Citation: | WANG X F, LUO Z Z, LI L L, NIU Y N, SUN P Z, HAI L, LI L Z. Characteristics of structure and abundance of soil nitrogen-fixing bacterial community in alfalfa with different growing ages in the Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 665−676 doi: 10.12357/cjea.20220505 |
[1] |
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263−276 doi: 10.1038/nrmicro.2018.9
|
[2] |
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889−892 doi: 10.1126/science.1136674
|
[3] |
靳海洋, 王慧, 张燕辉, 等. 基于基因组的一株土壤固氮菌分离菌株鉴定及其促生作用[J]. 微生物学报, 2021, 61(10): 3249−3263
JIN H Y, WANG H, ZHANG Y H, et al. Genome-based identification and plant growth promotion of a nitrogen-fixing strain isolated from soil[J]. Acta Microbiologica Sinica, 2021, 61(10): 3249−3263
|
[4] |
DOS SANTOS P C, FANG Z, MASON S W, et al. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes[J]. BMC Genomics, 2012, 13: 162 doi: 10.1186/1471-2164-13-162
|
[5] |
李建宏, 李雪萍, 卢虎, 等. 高寒地区不同退化草地植被特性和土壤固氮菌群特性及其相关性[J]. 生态学报, 2017, 37(11): 3647−3654
LI J H, LI X P, LU H, et al. Characteristics of, and the correlation between, vegetation and N-fixing soil bacteria in alpine grassland showing various degrees of degradation[J]. Acta Ecologica Sinica, 2017, 37(11): 3647−3654
|
[6] |
董志新, 孙波, 殷士学, 等. 气候条件和作物对黑土和潮土固氮微生物群落多样性的影响[J]. 土壤学报, 2012, 49(1): 130−138
DONG Z X, SUN B, YIN S X, et al. Impacts of climate and cropping on community diversity of diazotrophs in pachic udic argiboroll and fluventic ustochrept[J]. Acta Pedologica Sinica, 2012, 49(1): 130−138
|
[7] |
胡斌, 段昌群, 王震洪, 等. 植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J]. 土壤学报, 2002, 39(4): 604−608 doi: 10.3321/j.issn:0564-3929.2002.04.022
HU B, DUAN C Q, WANG Z H, et al. Effects of vegetation restoration on soil enzyme activities and soil fertility in degraded ecosystem[J]. Acta Pedologica Sinica, 2002, 39(4): 604−608 doi: 10.3321/j.issn:0564-3929.2002.04.022
|
[8] |
张晶, 张惠文, 李新宇, 等. 土壤微生物生态过程与微生物功能基因多样性[J]. 应用生态学报, 2006, 17(6): 1129−1132 doi: 10.3321/j.issn:1001-9332.2006.06.034
ZHANG J, ZHANG H W, LI X Y, et al. Soil microbial ecological process and microbial functional gene diversity[J]. Chinese Journal of Applied Ecology, 2006, 17(6): 1129−1132 doi: 10.3321/j.issn:1001-9332.2006.06.034
|
[9] |
TANG H. Effects of long-term fertilization on nifH gene diversity in agricultural black soil[J]. African Journal of Microbiology Research, 2012, 6(11): 2659−2666
|
[10] |
赵辉, 周运超. 不同母岩发育马尾松土壤固氮菌群落结构和丰度特征[J]. 生态学报, 2020, 40(17): 6189−6201
ZHAO H, ZHOU Y C. Characteristics of structure and abundance of the nitrogen-fixing bacterial community in Pinus massoniana soil developed from different parent rocks[J]. Acta Ecologica Sinica, 2020, 40(17): 6189−6201
|
[11] |
孙启忠, 柳茜, 那亚, 等. 我国汉代苜蓿引入者考[J]. 草业学报, 2016, 25(1): 240−253
SUN Q Z, LIU Q, NA Y, et al. The history of the introduction of alfalfa to China in the Han dynasty[J]. Acta Prataculturae Sinica, 2016, 25(1): 240−253
|
[12] |
古丽娜扎尔·艾力, 陶海宁, 王自奎, 等. 基于APSIM模型的黄土旱塬区苜蓿-小麦轮作系统深层土壤水分及水分利用效率研究[J]. 草业学报, 2021, 30(7): 22−33
GULNAZAR A, TAO H N, WANG Z K, et al. Evaluating the deep-horizon soil water content and water use efficiency in the alfalfa-wheat rotation system on the dryland of Loess Plateau using APSIM[J]. Acta Prataculturae Sinica, 2021, 30(7): 22−33
|
[13] |
江影舟, 南志标, 王丽佳. 基于钻石模型理论的甘肃省苜蓿产业竞争力分析[J]. 草业科学, 2016, 33(4): 813−820
JIANG Y Z, NAN Z B, WANG L J. Competitiveness of alfalfa industry in Gansu Province— A diamond model[J]. Pratacultural Science, 2016, 33(4): 813−820
|
[14] |
马欣, 罗珠珠, 张耀全, 等. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54−67 doi: 10.11686/cyxb2020381
MA X, LUO Z Z, ZHANG Y Q, et al. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau[J]. Acta Prataculturae Sinica, 2021, 30(3): 54−67 doi: 10.11686/cyxb2020381
|
[15] |
韩清芳, 周芳, 贾珺, 等. 施肥对不同品种苜蓿生产力及土壤肥力的影响[J]. 植物营养与肥料学报, 2009, 15(6): 1413−1418 doi: 10.3321/j.issn:1008-505X.2009.06.024
HAN Q F, ZHOU F, JIA J, et al. Effect of fertilization on productivity different producing performance alfalfa varieties and soil fertility[J]. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1413−1418 doi: 10.3321/j.issn:1008-505X.2009.06.024
|
[16] |
李裕元, 邵明安. 黄土高原北部紫花苜蓿草地退化过程与植物多样性研究[J]. 应用生态学报, 2005, 16(12): 2321−2327
LI Y Y, SHAO M A. Degradation process and plant diversity of alfalfa grassland in North Loess Plateau of China[J]. Chinese Journal of Applied Ecology, 2005, 16(12): 2321−2327
|
[17] |
李玉山. 苜蓿生产力动态及其水分生态环境效应[J]. 土壤学报, 2002, 39(3): 404−411 doi: 10.3321/j.issn:0564-3929.2002.03.016
LI Y S. Productivity dynamic of alfalfa and its effects on water eco-environment[J]. Acta Pedologica Sinica, 2002, 39(3): 404−411 doi: 10.3321/j.issn:0564-3929.2002.03.016
|
[18] |
万素梅, 胡守林, 贾志宽, 等. 黄土高原地区苜蓿生产力动态及其土壤水分消耗规律[J]. 农业工程学报, 2007, 23(12): 30−34 doi: 10.3321/j.issn:1002-6819.2007.12.006
WAN S M, HU S L, JIA Z K, et al. Alfalfa productivity dynamics and consumption of soil water in the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(12): 30−34 doi: 10.3321/j.issn:1002-6819.2007.12.006
|
[19] |
才璐, 王林林, 罗珠珠, 等. 中国苜蓿产量及水分利用效率对种植年限响应的Meta分析[J]. 草业学报, 2020, 29(6): 27−38
CAI L, WANG L L, LUO Z Z, et al. Meta-analysis of alfalfa yield and WUE response to growing ages in China[J]. Acta Prataculturae Sinica, 2020, 29(6): 27−38
|
[20] |
罗珠珠, 李玲玲, 牛伊宁, 等. 陇中黄土高原半干旱区苜蓿地土壤干燥化特征及适宜种植年限[J]. 应用生态学报, 2015, 26(10): 3059−3065
LUO Z Z, LI L L, NIU Y N, et al. Soil dryness characteristics of alfalfa cropland and optimal growth years of alfalfa on the Loess Plateau of central Gansu, China[J]. Chinese Journal of Applied Ecology, 2015, 26(10): 3059−3065
|
[21] |
WANG L L, XIE J H, LUO Z Z, et al. Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China[J]. Agricultural Water Management, 2021, 243: 106415 doi: 10.1016/j.agwat.2020.106415
|
[22] |
牟红霞, 张文文, 刘秉儒. 黄灌区不同种植年限紫花苜蓿土壤真菌群落多样性特征[J]. 水土保持研究, 2021, 28(4): 91−96+104
MU H X, ZHANG W W, LIU B R. Diversity characteristics of alfalfa soil fungal community with different planting years in the Yellow River Irrigation Area[J]. Research on Soil and Water Conservation, 2021, 28(4): 91−96+104
|
[23] |
陈燕霞, 唐晓东, 杨恒山. 不同种植年限苜蓿地亚硝化菌、反硝化菌和固氮菌的垂直分布[J]. 山地农业生物学报, 2017, 36(2): 49−52
CHEN Y X, TANG X D, YANG H S. Vertical distribution of nitrifying bacteria, denitrifying bacteria and nitrogen-fixing bacteria in alfalfa with different planting years[J]. Journal of Mountain Agricultural Biology, 2017, 36(2): 49−52
|
[24] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000
BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000
|
[25] |
POLY F, RANJARD L, NAZARET S, et al. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties[J]. Applied and Environmental Microbiology, 2001, 67(5): 2255−2262 doi: 10.1128/AEM.67.5.2255-2262.2001
|
[26] |
段鹏飞, 陈彦, 张菲, 等. 芒草种植对土壤细菌群落结构和功能的影响[J]. 应用生态学报, 2019, 30(6): 2030−2038
DUAN P F, CHEN Y, ZHANG F, et al. Effect of Miscanthus planting on the structure and function of soil bacterial community[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 2030−2038
|
[27] |
江晓亮. 典型湿地硝化、反硝化微生物的群落特征及构建机制[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2021
JIANG X L. The geographic distribution patterns and assembly mechanisms of nitrifying- and denitrifying microbial communities in the typical wetland eecosystems[D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2021
|
[28] |
ZOU Y K, ZHANG J N, YANG D L, et al. Effects of different land use patterns on nifH genetic diversity of soil nitrogen-fixing microbial communities in Leymus chinensis steppe[J]. Acta Ecologica Sinica, 2011, 31(3): 150−156 doi: 10.1016/j.chnaes.2011.03.004
|
[29] |
LEVY-BOOTH D J, WINDER R S. Quantification of nitrogen reductase and nitrite reductase genes in soil of thinned and clear-cut douglas-fir stands by using real-time PCR[J]. Applied and Environmental Microbiology, 2010, 76(21): 7116−7125 doi: 10.1128/AEM.02188-09
|
[30] |
JURAEVA D, GEORGE E, DAVRANOV K, et al. Detection and quantification of the nifH gene in shoot and root of cucumber plants[J]. Canadian Journal of Microbiology, 2006, 52(8): 731−739 doi: 10.1139/w06-025
|
[31] |
MORTENSON L E. Ferredoxin and ATP, requirements for nitrogen fixation in cell-free extracts of Clostridium pasteurianum[J]. Proceedings of the National Academy of Sciences of the United States of America, 1964, 52(2): 272−279 doi: 10.1073/pnas.52.2.272
|
[32] |
HERBERT R. Nitrogen cycling in coastal marine ecosystems[J]. Canadian Journal of Microbiology, 1999, 23(5): 563−590
|
[33] |
SMERCINA D N, EVANS S E, FRIESEN M L, et al. Erratum for smercina et al., to fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere[J]. Applied and Environmental Microbiology, 2019, 85(22): e02103−e02119
|
[34] |
COELHO M R R, MARRIEL I E, JENKINS S N, et al. Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer[J]. Applied Soil Ecology, 2009, 42(1): 48−53 doi: 10.1016/j.apsoil.2009.01.010
|
[35] |
ZHANG X M, LIU W, SCHLOTER M, et al. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes[J]. PLoS One, 2013, 8(10): e76500 doi: 10.1371/journal.pone.0076500
|
[36] |
沈秋兰, 何冬华, 徐秋芳, 等. 阔叶林改种毛竹(Phyllostachys pubescens)后土壤固氮细菌nifH基因多样性的变化[J]. 植物营养与肥料学报, 2016, 22(3): 687−696
SHEN Q L, HE D H, XU Q F, et al. Variation of nifH gene diversity of soil nitrogen-fixing bacteria in Moso bamboo (Phyllostachys pubescens) plantation converted from broadleaf forest[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 687−696
|
[37] |
彭琪, 何红花, 张兴昌. 低磷环境下接种丛枝菌根真菌促进紫花苜蓿生长和磷素吸收的机理[J]. 植物营养与肥料学报, 2021, 27(2): 293−300
PENG Q, HE H H, ZHANG X C. Mechanisms of increasing alfalfa growth and phosphorus uptake by inoculation with arbuscular mycorrhizal fungal under low phosphorus application level[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 293−300
|
[38] |
靳希桐, 胡文革, 贺帅兵, 等. 不同时期艾比湖湿地盐角草群落土壤固氮微生物的多样性分析[J]. 微生物学报, 2019, 59(8): 1600−1611
JIN X T, HU W G, HE S B, et al. Diversity of soil nitrogen-fixing microorganisms in Salicornia europaea community of Ebinur Lake wetland during different periods[J]. Acta Microbiologica Sinica, 2019, 59(8): 1600−1611
|
[39] |
汪堃, 南丽丽, 师尚礼, 等. 干旱胁迫对不同根型苜蓿根系生长及根际土壤细菌的影响[J]. 生态学报, 2021, 41(19): 7735−7742
WANG K, NAN L L, SHI S L, et al. Influence of root growth and bacterial community in the rhizosphere of different root types of alfalfa under drought stress[J]. Acta Ecologica Sinica, 2021, 41(19): 7735−7742
|
[40] |
刘洋, 黄懿梅, 曾全超. 黄土高原不同植被类型下土壤细菌群落特征研究[J]. 环境科学, 2016, 37(10): 3931−3938
LIU Y, HUANG Y M, ZENG Q C. Soil bacterial communities under different vegetation types in the Loess Plateau[J]. Environmental Science, 2016, 37(10): 3931−3938
|
[41] |
LI Y Y, PAN F X, YAO H Y. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application[J]. Journal of Soils and Sediments, 2019, 19(4): 1948−1958 doi: 10.1007/s11368-018-2192-z
|
[42] |
陈玉真, 王峰, 吴志丹, 等. 林地转变为茶园对土壤细菌群落结构与多样性的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(4): 97−106
CHEN Y Z, WANG F, WU Z D, et al. Effects of forestland to tea garden conversion on soil bacterial community and diversity[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(4): 97−106
|
[43] |
KIM J N, HENRIKSEN E D, CANN I K O, et al. Nitrogen utilization and metabolism in Ruminococcusalbus 8[J]. Applied and Environmental Microbiology, 2014, 80(10): 3095−3102 doi: 10.1128/AEM.00029-14
|
[44] |
于文清, 肖俊杰, 刘文志, 等. 类芽胞杆菌(Paenibacillus)对植物促生御病机理研究进展[J]. 微生物学杂志, 2020, 40(6): 102−112
YU W Q, XIAO J J, LIU W Z, et al. Advances in mechanisms of Paenibacillus to promote growth & diseases-defending in plant[J]. Journal of Microbiology, 2020, 40(6): 102−112
|
[45] |
YEGORENKOVA I V, TREGUBOVA K V, KRASOV A I, et al. Effect of exopolysaccharides of Paenibacillus polymyxa rhizobacteria on physiological and morphological variables of wheat seedlings[J]. Journal of Microbiology, 2021, 59(8): 729−735 doi: 10.1007/s12275-021-0623-9
|
[46] |
FAN K K, DELGADO-BAQUERIZO M, GUO X S, et al. Suppressed N fixation and diazotrophs after four decades of fertilization[J]. Microbiome, 2019, 7(1): 143 doi: 10.1186/s40168-019-0757-8
|
[47] |
张慧, 马连杰, 杭晓宁, 等. 不同轮作模式下稻田土壤细菌和真菌多样性变化[J]. 江苏农业学报, 2018, 34(4): 804−810
ZHANG H, MA L J, HANG X N, et al. Changes of soil bacterial and fungal diversity in paddy fields under different crop rotation patterns[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 804−810
|
[48] |
李荣, 贾霞珍, 胡建坤, 等. 天津于桥水库嗅味物质来源及变化原因分析[J]. 天津师范大学学报(自然科学版), 2020, 40(6): 37−43
LI R, JIA X Z, HU J K, et al. Analysis on origin and change of odor substances of water body in Yuqiao Reservoir of Tianjin[J]. Journal of Tianjin Normal University (Natural Science Edition), 2020, 40(6): 37−43
|
[49] |
魏继华, 李佳益, 何彩云. 弗兰克氏菌共生固氮与分离培养技术研究进展[J]. 东北农业科学, 2021, 46(2): 56−61
WEI J H, LI J Y, HE C Y. Research progress on symbiotic nitrogen fixation and isolation culture of Frankia[J]. Journal of Northeast Agricultural Sciences, 2021, 46(2): 56−61
|
[50] |
王庆贵, 张晓莹. 土壤微生物对大气氮沉降的响应研究进展[J]. 河南师范大学学报(自然科学版), 2021, 49(6): 11−18, 69
WANG Q G, ZHANG X Y. Response of soil microorganisms to atmospheric nitrogen deposition: a review[J]. Journal of Henan Normal University (Natural Science Edition), 2021, 49(6): 11−18, 69
|
[51] |
JIA X, DINI-ANDREOTE F, FALCÃO SALLES J. Community assembly processes of the microbial rare biosphere[J]. Trends in Microbiology, 2018, 26(9): 738−747 doi: 10.1016/j.tim.2018.02.011
|
[52] |
吴宪, 胡菏, 王蕊, 等. 化肥减量和有机替代对潮土微生物群落分子生态网络的影响[J]. 土壤学报, 2022, 59(2): 545−556
WU X, HU H, WANG R, et al. Effects of reduction of chemical fertilizer and substitution coupled with organic manure on the molecular ecological network of microbial communities in fluvo-aquic soil[J]. Acta Pedologica Sinica, 2022, 59(2): 545−556
|
[53] |
LAYEGHIFARD M, HWANG D M, GUTTMAN D S. Disentangling interactions in the microbiome: a network perspective[J]. Trends in Microbiology, 2017, 25(3): 217−228 doi: 10.1016/j.tim.2016.11.008
|