Citation: | JIANG R, XU Q, LI J Y, DAI L X, AO D C, DOU Z, GAO H. Sensitivity and uncertainty analysis of carbon footprint evaluation: A case study of rice-crayfish coculture in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1577−1587. DOI: 10.12357/cjea.20220188 |
[1] |
HUANG W B, WU F Q, HAN W R, et al. Carbon footprint of cotton production in China: Composition, spatiotemporal changes and driving factors[J]. The Science of the Total Environment, 2022, 821: 153407 doi: 10.1016/j.scitotenv.2022.153407
|
[2] |
中华人民共和国国家统计局. 中华人民共和国2003年国民经济和社会发展统计公报[J]. 中国统计, 2004(3): 6−10 doi: 10.3969/j.issn.1002-4557.2004.03.003
National Bureau of Statistics of People’s Republic of China. 2003 Statistical Bulletin of National Economic and Social Development of People’s Republic of China[J]. China Statistics, 2004(3): 6−10 doi: 10.3969/j.issn.1002-4557.2004.03.003
|
[3] |
LIU W, HUSSAIN S, WU L S, et al. Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management[J]. Environmental Science and Pollution Research International, 2016, 23(1): 315−328 doi: 10.1007/s11356-015-5227-7
|
[4] |
张卫建, 严圣吉, 张俊, 等. 国家粮食安全与农业双碳目标的双赢策略[J]. 中国农业科学, 2021, 54(18): 3892−3902 doi: 10.3864/j.issn.0578-1752.2021.18.009
ZHANG W J, YAN S J, ZHANG J, et al. Win-win strategy for national food security and agricultural double-carbon goals[J]. Scientia Agricultura Sinica, 2021, 54(18): 3892−3902 doi: 10.3864/j.issn.0578-1752.2021.18.009
|
[5] |
YE S J, SONG C Q, SHEN S, et al. Spatial pattern of arable land-use intensity in China[J]. Land Use Policy, 2020, 99: 104845 doi: 10.1016/j.landusepol.2020.104845
|
[6] |
高辉, 陈友明. 稻田高质高效生态种养200题[M]. 北京: 中国农业出版社, 2021
GAO H, CHEN Y M. 200 Questions on High-Quality and High-Efficiency Ecological Planting and Aquaculture in Paddy Fields[M]. Beijing: China Agriculture Press, 2021
|
[7] |
曹凑贵, 江洋, 汪金平, 等. 稻虾共作模式的“双刃性”及可持续发展策略[J]. 中国生态农业学报, 2017, 25(9): 1245−1253
CAO C G, JIANG Y, WANG J P, et al. “Dual character” of rice-crayfish culture and strategies for its sustainable development[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1245−1253
|
[8] |
GUO L, HU L L, ZHAO L F, et al. Coupling rice with fish for sustainable yields and soil fertility in China[J]. Rice Science, 2020, 27(3): 175−179 doi: 10.1016/j.rsci.2020.04.001
|
[9] |
AHMED N, TURCHINI G M. The evolution of the blue-green revolution of rice-fish cultivation for sustainable food production[J]. Sustainability Science, 2021, 16(4): 1375−1390 doi: 10.1007/s11625-021-00924-z
|
[10] |
佀国涵, 彭成林, 徐祥玉, 等. 稻虾共作模式对涝渍稻田土壤理化性状的影响[J]. 中国生态农业学报, 2017, 25(1): 61−68 doi: 10.13930/j.cnki.cjea.160661
SI G H, PENG C L, XU X Y, et al. Effect of integrated rice-crayfish farming system on soil physico-chemical properties in waterlogged paddy soils[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 61−68 doi: 10.13930/j.cnki.cjea.160661
|
[11] |
SUN G, SUN M, DU L S, et al. Ecological rice-cropping systems mitigate global warming — A meta-analysis[J]. Science of the Total Environment, 2021, 789: 147900 doi: 10.1016/j.scitotenv.2021.147900
|
[12] |
徐祥玉, 张敏敏, 彭成林, 等. 稻虾共作对秸秆还田后稻田温室气体排放的影响[J]. 中国生态农业学报, 2017, 25(11): 1591−1603 doi: 10.13930/j.cnki.cjea.170280
XU X Y, ZHANG M M, PENG C L, et al. Effect of rice-crayfish co-culture on greenhouse gases emission in straw-puddled paddy fields[J]. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1591−1603 doi: 10.13930/j.cnki.cjea.170280
|
[13] |
XU Q, LIU T, GUO H L, et al. Conversion from rice-wheat rotation to rice-crayfish coculture increases net ecosystem service values in Hung-tse Lake area, East China[J]. Journal of Cleaner Production, 2021, 319: 128883 doi: 10.1016/j.jclepro.2021.128883
|
[14] |
XU Q, HU K L, YAO Z S, et al. Evaluation of carbon, nitrogen footprint and primary energy demand under different rice production systems[J]. Ecological Indicators, 2020, 117: 106634 doi: 10.1016/j.ecolind.2020.106634
|
[15] |
PHONG L T, DE BOER I J M, UDO H M J. Life cycle assessment of food production in integrated agriculture-aquaculture systems of the Mekong Delta[J]. Livestock Science, 2011, 139(1/2): 80−90
|
[16] |
VAN DOOREN C. Proposing the nutrient density unit as the functional unit in LCAs of foods[C]. International Conference on Life Cycle Assessment of Food 2016, 2016
|
[17] |
BICER Y, DINCER I. Life cycle environmental impact assessments and comparisons of alternative fuels for clean vehicles[J]. Resources, Conservation and Recycling, 2018, 132: 141−157 doi: 10.1016/j.resconrec.2018.01.036
|
[18] |
MENESES M, TORRES C M, CASTELLS F. Sensitivity analysis in a life cycle assessment of an aged red wine production from Catalonia, Spain[J]. Science of the Total Environment, 2016, 562: 571−579 doi: 10.1016/j.scitotenv.2016.04.083
|
[19] |
XU Q, YANG Y, HU K L, et al. Economic, environmental, and emergy analysis of China’s green tea production[J]. Sustainable Production and Consumption, 2021, 28: 269−280 doi: 10.1016/j.spc.2021.04.019
|
[20] |
赵杰, 李绍平, 程爽, 等. “独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响[J]. 作物学报, 2021, 47(6): 1162−1174
ZHAO J, LI S P, CHENG S, et al. Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode[J]. Acta Agronomica Sinica, 2021, 47(6): 1162−1174
|
[21] |
刘秋员, 周磊, 田晋钰, 等. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选[J]. 中国农业科学, 2021, 54(7): 1397−1409 doi: 10.3864/j.issn.0578-1752.2021.07.007
LIU Q Y, ZHOU L, TIAN J Y, et al. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe Japonica rice in the middle and lower reaches of Yangtze River[J]. Scientia Agricultura Sinica, 2021, 54(7): 1397−1409 doi: 10.3864/j.issn.0578-1752.2021.07.007
|
[22] |
车阳, 程爽, 田晋钰, 等. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异[J]. 作物学报, 2021, 47(10): 1953−1965
CHE Y, CHENG S, TIAN J Y, et al. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields[J]. Acta Agronomica Sinica, 2021, 47(10): 1953−1965
|
[23] |
CHURCH J, CLARK P, CAZENAVE A, et al. Climate Change 2013: The physical science basis, in contribution of working groupⅠto the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge and New York: IPCC, 2013
|
[24] |
IPCC. Revised guidelines for national greenhouse gas inventories. Volume 4. Agriculture, forestry and other land use. Chapter 11. N2O emissions from managed soils and CO2 emissions from lime and urea application[R]. Cambridge and New York: IPCC, 2019
|
[25] |
LI B, FAN C H, ZHANG H, et al. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China[J]. Atmospheric Environment, 2015, 100: 10−19 doi: 10.1016/j.atmosenv.2014.10.034
|
[26] |
ZHAO L L, OU X M, CHANG S Y. Life-cycle greenhouse gas emission and energy use of bioethanol produced from corn stover in China: current perspectives and future prospectives[J]. Energy, 2016, 115: 303−313 doi: 10.1016/j.energy.2016.08.046
|
[27] |
JIAO J L, LI J J, BAI Y. Uncertainty analysis in the life cycle assessment of cassava ethanol in China[J]. Journal of Cleaner Production, 2019, 206: 438−451 doi: 10.1016/j.jclepro.2018.09.199
|
[28] |
TILMAN D, CLARK M. Global diets link environmental sustainability and human health[J]. Nature, 2014, 515(7528): 518−522 doi: 10.1038/nature13959
|
[29] |
WILLETT W, ROCKSTRÖM J, LOKEN B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems[J]. Lancet (London, England), 2019, 393(10170): 447−492 doi: 10.1016/S0140-6736(18)31788-4
|
[30] |
中国营养学会. 中国居民膳食指南科学研究报告 2021[M]. 北京: 人民卫生出版社, 2021
Chinese Nutrition Society. 2021 Scientific Research Report on Dietary Guidelines for Chinese Residents [M]. Beijing: People’s Medical Publishing House, 2021
|
[31] |
LING L, SHUAI Y J, XU Y, et al. Comparing rice production systems in China: economic output and carbon footprint[J]. Science of the Total Environment, 2021, 791: 147890 doi: 10.1016/j.scitotenv.2021.147890
|
[32] |
HU N J, LIU C H, CHEN Q, et al. Life cycle environmental impact assessment of rice-crayfish integrated system: a case study[J]. Journal of Cleaner Production, 2021, 280: 124440 doi: 10.1016/j.jclepro.2020.124440
|
[33] |
刘金根, 杨通, 冯金飞. 稻-虾(克氏原螯虾)综合种养模式的碳足迹分析[J]. 生态与农村环境学报, 2021, 37(8): 1041−1049
LIU J G, YANG T, FENG J F. Carbon footprint analysis of rice-Procambarus clarkii integrated farming system[J]. Journal of Ecology and Rural Environment, 2021, 37(8): 1041−1049
|
[34] |
戴然欣, 赵璐峰, 唐建军, 等. 稻渔系统碳固持与甲烷排放特征[J]. 中国生态农业学报(中英文), 2022, 30(4): 616−629 doi: 10.12357/cjea.20210811
DAI R X, ZHAO L F, TANG J J, et al. Characteristics of carbon sequestration and methane emission in rice-fish system[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 616−629 doi: 10.12357/cjea.20210811
|
[35] |
丁维新, 袁俊吉, 刘德燕, 等. 淡水养殖系统温室气体CH4和N2O排放量研究进展[J]. 农业环境科学学报, 2020, 39(4): 749−761 doi: 10.11654/jaes.2019-1388
DING W X, YUAN J J, LIU D Y, et al. CH4 and N2O emissions from freshwater aquaculture[J]. Journal of Agro-Environment Science, 2020, 39(4): 749−761 doi: 10.11654/jaes.2019-1388
|
[36] |
ZHENG H, HUANG H, YAO L, et al. Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: a meta-analysis[J]. Biogeosciences, 2014, 11(13): 3685−3693 doi: 10.5194/bg-11-3685-2014
|
[37] |
孙会峰, 周胜, 陈桂发, 等. 水稻品种对稻田CH4和N2O排放的影响[J]. 农业环境科学学报, 2015, 34(8): 1595−1602 doi: 10.11654/jaes.2015.08.024
SUN H F, ZHOU S, CHEN G F, et al. Effects of rice cultivars on CH4 and N2O emissions from rice fields[J]. Journal of Agro-Environment Science, 2015, 34(8): 1595−1602 doi: 10.11654/jaes.2015.08.024
|
[38] |
张卫建, 张艺, 邓艾兴, 等. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析[J]. 中国稻米, 2021, 27(4): 53−57 doi: 10.3969/j.issn.1006-8082.2021.04.011
ZHANG W J, ZHANG Y, DENG A X, et al. Integrated impacts and trend analysis of rice cultivar renewal and planting technology improvement on carbon emission in China[J]. China Rice, 2021, 27(4): 53−57 doi: 10.3969/j.issn.1006-8082.2021.04.011
|
[39] |
LI J L, LI Y E, WAN Y F, et al. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield[J]. Geoderma, 2018, 315: 1−10 doi: 10.1016/j.geoderma.2017.11.033
|
[40] |
MACLEOD M J, HASAN M R, ROBB D H F, et al. Quantifying greenhouse gas emissions from global aquaculture[J]. Scientific Reports, 2020, 10(1): 11679 doi: 10.1038/s41598-020-68231-8
|