Volume 31 Issue 5
May  2023
Turn off MathJax
Article Contents
WANG X F, LUO Z Z, LI L L, NIU Y N, SUN P Z, HAI L, LI L Z. Characteristics of structure and abundance of soil nitrogen-fixing bacterial community in alfalfa with different growing ages in the Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 665−676 doi: 10.12357/cjea.20220505
Citation: WANG X F, LUO Z Z, LI L L, NIU Y N, SUN P Z, HAI L, LI L Z. Characteristics of structure and abundance of soil nitrogen-fixing bacterial community in alfalfa with different growing ages in the Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 665−676 doi: 10.12357/cjea.20220505

Characteristics of structure and abundance of soil nitrogen-fixing bacterial community in alfalfa with different growing ages in the Loess Plateau

doi: 10.12357/cjea.20220505
Funds:  This study was supported by the National Natural Science Foundation of China (31860364), the Special Program for Local Science and Technology Development Guided by Central Government of Gansu Province (ZCYD-2021-16) and Gansu Science and Technology Program (21JR7RA826, 21JR7RA830).
More Information
  • Corresponding author: E-mail: luozz@gsau.edu.cn
  • Received Date: 2022-06-30
  • Accepted Date: 2022-08-24
  • Available Online: 2022-11-25
  • Publish Date: 2023-05-10
  • Biological nitrogen fixation is a major nitrogen source in alfalfa fields, and the nitrogen supply and soil fertility can be largely affected by the composition and quantity of the nitrogen-fixing bacterial community. In this study, a field experiment was conducted to explore the soil nitrogen-fixing bacterial community structure and abundance characteristics in loessal soil with different alfalfa growing ages (2, 9 and 18 years planted in 2019, 2012, and 2003, respectively), using farmland (maize field) as the control. The fluorogenic quantitative real-time PCR technique was adopted in the experiment, using the high-throughput sequencing platform Illumina MiSeq to target the nifH gene. We analyzed the ecological status of abundant and rare nitrogen-fixing microorganisms through co-occurrence networks and identified the dominant factors affecting the community structure of nitrogen-fixing microorganisms by soil coupling the physical and chemical properties. The results showed that long-term planting of alfalfa increased the organic carbon, total nitrogen, and soluble carbon contents of the soil. The nifH gene abundance ranged from 2.97×106 copies∙g−1 to 5.93×106 copies∙g−1 in dry soil and was significantly higher in alfalfa fields than in farmland. The correlation analysis between the abundance of nifH gene of nitrogen-fixing microorganisms and soil physicochemical factors showed that nifH gene abundance in the soil was positively correlated with bulk density (P=0.009) and soluble carbon content (P=0.005), positively correlated with total nitrogen (P=0.044) and available potassium (P=0.013) contents, and negatively correlated with total phosphorus content (P=0.000) and nitrate content (P=0.023). A total of 176 367 valid sequences were obtained, belonging to five phyla, eight classes, 11 orders, 15 families, and 17 genera. Proteobacteria and Cyanobacteria were the dominant phyla, accounting for 95.9%−98.9% and 0.2%−1.8% of the total sequences of the samples, whereas Skermanella and Azohydromonas were the dominant genera, accounting for 82.2%–87.6% and 1.6%–4.6%, respectively. Compared with farmland, continuous alfalfa planting significantly increased the relative abundance of Skermanella, but its’ relative abundance decreased with increasing alfalfa planting years. Long-term cultivation of alfalfa propagated microbial taxa, including Azotobacter, Burkholderia, Frankia, Mesorhizobium, Geobacter, and Bradyrhizobium; whereas Clostridium, Rhodopseudomonas, and Trichormus were sterilized. Redundancy analysis (RDA) showed niche differentiation for the nitrogen-fixing bacterial community in response to environmental factors, but total phosphorus, organic carbon, and nitrate-nitrogen in the soil were the dominant environmental factors for the nitrogen-fixing bacterial community structure. Analysis of the molecular ecological network showed that there were 520 nodes and 4170 edges in the network of nitrogen-fixing microorganisms in maize fields and alfalfa soil, among which 24 nodes belonged to the abundant group, 93 nodes belonged to the rare group, and 403 nodes belonged to the transitional group. There was one internal connection of abundant taxa, 2187 internal connections of transitional taxa, and 358 internal connections of rare taxa. Nitrogen-fixing bacteria have a cooperative relationship in their ecological network, with a relatively stable community structure and strong adaptability to environmental changes. This study provides basic data and a theoretical basis for the diversity of nitrogen-fixing microorganisms in loess soil and the determination of a suitable planting period for alfalfa.
  • loading
  • [1]
    KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263−276 doi: 10.1038/nrmicro.2018.9
    GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889−892 doi: 10.1126/science.1136674
    靳海洋, 王慧, 张燕辉, 等. 基于基因组的一株土壤固氮菌分离菌株鉴定及其促生作用[J]. 微生物学报, 2021, 61(10): 3249−3263

    JIN H Y, WANG H, ZHANG Y H, et al. Genome-based identification and plant growth promotion of a nitrogen-fixing strain isolated from soil[J]. Acta Microbiologica Sinica, 2021, 61(10): 3249−3263
    DOS SANTOS P C, FANG Z, MASON S W, et al. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes[J]. BMC Genomics, 2012, 13: 162 doi: 10.1186/1471-2164-13-162
    李建宏, 李雪萍, 卢虎, 等. 高寒地区不同退化草地植被特性和土壤固氮菌群特性及其相关性[J]. 生态学报, 2017, 37(11): 3647−3654

    LI J H, LI X P, LU H, et al. Characteristics of, and the correlation between, vegetation and N-fixing soil bacteria in alpine grassland showing various degrees of degradation[J]. Acta Ecologica Sinica, 2017, 37(11): 3647−3654
    董志新, 孙波, 殷士学, 等. 气候条件和作物对黑土和潮土固氮微生物群落多样性的影响[J]. 土壤学报, 2012, 49(1): 130−138

    DONG Z X, SUN B, YIN S X, et al. Impacts of climate and cropping on community diversity of diazotrophs in pachic udic argiboroll and fluventic ustochrept[J]. Acta Pedologica Sinica, 2012, 49(1): 130−138
    胡斌, 段昌群, 王震洪, 等. 植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J]. 土壤学报, 2002, 39(4): 604−608 doi: 10.3321/j.issn:0564-3929.2002.04.022

    HU B, DUAN C Q, WANG Z H, et al. Effects of vegetation restoration on soil enzyme activities and soil fertility in degraded ecosystem[J]. Acta Pedologica Sinica, 2002, 39(4): 604−608 doi: 10.3321/j.issn:0564-3929.2002.04.022
    张晶, 张惠文, 李新宇, 等. 土壤微生物生态过程与微生物功能基因多样性[J]. 应用生态学报, 2006, 17(6): 1129−1132 doi: 10.3321/j.issn:1001-9332.2006.06.034

    ZHANG J, ZHANG H W, LI X Y, et al. Soil microbial ecological process and microbial functional gene diversity[J]. Chinese Journal of Applied Ecology, 2006, 17(6): 1129−1132 doi: 10.3321/j.issn:1001-9332.2006.06.034
    TANG H. Effects of long-term fertilization on nifH gene diversity in agricultural black soil[J]. African Journal of Microbiology Research, 2012, 6(11): 2659−2666
    赵辉, 周运超. 不同母岩发育马尾松土壤固氮菌群落结构和丰度特征[J]. 生态学报, 2020, 40(17): 6189−6201

    ZHAO H, ZHOU Y C. Characteristics of structure and abundance of the nitrogen-fixing bacterial community in Pinus massoniana soil developed from different parent rocks[J]. Acta Ecologica Sinica, 2020, 40(17): 6189−6201
    孙启忠, 柳茜, 那亚, 等. 我国汉代苜蓿引入者考[J]. 草业学报, 2016, 25(1): 240−253

    SUN Q Z, LIU Q, NA Y, et al. The history of the introduction of alfalfa to China in the Han dynasty[J]. Acta Prataculturae Sinica, 2016, 25(1): 240−253
    古丽娜扎尔·艾力, 陶海宁, 王自奎, 等. 基于APSIM模型的黄土旱塬区苜蓿-小麦轮作系统深层土壤水分及水分利用效率研究[J]. 草业学报, 2021, 30(7): 22−33

    GULNAZAR A, TAO H N, WANG Z K, et al. Evaluating the deep-horizon soil water content and water use efficiency in the alfalfa-wheat rotation system on the dryland of Loess Plateau using APSIM[J]. Acta Prataculturae Sinica, 2021, 30(7): 22−33
    江影舟, 南志标, 王丽佳. 基于钻石模型理论的甘肃省苜蓿产业竞争力分析[J]. 草业科学, 2016, 33(4): 813−820

    JIANG Y Z, NAN Z B, WANG L J. Competitiveness of alfalfa industry in Gansu Province— A diamond model[J]. Pratacultural Science, 2016, 33(4): 813−820
    马欣, 罗珠珠, 张耀全, 等. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54−67 doi: 10.11686/cyxb2020381

    MA X, LUO Z Z, ZHANG Y Q, et al. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau[J]. Acta Prataculturae Sinica, 2021, 30(3): 54−67 doi: 10.11686/cyxb2020381
    韩清芳, 周芳, 贾珺, 等. 施肥对不同品种苜蓿生产力及土壤肥力的影响[J]. 植物营养与肥料学报, 2009, 15(6): 1413−1418 doi: 10.3321/j.issn:1008-505X.2009.06.024

    HAN Q F, ZHOU F, JIA J, et al. Effect of fertilization on productivity different producing performance alfalfa varieties and soil fertility[J]. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1413−1418 doi: 10.3321/j.issn:1008-505X.2009.06.024
    李裕元, 邵明安. 黄土高原北部紫花苜蓿草地退化过程与植物多样性研究[J]. 应用生态学报, 2005, 16(12): 2321−2327

    LI Y Y, SHAO M A. Degradation process and plant diversity of alfalfa grassland in North Loess Plateau of China[J]. Chinese Journal of Applied Ecology, 2005, 16(12): 2321−2327
    李玉山. 苜蓿生产力动态及其水分生态环境效应[J]. 土壤学报, 2002, 39(3): 404−411 doi: 10.3321/j.issn:0564-3929.2002.03.016

    LI Y S. Productivity dynamic of alfalfa and its effects on water eco-environment[J]. Acta Pedologica Sinica, 2002, 39(3): 404−411 doi: 10.3321/j.issn:0564-3929.2002.03.016
    万素梅, 胡守林, 贾志宽, 等. 黄土高原地区苜蓿生产力动态及其土壤水分消耗规律[J]. 农业工程学报, 2007, 23(12): 30−34 doi: 10.3321/j.issn:1002-6819.2007.12.006

    WAN S M, HU S L, JIA Z K, et al. Alfalfa productivity dynamics and consumption of soil water in the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(12): 30−34 doi: 10.3321/j.issn:1002-6819.2007.12.006
    才璐, 王林林, 罗珠珠, 等. 中国苜蓿产量及水分利用效率对种植年限响应的Meta分析[J]. 草业学报, 2020, 29(6): 27−38

    CAI L, WANG L L, LUO Z Z, et al. Meta-analysis of alfalfa yield and WUE response to growing ages in China[J]. Acta Prataculturae Sinica, 2020, 29(6): 27−38
    罗珠珠, 李玲玲, 牛伊宁, 等. 陇中黄土高原半干旱区苜蓿地土壤干燥化特征及适宜种植年限[J]. 应用生态学报, 2015, 26(10): 3059−3065

    LUO Z Z, LI L L, NIU Y N, et al. Soil dryness characteristics of alfalfa cropland and optimal growth years of alfalfa on the Loess Plateau of central Gansu, China[J]. Chinese Journal of Applied Ecology, 2015, 26(10): 3059−3065
    WANG L L, XIE J H, LUO Z Z, et al. Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China[J]. Agricultural Water Management, 2021, 243: 106415 doi: 10.1016/j.agwat.2020.106415
    牟红霞, 张文文, 刘秉儒. 黄灌区不同种植年限紫花苜蓿土壤真菌群落多样性特征[J]. 水土保持研究, 2021, 28(4): 91−96+104

    MU H X, ZHANG W W, LIU B R. Diversity characteristics of alfalfa soil fungal community with different planting years in the Yellow River Irrigation Area[J]. Research on Soil and Water Conservation, 2021, 28(4): 91−96+104
    陈燕霞, 唐晓东, 杨恒山. 不同种植年限苜蓿地亚硝化菌、反硝化菌和固氮菌的垂直分布[J]. 山地农业生物学报, 2017, 36(2): 49−52

    CHEN Y X, TANG X D, YANG H S. Vertical distribution of nitrifying bacteria, denitrifying bacteria and nitrogen-fixing bacteria in alfalfa with different planting years[J]. Journal of Mountain Agricultural Biology, 2017, 36(2): 49−52
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000
    POLY F, RANJARD L, NAZARET S, et al. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties[J]. Applied and Environmental Microbiology, 2001, 67(5): 2255−2262 doi: 10.1128/AEM.67.5.2255-2262.2001
    段鹏飞, 陈彦, 张菲, 等. 芒草种植对土壤细菌群落结构和功能的影响[J]. 应用生态学报, 2019, 30(6): 2030−2038

    DUAN P F, CHEN Y, ZHANG F, et al. Effect of Miscanthus planting on the structure and function of soil bacterial community[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 2030−2038
    江晓亮. 典型湿地硝化、反硝化微生物的群落特征及构建机制[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2021

    JIANG X L. The geographic distribution patterns and assembly mechanisms of nitrifying- and denitrifying microbial communities in the typical wetland eecosystems[D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2021
    ZOU Y K, ZHANG J N, YANG D L, et al. Effects of different land use patterns on nifH genetic diversity of soil nitrogen-fixing microbial communities in Leymus chinensis steppe[J]. Acta Ecologica Sinica, 2011, 31(3): 150−156 doi: 10.1016/j.chnaes.2011.03.004
    LEVY-BOOTH D J, WINDER R S. Quantification of nitrogen reductase and nitrite reductase genes in soil of thinned and clear-cut douglas-fir stands by using real-time PCR[J]. Applied and Environmental Microbiology, 2010, 76(21): 7116−7125 doi: 10.1128/AEM.02188-09
    JURAEVA D, GEORGE E, DAVRANOV K, et al. Detection and quantification of the nifH gene in shoot and root of cucumber plants[J]. Canadian Journal of Microbiology, 2006, 52(8): 731−739 doi: 10.1139/w06-025
    MORTENSON L E. Ferredoxin and ATP, requirements for nitrogen fixation in cell-free extracts of Clostridium pasteurianum[J]. Proceedings of the National Academy of Sciences of the United States of America, 1964, 52(2): 272−279 doi: 10.1073/pnas.52.2.272
    HERBERT R. Nitrogen cycling in coastal marine ecosystems[J]. Canadian Journal of Microbiology, 1999, 23(5): 563−590
    SMERCINA D N, EVANS S E, FRIESEN M L, et al. Erratum for smercina et al., to fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere[J]. Applied and Environmental Microbiology, 2019, 85(22): e02103−e02119
    COELHO M R R, MARRIEL I E, JENKINS S N, et al. Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer[J]. Applied Soil Ecology, 2009, 42(1): 48−53 doi: 10.1016/j.apsoil.2009.01.010
    ZHANG X M, LIU W, SCHLOTER M, et al. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes[J]. PLoS One, 2013, 8(10): e76500 doi: 10.1371/journal.pone.0076500
    沈秋兰, 何冬华, 徐秋芳, 等. 阔叶林改种毛竹(Phyllostachys pubescens)后土壤固氮细菌nifH基因多样性的变化[J]. 植物营养与肥料学报, 2016, 22(3): 687−696

    SHEN Q L, HE D H, XU Q F, et al. Variation of nifH gene diversity of soil nitrogen-fixing bacteria in Moso bamboo (Phyllostachys pubescens) plantation converted from broadleaf forest[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 687−696
    彭琪, 何红花, 张兴昌. 低磷环境下接种丛枝菌根真菌促进紫花苜蓿生长和磷素吸收的机理[J]. 植物营养与肥料学报, 2021, 27(2): 293−300

    PENG Q, HE H H, ZHANG X C. Mechanisms of increasing alfalfa growth and phosphorus uptake by inoculation with arbuscular mycorrhizal fungal under low phosphorus application level[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 293−300
    靳希桐, 胡文革, 贺帅兵, 等. 不同时期艾比湖湿地盐角草群落土壤固氮微生物的多样性分析[J]. 微生物学报, 2019, 59(8): 1600−1611

    JIN X T, HU W G, HE S B, et al. Diversity of soil nitrogen-fixing microorganisms in Salicornia europaea community of Ebinur Lake wetland during different periods[J]. Acta Microbiologica Sinica, 2019, 59(8): 1600−1611
    汪堃, 南丽丽, 师尚礼, 等. 干旱胁迫对不同根型苜蓿根系生长及根际土壤细菌的影响[J]. 生态学报, 2021, 41(19): 7735−7742

    WANG K, NAN L L, SHI S L, et al. Influence of root growth and bacterial community in the rhizosphere of different root types of alfalfa under drought stress[J]. Acta Ecologica Sinica, 2021, 41(19): 7735−7742
    刘洋, 黄懿梅, 曾全超. 黄土高原不同植被类型下土壤细菌群落特征研究[J]. 环境科学, 2016, 37(10): 3931−3938

    LIU Y, HUANG Y M, ZENG Q C. Soil bacterial communities under different vegetation types in the Loess Plateau[J]. Environmental Science, 2016, 37(10): 3931−3938
    LI Y Y, PAN F X, YAO H Y. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application[J]. Journal of Soils and Sediments, 2019, 19(4): 1948−1958 doi: 10.1007/s11368-018-2192-z
    陈玉真, 王峰, 吴志丹, 等. 林地转变为茶园对土壤细菌群落结构与多样性的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(4): 97−106

    CHEN Y Z, WANG F, WU Z D, et al. Effects of forestland to tea garden conversion on soil bacterial community and diversity[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(4): 97−106
    KIM J N, HENRIKSEN E D, CANN I K O, et al. Nitrogen utilization and metabolism in Ruminococcusalbus 8[J]. Applied and Environmental Microbiology, 2014, 80(10): 3095−3102 doi: 10.1128/AEM.00029-14
    于文清, 肖俊杰, 刘文志, 等. 类芽胞杆菌(Paenibacillus)对植物促生御病机理研究进展[J]. 微生物学杂志, 2020, 40(6): 102−112

    YU W Q, XIAO J J, LIU W Z, et al. Advances in mechanisms of Paenibacillus to promote growth & diseases-defending in plant[J]. Journal of Microbiology, 2020, 40(6): 102−112
    YEGORENKOVA I V, TREGUBOVA K V, KRASOV A I, et al. Effect of exopolysaccharides of Paenibacillus polymyxa rhizobacteria on physiological and morphological variables of wheat seedlings[J]. Journal of Microbiology, 2021, 59(8): 729−735 doi: 10.1007/s12275-021-0623-9
    FAN K K, DELGADO-BAQUERIZO M, GUO X S, et al. Suppressed N fixation and diazotrophs after four decades of fertilization[J]. Microbiome, 2019, 7(1): 143 doi: 10.1186/s40168-019-0757-8
    张慧, 马连杰, 杭晓宁, 等. 不同轮作模式下稻田土壤细菌和真菌多样性变化[J]. 江苏农业学报, 2018, 34(4): 804−810

    ZHANG H, MA L J, HANG X N, et al. Changes of soil bacterial and fungal diversity in paddy fields under different crop rotation patterns[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 804−810
    李荣, 贾霞珍, 胡建坤, 等. 天津于桥水库嗅味物质来源及变化原因分析[J]. 天津师范大学学报(自然科学版), 2020, 40(6): 37−43

    LI R, JIA X Z, HU J K, et al. Analysis on origin and change of odor substances of water body in Yuqiao Reservoir of Tianjin[J]. Journal of Tianjin Normal University (Natural Science Edition), 2020, 40(6): 37−43
    魏继华, 李佳益, 何彩云. 弗兰克氏菌共生固氮与分离培养技术研究进展[J]. 东北农业科学, 2021, 46(2): 56−61

    WEI J H, LI J Y, HE C Y. Research progress on symbiotic nitrogen fixation and isolation culture of Frankia[J]. Journal of Northeast Agricultural Sciences, 2021, 46(2): 56−61
    王庆贵, 张晓莹. 土壤微生物对大气氮沉降的响应研究进展[J]. 河南师范大学学报(自然科学版), 2021, 49(6): 11−18, 69

    WANG Q G, ZHANG X Y. Response of soil microorganisms to atmospheric nitrogen deposition: a review[J]. Journal of Henan Normal University (Natural Science Edition), 2021, 49(6): 11−18, 69
    JIA X, DINI-ANDREOTE F, FALCÃO SALLES J. Community assembly processes of the microbial rare biosphere[J]. Trends in Microbiology, 2018, 26(9): 738−747 doi: 10.1016/j.tim.2018.02.011
    吴宪, 胡菏, 王蕊, 等. 化肥减量和有机替代对潮土微生物群落分子生态网络的影响[J]. 土壤学报, 2022, 59(2): 545−556

    WU X, HU H, WANG R, et al. Effects of reduction of chemical fertilizer and substitution coupled with organic manure on the molecular ecological network of microbial communities in fluvo-aquic soil[J]. Acta Pedologica Sinica, 2022, 59(2): 545−556
    LAYEGHIFARD M, HWANG D M, GUTTMAN D S. Disentangling interactions in the microbiome: a network perspective[J]. Trends in Microbiology, 2017, 25(3): 217−228 doi: 10.1016/j.tim.2016.11.008
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (500) PDF downloads(118) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint