JIANG R, XU Q, LI J Y, DAI L X, AO D C, DOU Z, GAO H. Sensitivity and uncertainty analysis of carbon footprint evaluation: A case study of rice-crayfish coculture in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1577−1587. DOI: 10.12357/cjea.20220188
Citation: JIANG R, XU Q, LI J Y, DAI L X, AO D C, DOU Z, GAO H. Sensitivity and uncertainty analysis of carbon footprint evaluation: A case study of rice-crayfish coculture in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1577−1587. DOI: 10.12357/cjea.20220188

Sensitivity and uncertainty analysis of carbon footprint evaluation: A case study of rice-crayfish coculture in China

Funds: This work was supported by the Natural Science Foundation of Jiangsu Province (BK20210791), the Strategic Research and Consulting Project of Chinese Academy of Engineering (2021-XZ-30), the Science and Technology Innovation Fund for Undergraduate of Yangzhou University (X20220604), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
More Information
  • Corresponding author:

    XU Qiang, E-mail: qiangxu@yzu.edu.cn

  • Received Date: March 13, 2022
  • Accepted Date: May 23, 2022
  • Available Online: August 15, 2022
  • Rice-crayfish coculture has recently been developed owing to its high economic benefits. In 2020, the area used for rice-crayfish coculture in China reached 1.26×106 hm2. The objective and comprehensive evaluation of the carbon footprint of rice-crayfish coculture is crucial for low-carbon green development of the integrated farming industry of rice and aquaculture animals. Sensitivity and uncertainty analyses of carbon footprint can help to increase the robustness of the evaluation results and provide a reference to further optimize parameters and reduce the uncertainty of evaluation results in the future. Based on a field experiment and life cycle assessment (LCA), a comprehensive carbon footprint evaluation of rice monoculture and rice-crayfish coculture was carried out using 1 hm2 (area), 1 ¥ (output value), and 1 NDU (nutrient density unit) as the functional units (FU). The results showed that the carbon footprint per hectare (CFA) of rice monoculture and rice-crayfish coculture was 14 126 kg(CO2-eq)·hm–2 and 13 140 kg(CO2-eq)·hm–2, respectively; the latter was 7.0% lower than the former. Compared with rice monoculture, rice-crayfish coculture had higher economic output value and nutrition density delivery. Thus, the carbon footprint per output value [0.11 kg(CO2-eq)·¥–1] and carbon footprint per NDU [3.05 kg(CO2-eq)·NDU–1] of rice-crayfish coculture was 49.3%–81.4% lower than those of rice monoculture, whereas the net ecosystem economic budget (NEEB) of rice-crayfish coculture (85 745 ¥·hm–2) was 511.5% higher than that of rice monoculture. Hotspot analysis showed that CH4 emissions, electricity consumption, and feed input contributed greatly to carbon footprint, accounting for 59.8%, 13.8%, and 12.3%, respectively. The application of urea, compound fertilizer, and organic fertilizer contributed 4.7%, 3.8%, and 1.5% to carbon footprint, respectively; and N2O emissions, diesel consumption, and rice seeds contributed even less (3.3%, 0.3%, and 0.4%, respectively). Sensitivity analysis showed that the carbon footprint was most sensitive to CH4 emissions. When CH4 emissions varied by ±40%, the carbon footprint varied between 9994 and 16 283 kg(CO2-eq)·hm–2. Carbon footprint was also sensitive to electricity consumption and feed input. When these two parameters were varied by ±40%, the carbon footprint varied from 12 413 to 13 864 kg(CO2-eq)·hm–2 and 12 491 to 13 787 kg(CO2-eq)·hm–2, respectively. Other parameters (i.e., diesel consumption, organic fertilizer, and rice seed inputs) had a weaker impact on the carbon footprint. The results of uncertainty analysis showed that the mean value of the carbon footprint of rice-crayfish coculture was 13 302±1166 kg(CO2-eq)∙hm–2, and the median and coefficient of variation were 13 250 kg(CO2-eq)·hm–2 and 8.76%, respectively, indicating a weak variation. Under 95% confidence interval, the CFA of rice-crayfish coculture varied between 11 179 and 15 613 kg(CO2-eq)·hm–2. The results of this study highlighted the rich nutritional output function of rice-crayfish coculture and analyzed the urgency and necessity of transforming traditional agriculture to ecological agriculture from the perspective of improving the dietary structure of residents. The methods used in this study can provide technical support for a more comprehensive carbon footprint evaluation of agricultural production systems with multi-functional outputs.
  • [1]
    HUANG W B, WU F Q, HAN W R, et al. Carbon footprint of cotton production in China: Composition, spatiotemporal changes and driving factors[J]. The Science of the Total Environment, 2022, 821: 153407 doi: 10.1016/j.scitotenv.2022.153407
    [2]
    中华人民共和国国家统计局. 中华人民共和国2003年国民经济和社会发展统计公报[J]. 中国统计, 2004(3): 6−10 doi: 10.3969/j.issn.1002-4557.2004.03.003

    National Bureau of Statistics of People’s Republic of China. 2003 Statistical Bulletin of National Economic and Social Development of People’s Republic of China[J]. China Statistics, 2004(3): 6−10 doi: 10.3969/j.issn.1002-4557.2004.03.003
    [3]
    LIU W, HUSSAIN S, WU L S, et al. Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management[J]. Environmental Science and Pollution Research International, 2016, 23(1): 315−328 doi: 10.1007/s11356-015-5227-7
    [4]
    张卫建, 严圣吉, 张俊, 等. 国家粮食安全与农业双碳目标的双赢策略[J]. 中国农业科学, 2021, 54(18): 3892−3902 doi: 10.3864/j.issn.0578-1752.2021.18.009

    ZHANG W J, YAN S J, ZHANG J, et al. Win-win strategy for national food security and agricultural double-carbon goals[J]. Scientia Agricultura Sinica, 2021, 54(18): 3892−3902 doi: 10.3864/j.issn.0578-1752.2021.18.009
    [5]
    YE S J, SONG C Q, SHEN S, et al. Spatial pattern of arable land-use intensity in China[J]. Land Use Policy, 2020, 99: 104845 doi: 10.1016/j.landusepol.2020.104845
    [6]
    高辉, 陈友明. 稻田高质高效生态种养200题[M]. 北京: 中国农业出版社, 2021

    GAO H, CHEN Y M. 200 Questions on High-Quality and High-Efficiency Ecological Planting and Aquaculture in Paddy Fields[M]. Beijing: China Agriculture Press, 2021
    [7]
    曹凑贵, 江洋, 汪金平, 等. 稻虾共作模式的“双刃性”及可持续发展策略[J]. 中国生态农业学报, 2017, 25(9): 1245−1253

    CAO C G, JIANG Y, WANG J P, et al. “Dual character” of rice-crayfish culture and strategies for its sustainable development[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1245−1253
    [8]
    GUO L, HU L L, ZHAO L F, et al. Coupling rice with fish for sustainable yields and soil fertility in China[J]. Rice Science, 2020, 27(3): 175−179 doi: 10.1016/j.rsci.2020.04.001
    [9]
    AHMED N, TURCHINI G M. The evolution of the blue-green revolution of rice-fish cultivation for sustainable food production[J]. Sustainability Science, 2021, 16(4): 1375−1390 doi: 10.1007/s11625-021-00924-z
    [10]
    佀国涵, 彭成林, 徐祥玉, 等. 稻虾共作模式对涝渍稻田土壤理化性状的影响[J]. 中国生态农业学报, 2017, 25(1): 61−68 doi: 10.13930/j.cnki.cjea.160661

    SI G H, PENG C L, XU X Y, et al. Effect of integrated rice-crayfish farming system on soil physico-chemical properties in waterlogged paddy soils[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 61−68 doi: 10.13930/j.cnki.cjea.160661
    [11]
    SUN G, SUN M, DU L S, et al. Ecological rice-cropping systems mitigate global warming — A meta-analysis[J]. Science of the Total Environment, 2021, 789: 147900 doi: 10.1016/j.scitotenv.2021.147900
    [12]
    徐祥玉, 张敏敏, 彭成林, 等. 稻虾共作对秸秆还田后稻田温室气体排放的影响[J]. 中国生态农业学报, 2017, 25(11): 1591−1603 doi: 10.13930/j.cnki.cjea.170280

    XU X Y, ZHANG M M, PENG C L, et al. Effect of rice-crayfish co-culture on greenhouse gases emission in straw-puddled paddy fields[J]. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1591−1603 doi: 10.13930/j.cnki.cjea.170280
    [13]
    XU Q, LIU T, GUO H L, et al. Conversion from rice-wheat rotation to rice-crayfish coculture increases net ecosystem service values in Hung-tse Lake area, East China[J]. Journal of Cleaner Production, 2021, 319: 128883 doi: 10.1016/j.jclepro.2021.128883
    [14]
    XU Q, HU K L, YAO Z S, et al. Evaluation of carbon, nitrogen footprint and primary energy demand under different rice production systems[J]. Ecological Indicators, 2020, 117: 106634 doi: 10.1016/j.ecolind.2020.106634
    [15]
    PHONG L T, DE BOER I J M, UDO H M J. Life cycle assessment of food production in integrated agriculture-aquaculture systems of the Mekong Delta[J]. Livestock Science, 2011, 139(1/2): 80−90
    [16]
    VAN DOOREN C. Proposing the nutrient density unit as the functional unit in LCAs of foods[C]. International Conference on Life Cycle Assessment of Food 2016, 2016
    [17]
    BICER Y, DINCER I. Life cycle environmental impact assessments and comparisons of alternative fuels for clean vehicles[J]. Resources, Conservation and Recycling, 2018, 132: 141−157 doi: 10.1016/j.resconrec.2018.01.036
    [18]
    MENESES M, TORRES C M, CASTELLS F. Sensitivity analysis in a life cycle assessment of an aged red wine production from Catalonia, Spain[J]. Science of the Total Environment, 2016, 562: 571−579 doi: 10.1016/j.scitotenv.2016.04.083
    [19]
    XU Q, YANG Y, HU K L, et al. Economic, environmental, and emergy analysis of China’s green tea production[J]. Sustainable Production and Consumption, 2021, 28: 269−280 doi: 10.1016/j.spc.2021.04.019
    [20]
    赵杰, 李绍平, 程爽, 等. “独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响[J]. 作物学报, 2021, 47(6): 1162−1174

    ZHAO J, LI S P, CHENG S, et al. Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode[J]. Acta Agronomica Sinica, 2021, 47(6): 1162−1174
    [21]
    刘秋员, 周磊, 田晋钰, 等. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选[J]. 中国农业科学, 2021, 54(7): 1397−1409 doi: 10.3864/j.issn.0578-1752.2021.07.007

    LIU Q Y, ZHOU L, TIAN J Y, et al. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe Japonica rice in the middle and lower reaches of Yangtze River[J]. Scientia Agricultura Sinica, 2021, 54(7): 1397−1409 doi: 10.3864/j.issn.0578-1752.2021.07.007
    [22]
    车阳, 程爽, 田晋钰, 等. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异[J]. 作物学报, 2021, 47(10): 1953−1965

    CHE Y, CHENG S, TIAN J Y, et al. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields[J]. Acta Agronomica Sinica, 2021, 47(10): 1953−1965
    [23]
    CHURCH J, CLARK P, CAZENAVE A, et al. Climate Change 2013: The physical science basis, in contribution of working groupⅠto the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge and New York: IPCC, 2013
    [24]
    IPCC. Revised guidelines for national greenhouse gas inventories. Volume 4. Agriculture, forestry and other land use. Chapter 11. N2O emissions from managed soils and CO2 emissions from lime and urea application[R]. Cambridge and New York: IPCC, 2019
    [25]
    LI B, FAN C H, ZHANG H, et al. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China[J]. Atmospheric Environment, 2015, 100: 10−19 doi: 10.1016/j.atmosenv.2014.10.034
    [26]
    ZHAO L L, OU X M, CHANG S Y. Life-cycle greenhouse gas emission and energy use of bioethanol produced from corn stover in China: current perspectives and future prospectives[J]. Energy, 2016, 115: 303−313 doi: 10.1016/j.energy.2016.08.046
    [27]
    JIAO J L, LI J J, BAI Y. Uncertainty analysis in the life cycle assessment of cassava ethanol in China[J]. Journal of Cleaner Production, 2019, 206: 438−451 doi: 10.1016/j.jclepro.2018.09.199
    [28]
    TILMAN D, CLARK M. Global diets link environmental sustainability and human health[J]. Nature, 2014, 515(7528): 518−522 doi: 10.1038/nature13959
    [29]
    WILLETT W, ROCKSTRÖM J, LOKEN B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems[J]. Lancet (London, England), 2019, 393(10170): 447−492 doi: 10.1016/S0140-6736(18)31788-4
    [30]
    中国营养学会. 中国居民膳食指南科学研究报告 2021[M]. 北京: 人民卫生出版社, 2021

    Chinese Nutrition Society. 2021 Scientific Research Report on Dietary Guidelines for Chinese Residents [M]. Beijing: People’s Medical Publishing House, 2021
    [31]
    LING L, SHUAI Y J, XU Y, et al. Comparing rice production systems in China: economic output and carbon footprint[J]. Science of the Total Environment, 2021, 791: 147890 doi: 10.1016/j.scitotenv.2021.147890
    [32]
    HU N J, LIU C H, CHEN Q, et al. Life cycle environmental impact assessment of rice-crayfish integrated system: a case study[J]. Journal of Cleaner Production, 2021, 280: 124440 doi: 10.1016/j.jclepro.2020.124440
    [33]
    刘金根, 杨通, 冯金飞. 稻-虾(克氏原螯虾)综合种养模式的碳足迹分析[J]. 生态与农村环境学报, 2021, 37(8): 1041−1049

    LIU J G, YANG T, FENG J F. Carbon footprint analysis of rice-Procambarus clarkii integrated farming system[J]. Journal of Ecology and Rural Environment, 2021, 37(8): 1041−1049
    [34]
    戴然欣, 赵璐峰, 唐建军, 等. 稻渔系统碳固持与甲烷排放特征[J]. 中国生态农业学报(中英文), 2022, 30(4): 616−629 doi: 10.12357/cjea.20210811

    DAI R X, ZHAO L F, TANG J J, et al. Characteristics of carbon sequestration and methane emission in rice-fish system[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 616−629 doi: 10.12357/cjea.20210811
    [35]
    丁维新, 袁俊吉, 刘德燕, 等. 淡水养殖系统温室气体CH4和N2O排放量研究进展[J]. 农业环境科学学报, 2020, 39(4): 749−761 doi: 10.11654/jaes.2019-1388

    DING W X, YUAN J J, LIU D Y, et al. CH4 and N2O emissions from freshwater aquaculture[J]. Journal of Agro-Environment Science, 2020, 39(4): 749−761 doi: 10.11654/jaes.2019-1388
    [36]
    ZHENG H, HUANG H, YAO L, et al. Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: a meta-analysis[J]. Biogeosciences, 2014, 11(13): 3685−3693 doi: 10.5194/bg-11-3685-2014
    [37]
    孙会峰, 周胜, 陈桂发, 等. 水稻品种对稻田CH4和N2O排放的影响[J]. 农业环境科学学报, 2015, 34(8): 1595−1602 doi: 10.11654/jaes.2015.08.024

    SUN H F, ZHOU S, CHEN G F, et al. Effects of rice cultivars on CH4 and N2O emissions from rice fields[J]. Journal of Agro-Environment Science, 2015, 34(8): 1595−1602 doi: 10.11654/jaes.2015.08.024
    [38]
    张卫建, 张艺, 邓艾兴, 等. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析[J]. 中国稻米, 2021, 27(4): 53−57 doi: 10.3969/j.issn.1006-8082.2021.04.011

    ZHANG W J, ZHANG Y, DENG A X, et al. Integrated impacts and trend analysis of rice cultivar renewal and planting technology improvement on carbon emission in China[J]. China Rice, 2021, 27(4): 53−57 doi: 10.3969/j.issn.1006-8082.2021.04.011
    [39]
    LI J L, LI Y E, WAN Y F, et al. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield[J]. Geoderma, 2018, 315: 1−10 doi: 10.1016/j.geoderma.2017.11.033
    [40]
    MACLEOD M J, HASAN M R, ROBB D H F, et al. Quantifying greenhouse gas emissions from global aquaculture[J]. Scientific Reports, 2020, 10(1): 11679 doi: 10.1038/s41598-020-68231-8
  • Cited by

    Periodical cited type(13)

    1. 董寅,李冰,贾睿,侯诒然,刁维旭,朱健. 长江流域2种水产养殖模式的生命周期环境影响评价. 渔业科学进展. 2024(01): 23-32 .
    2. 杜胜男,马郝佳,刘静,李娟英,陈以芹,何文辉. 基于EOD模式的田园综合体碳平衡初步研究. 上海海洋大学学报. 2024(01): 161-171 .
    3. 朱紫蓉,方胜. 黄山茶叶碳足迹核算及其低碳发展研究——以黄山毛峰为例. 黄山学院学报. 2024(01): 74-78 .
    4. 丁也璐,赵娜娜,黎明,梁梦茵,高学睿,王纪超,赵西宁. 陕北农田作物生产碳源/汇及碳足迹空间特征. 生态学报. 2024(11): 4574-4583 .
    5. 丁玉凌,徐书含,刘文超,方凯凯,王玲玲,邹丽芳,曹林奎,沙之敏. 稻蛙生态种养模式碳足迹评价. 华南农业大学学报. 2024(06): 939-948 .
    6. 徐珂,易小燕,张英楠,尹昌斌. 哈尼梯田区稻鱼共作模式碳足迹和经济效益综合评价. 生态学报. 2024(23): 10619-10630 .
    7. 梅威,武慧君,方维鑫,朱慧敏. 稻虾共作模式碳氮足迹分析——以淮南市为例. 农业环境科学学报. 2024(12): 3022-3033 .
    8. 罗玉婷,胥刚,任继周,常生华,余春晓. 黄土高原四种作物生产的温室气体排放比较. 草地学报. 2023(08): 2425-2435 .
    9. 罗加伟,钱开国,徐博,李虹颖,刘少君,熊启中,李硕,孙瑞波,张朝春,叶新新. 稻虾共作模式下龙虾品种和养殖密度对CH_4和N_2O排放的影响. 农业环境科学学报. 2023(08): 1852-1859 .
    10. 李京咏,戴林秀,彭翔,杨谦,徐强,窦志,高辉. 氮肥减施对稻田综合种养水稻产量和品质的影响. 中国稻米. 2023(05): 28-37 .
    11. 周影,李京咏,戴林秀,敖弟彩,李梓逸,杨帆,顾军伟,徐强,窦志,高辉. 稻虾共作模式下喷施褪黑素对水稻产量形成和抗倒伏特性的影响. 中国农业科技导报. 2023(09): 34-42 .
    12. 李丽丽,李莉. 基于LCA的稻蟹共作模式碳足迹评价. 农业科技通讯. 2023(11): 81-83+88 .
    13. 苏越,朱峻珲,朱从谋,苑韶峰,李思楠,孙涵韵. 浙北平原地区耕地非粮化时空演变特征及碳排放效应分析. 农业工程学报. 2023(24): 278-286 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (1279) PDF downloads (194) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return