霞, 袁梦蕾, 江娜, 等. 粉红螺旋聚孢霉高效生防菌株的筛选与评价[J]. 植物保护, 2021, 47(3): 54−60, 95

    WU H X, YUAN M L, JIANG N, et al. Screening and evaluation of highly efficient biocontrol strains of Clonostachys rosea[J]. Plant Protection, 2021, 47(3): 54−60, 95
    [58]
    刘硕, 郑金柱, 张兆霞, 等. 粉红螺旋聚孢霉对两种林果枝干病原菌的生防作用研究[J]. 山东农业大学学报(自然科学版), 2019, 50(1): 49−51

    LIU S, ZHENG J Z, ZHANG Z X, et al. Biocontrol activity of Clonostachys rosea against fungal pathogens of forest and fruit trees Botryosphaeria dothidea and Valsa mali[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2019, 50(1): 49−51
    [59]
    GONG C, LIU Y, LIU S Y, et al. Analysis of Clonostachys rosea-induced resistance to grey mould disease and identification of the key proteins induced in tomato fruit[J]. Postharvest Biology and Technology, 2017, 123: 83−93 doi: 10.1016/j.postharvbio.2016.08.004
    [60]
    BORGES Á V, SARAIVA R M, MAFFIA L A. Biocontrol of gray mold in tomato plants by Clonostachys rosea[J]. Tropical Plant Pathology, 2015, 40(2): 71−76 doi: 10.1007/s40858-015-0010-3
    [61]
    LIU Z X, LIU J J, YU Z H, et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition[J]. Soil and Tillage Research, 2020, 197: 104503 doi: 10.1016/j.still.2019.104503
    [62]
    李春格, 李晓鸣, 王敬国. 大豆连作对土体和根际微生物群落功能的影响[J]. 生态学报, 2006, 26(4): 1144−1150

    LI C G, LI X M, WANG J G. Effect of soybean continuous cropping on bulk and rhizosphere soil microbial community function[J]. Acta Ecologica Sinica, 2006, 26(4): 1144−1150
    [63]
    王娟英, 许佳慧, 吴林坤, 等. 不同连作年限怀牛膝根际土壤理化性质及微生物多样性[J]. 生态学报, 2017, 37(17): 5621−5629

    WANG J Y, XU J H, WU L K, et al. Analysis of physicochemical properties and microbial diversity in rhizosphere soil of Achyranthes bidentata under different cropping years[J]. Acta Ecologica Sinica, 2017, 37(17): 5621−5629
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (315) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return