WU Y, CAI H M, XU B, YU M, WANG P N, DAI W C, ZHANG M X, REN Y, WU W M, LI J C, CHEN X. Effects of all straw return on root secretions of wheat in different seasons[J]. Chinese Journal of Eco-Agriculture, 2022, 30(12): 1938−1948. DOI: 10.12357/cjea.20220199
Citation: WU Y, CAI H M, XU B, YU M, WANG P N, DAI W C, ZHANG M X, REN Y, WU W M, LI J C, CHEN X. Effects of all straw return on root secretions of wheat in different seasons[J]. Chinese Journal of Eco-Agriculture, 2022, 30(12): 1938−1948. DOI: 10.12357/cjea.20220199

Effects of all straw return on root secretions of wheat in different seasons

Funds: This study was supported by the Open Fund Project of Anhui Provincial Key Laboratory of Farmland Ecological Conservation and Pollution Prevention and Control (FECPP202001), Anhui Provincial Major Science and Technology Project (202003b06020021), Anhui Agricultural University Smart Agriculture Research Institute Open Fund Project (IAR2021A01), and the Special Fund for Anhui Agriculture Research System (340000222426000100009).
More Information
  • Corresponding author:

    LI Jincai, E-mail: ljc5122423@126.com

    CHEN Xiang, E-mail: cxagricultural@163.com

  • Received Date: March 16, 2022
  • Revised Date: July 26, 2022
  • Accepted Date: July 26, 2022
  • Available Online: August 25, 2022
  • Root exudates play an important role in the exchange of substances and chemicals between plants and soil. Different straw returning modes change the growth environment of wheat roots, and wheat root exudates have different response characteristics to different straw returning modes. Screening for a suitable straw returning mode is a key issue for sustainable and high-quality development of wheat production. Metabolomics of root exudates can potentially help us to better understand the chemical interaction between roots, soils, and organisms in the rhizosphere. In this study, to investigate the effects of all straw return in different seasons of winter wheat-summer maize rotation system on wheat root exudates in the lime concretion black soil area in Huaibei Plain, four straw returning modes were developed, they included all wheat straw smashed mulching in summer maize season (T1), all wheat straw smashed mulching in summer maize season + all maize straw crushed burying in winter wheat season (T2), all maize straw crushed burying in winter wheat season (T3) and no straw returned to field (CK). The metabolomics of wheat root exudates collected under different straw returning modes was investigated based on non-targeted metabolomics combined with liquid chromatography-mass spectrometry. Multivariate statistical analysis methods were used to quantify the differences in metabolomics among different straw returning modes. The results showed that T1 treatment increased the root length and root dry weight of wheat during the overwintering period and resulted in higher root vigor compared to other treatments. T1, T2, and T3 detected 330, 110, and 89 differential metabolites compared with CK, respectively. Compared with CK, the relative contents of some oligosaccharides, such as stachyose and verbascose, in the root exudates of T1 increased, and the galactose metabolism and glycolytic pathways were greatly affected. The relative contents of proline, valine, isoleucine, glutamic acid, and glutamine of T1 increased, and the metabolism of arginine and proline, and D-glutamine and D-glutamate metabolism were affected greatly. The relative contents of 3-hydroxysebanoic acid, creatine phosphate, 3-isopropenylglutaric acid, 4-heptanoic acid, and cinnamic acid of T1 increased. The results indicated that all wheat straw smashed mulching changed the characteristics of wheat root exudates; increased the root length and dry weight of wheat by increasing the relative content of some sugars, amino acids, and organic acids; and maintained high root vitality under the condition of straw return. Metabolomic analysis of root exudates based on non-targeted metabolomics combined with liquid chromatography-mass spectrometry could provide an important theoretical basis for the study of the efficient utilization of straw resources and high yield, high quality, and high-efficiency development of wheat production in the lime concretion black soil area in Huaibei Plain.
  • [1]
    黄波, 张妍, 孙建强, 等. 氮密互作对淮北砂姜黑土区冬小麦冠层光合特性和产量的影响[J]. 麦类作物学报, 2019, 39(8): 994−1002 doi: 10.7606/j.issn.1009-1041.2019.08.15

    HUANG B, ZHANG Y, SUN J Q, et al. Effect of nitrogen and density interaction on canopy photosynthetic characteristics and yield of winter wheat in Huaibei lime concretion black soil region[J]. Journal of Triticeae Crops, 2019, 39(8): 994−1002 doi: 10.7606/j.issn.1009-1041.2019.08.15
    [2]
    张莀茜, 杭雅文, 李福建, 等. 稻秸还田年数和氮肥运筹对小麦出苗和幼苗形态及生理特性的影响[J]. 核农学报, 2020, 34(8): 1805−1813 doi: 10.11869/j.issn.100-8551.2020.08.1805

    ZHANG C X, HANG Y W, LI F J, et al. Effects of rice straw returning and nitrogen fertilizer on seedling emergence and morphological and physiological characteristics of wheat[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1805−1813 doi: 10.11869/j.issn.100-8551.2020.08.1805
    [3]
    余卫东, 伍露, 冯利平, 等. 越冬期低温胁迫对黄淮地区不同品种小麦的影响[J]. 生态学杂志, 2021, 40(8): 2431−2440

    YU W D, WU L, FENG L P, et al. Effects of freezing stress on different varieties of wheat during overwinter period in Huang-Huai area[J]. Chinese Journal of Ecology, 2021, 40(8): 2431−2440
    [4]
    刘玉洁, 陈巧敏, 葛全胜, 等. 气候变化背景下1981—2010中国小麦物候变化时空分异[J]. 中国科学: 地球科学, 2018, 48(7): 888−898 doi: 10.1360/N072017-00100

    LIU Y J, CHEN Q M, GE Q S, et al. Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010[J]. Scientia Sinica (Terrae), 2018, 48(7): 888−898 doi: 10.1360/N072017-00100
    [5]
    赵佳佳, 乔玲, 武棒棒, 等. 山西省小麦苗期根系性状及抗旱特性分析[J]. 作物学报, 2021, 47(4): 714−727 doi: 10.3724/SP.J.1006.2021.01048

    ZHAO J J, QIAO L, WU B B, et al. Seedling root characteristics and drought resistance of wheat in Shanxi Province[J]. Acta Agronomica Sinica, 2021, 47(4): 714−727 doi: 10.3724/SP.J.1006.2021.01048
    [6]
    HUANG A C, JIANG T, LIU Y X, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364(6440): eaau6389 doi: 10.1126/science.aau6389
    [7]
    毛梦雪, 朱峰. 根系分泌物介导植物抗逆性研究进展与展望[J]. 中国生态农业学报(中英文), 2021, 29(10): 1649−1657

    MAO M X, ZHU F. Progress and perspective in research on plant resistance mediated by root exudates[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1649−1657
    [8]
    彭钰洁, 程楠, 李佳佳, 等. 氮肥减施对玉米幼苗根系分泌物影响的根际代谢组学分析[J]. 中国生态农业学报, 2018, 26(6): 807−814

    PENG Y J, CHENG N, LI J J, et al. Effects of nitrogen fertilizer reduction on root exudates of maize seedling analyzed by rhizosphere metabonomics[J]. Chinese Journal of Eco-Agriculture, 2018, 26(6): 807−814
    [9]
    吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298−310 doi: 10.3724/SP.J.1258.2014.00027

    WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298−310 doi: 10.3724/SP.J.1258.2014.00027
    [10]
    朱丽霞, 章家恩, 刘文高. 根系分泌物与根际微生物相互作用研究综述[J]. 生态环境, 2003, 12(1): 102−105

    ZHU L X, ZHANG J E, LIU W G. Review of studies on interactions between root exudates and rhizopheric microorganisms[J]. Ecology and Environmental Sciences, 2003, 12(1): 102−105
    [11]
    王逗, 杨杰, 廖汝佳, 等. 化肥有机肥配施对油菜营养生长期根系分泌物的影响[J]. 中国土壤与肥料, 2021(5): 95−102 doi: 10.11838/sfsc.1673-6257.20303

    WANG D, YANG J, LIAO R J, et al. Effects of chemical fertilizers combined with organic fertilizers on root exudates of rape during vegetative growth period[J]. Soil and Fertilizer Sciences in China, 2021(5): 95−102 doi: 10.11838/sfsc.1673-6257.20303
    [12]
    徐国伟, 李帅, 赵永芳, 等. 秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究[J]. 草业学报, 2014, 23(2): 140−146 doi: 10.11686/cyxb20140217

    XU G W, LI S, ZHAO Y F, et al. Effects of straw returning and nitrogen fertilizer application on root secretion and nitrogen utilization of rice[J]. Acta Prataculturae Sinica, 2014, 23(2): 140−146 doi: 10.11686/cyxb20140217
    [13]
    SCHMIDT H, GÜNTHER C, WEBER M, et al. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition[J]. PLoS One, 2014, 9(7): e102444 doi: 10.1371/journal.pone.0102444
    [14]
    中华人民共和国农业部. 土壤检测 第1部分: 土壤样品的采集、处理和贮存: NY/T 1121.1—2006[S]. 北京: 中华人民共和国农业部, 2006

    Ministry of Agriculture of the People’s Republic of China. Soil Testing Part 1: Soil Sampling, Processing and Repostion[S]. Beijing: Ministry of Agriculture of the People’s Republic of China, 2006
    [15]
    罗燕, 樊卫国. 不同施磷水平下4种柑橘砧木的根际土壤有机酸、微生物及酶活性[J]. 中国农业科学, 2014, 47(5): 955−967 doi: 10.3864/j.issn.0578-1752.2014.05.012

    LUO Y, FAN W G. Organic acid content, microbial quantity and enzyme activity in rhizosphere soil of four Citrus rootstocks under different phosphorus levels[J]. Scientia Agricultura Sinica, 2014, 47(5): 955−967 doi: 10.3864/j.issn.0578-1752.2014.05.012
    [16]
    高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006

    GAO J F. Experimental Guidance for Plant Physiology[M]. Beijing: Higher Education Press, 2006
    [17]
    马元喜. 小麦的根[M]. 北京: 中国农业出版社, 1999

    MA Y X. Roots of Wheat[M]. Beijing: China Agriculture Press, 1999
    [18]
    申冠宇, 杨习文, 周苏玫, 等. 土壤耕作技术对小麦出苗质量、根系功能及粒重的影响[J]. 中国农业科学, 2019, 52(12): 2042−2055 doi: 10.3864/j.issn.0578-1752.2019.12.003

    SHEN G Y, YANG X W, ZHOU S M, et al. Impacts of soil tillage techniques on seedling quality, root function and grain weight in wheat[J]. Scientia Agricultura Sinica, 2019, 52(12): 2042−2055 doi: 10.3864/j.issn.0578-1752.2019.12.003
    [19]
    常程, 刘晶, 史磊, 等. 不同秸秆还田耕作模式对耕层土壤质量、玉米根系发育及氮积累的影响[J]. 辽宁农业科学, 2021(6): 18−21 doi: 10.3969/j.issn.1002-1728.2021.06.004

    CHANG C, LIU J, SHI L, et al. Effects of different straw returning tillage modes on soil quality, maize root development and nitrogen accumulation in the topsoil[J]. Liaoning Agricultural Science, 2021(6): 18−21 doi: 10.3969/j.issn.1002-1728.2021.06.004
    [20]
    赵维峰, 张艳芳, 刘胜辉, 等. 不同果树根系分泌物对咖啡幼苗的影响[J]. 热带农业科学, 2019, 39(5): 6−10, 35

    ZHAO W F, ZHANG Y F, LIU S H, et al. Effects of root exudates from different fruit trees on coffee seedlings[J]. Tropical Agriculture Science, 2019, 39(5): 6−10, 35
    [21]
    王璐, 陈明霞, 邵云, 等. 作物根系分泌物对小麦种子萌发及幼苗生 长的影响[J]. 河南农业科学, 2019, 48(1): 66−71

    WANG L, CHEN M X, SHAO Y, et al. Effects of crop root exudates on wheat seed germination and seedling growth[J]. Henan Agricultural Science, 2019, 48(1): 66−71
    [22]
    杨一晨, 杨习文, 周苏玫, 等. 不同培养条件下小麦幼苗与根系发育质量比较[J]. 西南农业学报, 2021, 34(12): 2634−2639 doi: 10.16213/j.cnki.scjas.2021.12.011

    YANG Y C, YANG X W, ZHOU S M, et al. Comparison of seedling quality and root development of wheat (Triticum aestivum L.) under different culture environments[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(12): 2634−2639 doi: 10.16213/j.cnki.scjas.2021.12.011
    [23]
    吴清莹, 林宇龙, 孙一航, 等. 根系分泌物对植物生长和土壤养分吸收的影响研究进展[J]. 中国草地学报, 2021, 43(11): 97−104 doi: 10.16742/j.zgcdxb.20210082

    WU Q Y, LIN Y L, SUN Y H, et al. Research progress on effects of root exudates on plant growth and soil nutrient uptake[J]. Chinese Journal of Grassland, 2021, 43(11): 97−104 doi: 10.16742/j.zgcdxb.20210082
    [24]
    HUANG X F, CHAPARRO J M, REARDON K F, et al. Rhizosphere interactions: root exudates, microbes, and microbial communities[J]. Botany, 2014, 92(4): 267−275 doi: 10.1139/cjb-2013-0225
    [25]
    YOO W, YOON H, SEOK Y J, et al. Fine-tuning of amino sugar homeostasis by EIIA(ntr) in Salmonella typhimurium[J]. Scientific Reports, 2016, 6: 33055 doi: 10.1038/srep33055
    [26]
    杨海鹏, 曹丹, 刘小红, 等. 玉米半乳糖代谢相关酶蛋白基因的克隆及表达[J]. 种子, 2021, 40(7): 18−25 doi: 10.16590/j.cnki.1001-4705.2021.07.018

    YANG H P, CAO D, LIU X H, et al. Cloning and expression analysis of genes mediated galactose metabolism in maize[J]. Seed, 2021, 40(7): 18−25 doi: 10.16590/j.cnki.1001-4705.2021.07.018
    [27]
    陈卫东, 张玉霞, 丛百明, 等. 低温胁迫对不同苜蓿品种生理特性的影响[J]. 中国草地学报, 2021, 43(7): 115−120 doi: 10.16742/j.zgcdxb.20200300

    CHEN W D, ZHANG Y X, CONG B M, et al. Effects of cold stress on different alfalfa varieties’ physiological characteristics[J]. Chinese Journal of Grassland, 2021, 43(7): 115−120 doi: 10.16742/j.zgcdxb.20200300
    [28]
    KHAN M I R, IQBAL N, MASOOD A, et al. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation[J]. Plant Signaling & Behavior, 2013, 8(11): e26374
    [29]
    韦一昊. 小麦谷氨酰胺合成酶同工酶的定位、表达与功能研究[D]. 河南: 河南农业大学, 2020

    WEI Y H. Study on cellular localization, expression and function of glutamine synthetase isozymes in wheat[D]. Henan: Henan Agricultural University, 2020
    [30]
    王帅, 朱涵宇, 杨占惠, 等. 秸秆还田方式对不同土壤条件下玉米苗期生长发育的影响[J]. 生态学杂志, 2022, 41(3): 479−486

    WANG S, ZHU H Y, YANG Z H, et al. Effects of straw returning modes on maize seedling growth under different soil conditions[J]. Chinese Journal of Ecology, 2022, 41(3): 479−486
    [31]
    SAO EMANI C, GALLANT J L, WIID I J, et al. The role of low molecular weight thiols in Mycobacterium tuberculosis[J]. Tuberculosis (Edinburgh, Scotland), 2019, 116: 44−55 doi: 10.1016/j.tube.2019.04.003
    [32]
    VIVES-PERIS V, MOLINA L, SEGURA A, et al. Root exudates from Citrus plants subjected to abiotic stress conditions have a positive effect on rhizobacteria[J]. Journal of Plant Physiology, 2018, 228: 208−217 doi: 10.1016/j.jplph.2018.06.003
    [33]
    周牮君. 植物根系分泌物对难溶磷钾及土壤硒的活化作用研究[D]. 重庆: 西南农业大学, 2001

    ZHOU J J. Activation of plant root exudates on insoluble phosphorus, potassium and soil selenium[D]. Chongqing: Southwest University, 2001
  • Related Articles

    [1]FENG Zhen, ZHENG Chunyan, BO Yukun, LI Yehua, ZHU Feng. Advances in transcriptomics- and metabolomics-based exploration of plant responses to drought and herbivorous insects[J]. Chinese Journal of Eco-Agriculture, 2024, 32(3): 369-379. DOI: 10.12357/cjea.20230297
    [2]CHEN Xiang, XU Bo, WU Yu, XU Hui, CAI Hongmei, SUN Dongyue, YU Min, LIU Lyuzhou, ZHENG Baoqiang, LI Jincai. Effects of returns of full straws of different seasons on summer maize root exudates[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1403-1415. DOI: 10.12357/cjea.20230122
    [3]LI Jianan, YANG Changqin, SHU Hongmei, ZHANG Guowei, WANG Xiaojing, LIU Ruixian, CHEN Jiamin, WANG Feibing, CHEN Xinhong. Effects of content dynamics of NO3-N and phenolic acids in soil on root growth of cotton seedlings under the return of wheat straw[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 868-876. DOI: 10.12357/cjea.20220918
    [4]LU Xiaoyu, GUO Jiaxin, TAO Yifan, YE Yang, GUI Chenghao, GUO Huijuan, MIN Wei. Effects of different salt and alkali stress on absorption, transportation, and metabolism of nutrient elements in cotton[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 438-451. DOI: 10.12357/cjea.20220581
    [5]MAO Mengxue, ZHU Feng. Progress and perspective in research on plant resistance mediated by root exudates[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1649-1657. DOI: 10.13930/j.cnki.cjea.210328
    [6]PENG Yujie, CHENG Nan, LI Jiajia, KONG Yanglu, SUN Caixia. Effects of nitrogen fertilizer reduction on root exudates of maize seedling ana-lyzed by rhizosphere metabonomics[J]. Chinese Journal of Eco-Agriculture, 2018, 26(6): 807-814. DOI: 10.13930/j.cnki.cjea.170858
    [7]MAO Ruzhi, ZHANG Guotao, SHAO Jianhui, DU Fei, DENG Weiping, ZHAO Xinjie, ZHU Shusheng, ZHU Youyong, HE Xiahong. Response of ‘Merlot’ grape berry quality and metabolome to meteorological factors at both low and high altitudes[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 506-516.
    [8]ZHANG Wenming, QIU Huizhen, ZHANG Chunhong, LIU Xing, GAO Yi'an, SHEN Qirong. Identification and autotoxicity of root exudates of continuous cropping potato at different growth stages[J]. Chinese Journal of Eco-Agriculture, 2015, 23(2): 215-224. DOI: 10.13930/j.cnki.cjea.140941
    [9]LI Yong, HUANG Xiao-Fang, DING Wan-Long. Effect of microelement deficiency on root exudates of ginseng[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 64-69. DOI: 10.3724/SP.J.1011.2009.00064
    [10]Liu Suping, Yang Zhiwei. Plant root exndates[J]. Chinese Journal of Eco-Agriculture, 1998, 6(2): 34-36.

Catalog

    Article Metrics

    Article views (681) PDF downloads (135) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return