Citation: | HU M Y, LI Y Y, GE C R, ZHANG Y Y, YAO H Y. Research status and application prospects of combined nitrogen fixation in gramineous plants[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1815−1826. DOI: 10.13930/j.cnki.cjea.210317 |
[1] |
DALTON H. The fundamentals of nitrogen fixation[J]. Febs Letters, 1983, 162(1): 207−207 doi: 10.1016/0014-5793(83)81085-0
|
[2] |
FOWLER D, PYLE J A, RAVEN J A, et al. The global nitrogen cycle in the twenty-first century: introduction[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1621): 20130165 doi: 10.1098/rstb.2013.0165
|
[3] |
HERRIDGE D F, PEOPLES M B, BODDEY R M. Global inputs of biological nitrogen fixation in agricultural systems[J]. Plant and Soil, 2008, 311(1/2): 1−18
|
[4] |
SIMONSEN A K, DINNAGE R, BARRETT L G, et al. Symbiosis limits establishment of legumes outside their native range at a global scale[J]. Nature Communications, 2017, 8: 14790 doi: 10.1038/ncomms14790
|
[5] |
李旭, 董炜灵, 宋阿琳, 等. 秸秆添加量对土壤生物固氮速率和固氮菌群落特征的影响[J]. 中国农业科学, 2021, 54(5): 980−991 doi: 10.3864/j.issn.0578-1752.2021.05.010
LI X, DONG W L, SONG A L, et al. Effects of straw addition on soil biological N2-fixation rate and diazotroph community properties[J]. Scientia Agricultura Sinica, 2021, 54(5): 980−991 doi: 10.3864/j.issn.0578-1752.2021.05.010
|
[6] |
徐鹏霞, 韩丽丽, 贺纪正, 等. 非共生生物固氮微生物分子生态学研究进展[J]. 应用生态学报, 2017, 28(10): 3440−3450
XU P X, HAN L L, HE J Z, et al. Research advance on molecular ecology of asymbiotic nitrogen fixation microbes[J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3440−3450
|
[7] |
SEARCHINGER T, WAITE R, HANSON C, et al. Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050[C/OL]//Final Report, 2019: 42. [2014-01-01] https://www.researchgate.net/profile/Richard-Waite-2/publication/280755107_Creating_a_sustainable_food_future_A_menu_of_solutions_to_sustainably_feed_more_than_9_billion_people_by_2050_World_resources_report_2013-14_interim_findings/links/55f18e3008aedecb69005914/Creating-a-sustainable-food-future-A-menu-of-solutions-to-sustainably-feed-more-than-9-billion-people-by-2050-World-resources-report-2013-14-interim-findings.pdf
|
[8] |
BALDANI J, CARUSO L, BALDANI V L D, et al. Recent advances in BNF with non-legume plants[J]. Soil Biology and Biochemistry, 1997, 29(5/6): 911−922
|
[9] |
FRANCHE C, LINDSTRÖ M K, ELMERICH C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants[J]. Plant and Soil, 2009, 321(1/2): 35−59
|
[10] |
DÖBEREINER J, DAY J M, NEWTON W E, et al. Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites[EB/OL]. 1976
|
[11] |
张丽梅, 方萍, 朱日清. 禾本科植物联合固氮研究及其应用现状展望[J]. 应用生态学报, 2004, 15(9): 1650−1654 doi: 10.3321/j.issn:1001-9332.2004.09.032
ZHANG L M, FANG P, ZHU R Q. Recent advances in research and application of associated nitrogen-fixation with graminaceous plants[J]. Chinese Journal of Applied Ecology, 2004, 15(9): 1650−1654 doi: 10.3321/j.issn:1001-9332.2004.09.032
|
[12] |
KENNEDY I R, ISLAM N. The current and potential contribution of asymbiotic nitrogen fixation to nitrogen requirements on farms: a review[J]. Australian Journal of Experimental Agriculture, 2001, 41(3): 447−457 doi: 10.1071/EA00081
|
[13] |
LIMA D R M, SANTOS I B, OLIVEIRA J T C, et al. Genetic diversity of N-fixing and plant growth-promoting bacterial community in different sugarcane genotypes, association habitat and phenological phase of the crop[J]. Archives of Microbiology, 2021, 203(3): 1089−1105 doi: 10.1007/s00203-020-02103-7
|
[14] |
KRUASUWAN W, THAMCHAIPENET A. Diversity of culturable plant growth-promoting bacterial endophytes associated with sugarcane roots and their effect of growth by co-inoculation of diazotrophs and actinomycetes[J]. Journal of Plant Growth Regulation, 2016, 35(4): 1074−1087 doi: 10.1007/s00344-016-9604-3
|
[15] |
CAVALCANTE V A, DOBEREINER J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane[J]. Plant and Soil, 1988, 108(1): 23−31 doi: 10.1007/BF02370096
|
[16] |
CHAKRABORTY A, ISLAM E. Temporal dynamics of total and free-living nitrogen-fixing bacterial community abundance and structure in soil with and without history of arsenic contamination during a rice growing season[J]. Environmental Science and Pollution Research, 2018, 25(5): 4951−4962 doi: 10.1007/s11356-017-0858-5
|
[17] |
WU C F, WEI X M, HU Z Y, et al. Diazotrophic community variation underlies differences in nitrogen fixation potential in paddy soils across a climatic gradient in China[J]. Microbial Ecology, 2021, 81(2): 425−436 doi: 10.1007/s00248-020-01591-w
|
[18] |
MA J, BEI Q C, WANG X J, et al. Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system[J]. Science of the Total Environment, 2019, 649: 686−694 doi: 10.1016/j.scitotenv.2018.08.318
|
[19] |
MA H L, MAO P P, IMRAN S, et al. Rice planting increases biological nitrogen fixation in acidic soil and the influence of light and flood layer thickness[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 341−348 doi: 10.1007/s42729-020-00364-1
|
[20] |
LI Y, LI T, ZHAO D Q, et al. Different tillage practices change assembly, composition, and co-occurrence patterns of wheat rhizosphere diazotrophs[J]. Science of the Total Environment, 2021, 767: 144252 doi: 10.1016/j.scitotenv.2020.144252
|
[21] |
LIU Y, GUO Z H, XUE C, et al. Changes in N2-fixation activity, abundance and composition of diazotrophic communities in a wheat field under elevated CO2 and canopy warming[J]. Applied Soil Ecology, 2021, 165: 104017 doi: 10.1016/j.apsoil.2021.104017
|
[22] |
VAN DEYNZE A, ZAMORA P, DELAUX P M, et al. Nitrogen fixation in a Landrace of maize is supported by a mucilage-associated diazotrophic microbiota[J]. PLoS Biology, 2018, 16(8): e2006352 doi: 10.1371/journal.pbio.2006352
|
[23] |
ABADI V, SEPEHRI M, RAHHMANI H A, et al. Diversity and abundance of culturable nitrogen-fixing bacteria in the phyllosphere of maize[J]. Journal of Applied Microbiology, 2021, 131(2): 898−912
|
[24] |
COMPANT S, SAMAD A, FAIST H, et al. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application[J]. Journal of Advanced Research, 2019, 19: 29−37 doi: 10.1016/j.jare.2019.03.004
|
[25] |
谢祖彬, 张燕辉, 王慧. 稻田生物固氮研究进展及方向[J]. 土壤学报, 2020, 57(3): 540−546 doi: 10.11766/trxb201912060662
XIE Z B, ZHANG Y H, WANG H. Advances and perspectives in paddy biological nitrogen fixation[J]. Acta Pedologica Sinica, 2020, 57(3): 540−546 doi: 10.11766/trxb201912060662
|
[26] |
MAGNANI G S, DIDONET C M, CRUZ L M, et al. Diversity of endophytic bacteria in Brazilian sugarcane[J]. Genetics and Molecular Research, 2010, 9(1): 250−258 doi: 10.4238/vol9-1gmr703
|
[27] |
SAHARAN B S, NEHRA V. Plant growth promoting rhizobacteria: a critical review[J]. Life Sciences and Medicine Research, 2011, 21(1): 1−30
|
[28] |
MA J, BEI Q C, WANG X J, et al. Paddy system with a hybrid rice enhances cyanobacteria Nostoc and increases N2 fixation[J]. Pedosphere, 2019, 29(3): 374−387 doi: 10.1016/S1002-0160(19)60809-X
|
[29] |
LIU J M, HAN J J, ZHU C W, et al. Elevated atmospheric CO2 and nitrogen fertilization affect the abundance and community structure of rice root-associated nitrogen-fixing bacteria[J]. Frontiers in Microbiology, 2021, 12: 628108 doi: 10.3389/fmicb.2021.628108
|
[30] |
BELLENGER J P, XU Y, ZHANG X, et al. Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacteria in soils[J]. Soil Biology and Biochemistry, 2014, 69: 413−420 doi: 10.1016/j.soilbio.2013.11.015
|
[31] |
SICKERMAN N S, RETTBERG L A, LEE C C, et al. Cluster assembly in nitrogenase[J]. Essays in Biochemistry, 2017, 61(2): 271−279 doi: 10.1042/EBC20160071
|
[32] |
荆晓姝, 丁燕, 韩晓梅, 等. 联合固氮菌的合成生物学研究进展[J]. 微生物学报, 2021. DOI: 10.13343/j.cnko.wsxb. 20200796
JING X S, DING Y, HAN X M, et al. Advances in synthetic biology of associated nitrogen-fixation bacteria[J]. Acta Microbiologica Sinica, 2021. DOI: 10.13343/j.cnko.wsxb. 20200796
|
[33] |
HOFFMAN B M, LUKOYANOV D, YANG Z Y, et al. Mechanism of nitrogen fixation by nitrogenase: the next stage[J]. Chemical Reviews, 2014, 114(8): 4041−4062 doi: 10.1021/cr400641x
|
[34] |
HU Y L, RIBBE M W. Biosynthesis of nitrogenase FeMoco[J]. Coordination Chemistry Reviews, 2011, 255(9/10): 1218−1224
|
[35] |
YONEYAMA T, TERAKADO-TONOOKA J, BAO Z, et al. Molecular analyses of the distribution and function of diazotrophic rhizobia and methanotrophs in the tissues and rhizosphere of non-leguminous plants[J]. Plants, 2019, 8(10): 408−429 doi: 10.3390/plants8100408
|
[36] |
THAWEENUT N, HACHISUKA Y, ANDO S, et al. Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia[J]. Plant and Soil, 2011, 338(1/2): 435−449
|
[37] |
YONEYAMA T, TERAKADO-TONOOKA J, MINAMISAWA K. Exploration of bacterial N2-fixation systems in association with soil-grown sugarcane, sweet potato, and paddy rice: a review and synthesis[J]. Soil Science and Plant Nutrition, 2017, 63(6): 578−590 doi: 10.1080/00380768.2017.1407625
|
[38] |
PAGAN J D, CHILD J J, SCOWCROFT W R, et al. Nitrogen fixation by Rhizobium cultured on a defined medium[J]. Nature, 1975, 256(5516): 406−407 doi: 10.1038/256406a0
|
[39] |
KURZ W G W, LARUE T A. Nitrogenase activity in rhizobia in absence of plant host[J]. Nature, 1975, 256(5516): 407−409 doi: 10.1038/256407a0
|
[40] |
LI Y B, WANG M Y, CHEN S F. Application of N2-fixing Paenibacillus triticisoli BJ-18 changes the compositions and functions of the bacterial, diazotrophic, and fungal microbiomes in the rhizosphere and root/shoot endosphere of wheat under field conditions[J]. Biology and Fertility of Soils, 2021, 57(3): 347−362 doi: 10.1007/s00374-020-01528-y
|
[41] |
GREETATORN T, HASHIMOTO S, MAEDA T, et al. Mechanisms of rice endophytic bradyrhizobial cell differentiation and its role in nitrogen fixation[J]. Microbes and Environments, 2020. DOI: 10.1264/jsme2.me20049
|
[42] |
LIU X Y, LIU C, GAO W H, et al. Impact of biochar amendment on the abundance and structure of diazotrophic community in an alkaline soil[J]. Science of the Total Environment, 2019, 688: 944−951 doi: 10.1016/j.scitotenv.2019.06.293
|
[43] |
HU X J, LIU J J, ZHU P, et al. Long-term manure addition reduces diversity and changes community structure of diazotrophs in a neutral black soil of northeast China[J]. Journal of Soils and Sediments, 2018, 18(5): 2053−2062 doi: 10.1007/s11368-018-1975-6
|
[44] |
FENG M M, ADAMS J M, FAN K K, et al. Long-term fertilization influences community assembly processes of soil diazotrophs[J]. Soil Biology and Biochemistry, 2018, 126: 151−158 doi: 10.1016/j.soilbio.2018.08.021
|
[45] |
MENG X T, LIAO H K, FAN H X, et al. The geographical scale dependence of diazotroph assembly and activity: Effect of a decade fertilization[J]. Geoderma, 2021, 386: 114923 doi: 10.1016/j.geoderma.2020.114923
|
[46] |
FAN K K, DELGADO-BAQUERIZO M, GUO X S, et al. Suppressed N fixation and diazotrophs after four decades of fertilization[J]. Microbiome, 2019, 7(1): 143−153 doi: 10.1186/s40168-019-0757-8
|
[47] |
WANG C, ZHENG M M, SONG W F, et al. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in Southern China[J]. Soil Biology and Biochemistry, 2017, 113: 240−249 doi: 10.1016/j.soilbio.2017.06.019
|
[48] |
WANG J L, LI Q K, SHEN C C, et al. Significant dose effects of fertilizers on soil diazotrophic diversity, community composition, and assembly processes in a long-term paddy field fertilization experiment[J]. Land Degradation & Development, 2021, 32(1): 420−429
|
[49] |
PEREIRA W, SOUSA J S, SCHULTZ N, et al. Sugarcane productivity as a function of nitrogen fertilization and inoculation with diazotrophic plant growth-promoting bacteria[J]. Sugar Tech, 2019, 21(1): 71−82 doi: 10.1007/s12355-018-0638-7
|
[50] |
ZHOU J, MA M C, GUAN D W, et al. Nitrogen has a greater influence than phosphorus on the diazotrophic community in two successive crop seasons in Northeast China[J]. Scientific Reports, 2021, 11: 6303 doi: 10.1038/s41598-021-85829-8
|
[51] |
BARRON A R, WURZBURGER N, BELLENGER J P, et al. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils[J]. Nature Geoscience, 2009, 2(1): 42−45 doi: 10.1038/ngeo366
|
[52] |
PAJARES S, BOHANNAN B J M. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils[J]. Frontiers in Microbiology, 2016, 7: 1045
|
[53] |
REED S C, CLEVELAND C C, TOWNSEND A R. Functional ecology of free-living nitrogen fixation: a contemporary perspective[J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42(1): 489−512 doi: 10.1146/annurev-ecolsys-102710-145034
|
[54] |
XIAO D, XIAO L M, CHE R X, et al. Phosphorus but not nitrogen addition significantly changes diazotroph diversity and community composition in typical Karst grassland soil[J]. Agriculture, Ecosystems & Environment, 2020, 301: 106987
|
[55] |
STANTON D E, BATTERMAN S A, VON FISCHER J C, et al. Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum[J]. Ecology, 2019, 100(9): e02795
|
[56] |
LI Y B, LI Q, GUAN G H, et al. Phosphate solubilizing bacteria stimulate wheat rhizosphere and endosphere biological nitrogen fixation by improving phosphorus content[J]. PeerJ, 2020, 8: e9062 doi: 10.7717/peerj.9062
|
[57] |
THOMPSON N B, GREEN M T, PETERS J C, et al. Nitrogen fixation via a terminal Fe (Ⅳ) nitride[J]. Journal of the American Chemical Society, 2017, 139(43): 15312−15315 doi: 10.1021/jacs.7b09364
|
[58] |
TROVERO M F, SCAVONE P, PLATERO R, et al. Herbaspirillum seropedicae differentially expressed genes in response to iron availability[J]. Frontiers in Microbiology, 2018, 9: 1430 doi: 10.3389/fmicb.2018.01430
|
[59] |
ALAHARI A, APTE S K. Pleiotropic effects of potassium deficiency in a heterocystous, nitrogen-fixing cyanobacterium, Anabaenatorulosa[J]. Microbiology, 1998, 144: 1557−1563
|
[60] |
SINGH R K, SINGH P, LI H B, et al. Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp[J]. BMC Plant Biology, 2020, 20(1): 220 doi: 10.1186/s12870-020-02400-9
|
[61] |
狄义宁, 李自超, 谢林艳, 等. 接种甘蔗内生菌B9对不同甘蔗品种生长的影响[J]. 热带作物学报, 2021, 42(1): 149−158
DI Y N, LI Z C, XIE L Y, et al. Impact of endophyte inoculation on the growth of different sugarcane varieties[J]. Chinese Journal of Tropical Crops, 2021, 42(1): 149−158
|
[62] |
SONG X N, ZHANG J L, PENG C R, et al. Replacing nitrogen fertilizer with nitrogen-fixing cyanobacteria reduced nitrogen leaching in red soil paddy fields[J]. Agriculture, Ecosystems & Environment, 2021, 312: 107320
|
[63] |
BANIK A, DASH G K, SWAIN P, et al. Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under green house and field condition[J]. Microbiological Research, 2019, 219: 56−65 doi: 10.1016/j.micres.2018.11.004
|
[64] |
LI Y B, LI Q, CHEN S F. Diazotroph Paenibacillus triticisoli BJ-18 drives the variation in bacterial, diazotrophic and fungal communities in the rhizosphere and root/shoot endosphere of maize[J]. International Journal of Molecular Sciences, 2021, 22(3): 1460 doi: 10.3390/ijms22031460
|
[65] |
ZHANG Y, REN J, WANG W, et al. Siderophore and indolic acid production by Paenibacillus triticisoli BJ-18 and their plant growth-promoting and antimicrobe abilities[J]. PeerJ, 2020, 8(2): e9403
|
[66] |
SANTOS M S, NOGUEIRA M A, HUNGRIA M. Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants[J]. Revista Brasileira De Ciência Do Solo, 2021. DOI: 10.36783/18069657rbcs20200128
|
[67] |
GÓ MEZ-GODÍNEZ L J, FERNANDEZ-VALVERDE S L, MARTINEZ ROMERO J C, et al. Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs[J]. Systematic and Applied Microbiology, 2019, 42(4): 517−525 doi: 10.1016/j.syapm.2019.05.003
|
[68] |
DROGUE B, SANGUIN H, CHAMAM A, et al. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation[J]. Frontiers in Plant Science, 2014, 5: 607
|
[69] |
BLOCH S E, CLARK R, GOTTLIEB S S, et al. Biological nitrogen fixation in maize: optimizing nitrogenase expression in a root-associated diazotroph[J]. Journal of Experimental Botany, 2020, 71(15): 4591−4603 doi: 10.1093/jxb/eraa176
|
[70] |
JOUSSET A, BECKER J, CHATTERJEE S, et al. Biodiversity and species identity shape the antifungal activity of bacterial communities[J]. Ecology, 2014, 95(5): 1184−1190 doi: 10.1890/13-1215.1
|
[71] |
JOUSSET A, ROCHAT L, LANOUE A, et al. Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria[J]. Molecular Plant Microbe Interactions, 2011, 24(3): 352−358 doi: 10.1094/MPMI-09-10-0208
|
[72] |
YIN C T, CASA VARGAS J M, SCHLATTER D C, et al. Rhizosphere community selection reveals bacteria associated with reduced root disease[J]. Microbiome, 2021, 9(1): 86 doi: 10.1186/s40168-020-00997-5
|
[73] |
ZHOU Y W, BAO J Q, ZHANG D H, et al. Effect of heterocystous nitrogen-fixing cyanobacteria against rice sheath blight and the underlying mechanism[J]. Applied Soil Ecology, 2020, 153: 103580 doi: 10.1016/j.apsoil.2020.103580
|
[74] |
BERG G, EBERL L, HARTMANN A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria[J]. Environmental Microbiology, 2005, 7(11): 1673−1685 doi: 10.1111/j.1462-2920.2005.00891.x
|
[75] |
RODRÍ GUEZ-MEDINA N, BARRIOS-CAMACHO H, DURAN-BEDOLLA J, et al. Klebsiella variicola: an emerging pathogen in humans[J]. Emerging Microbes & Infections, 2019, 8(1): 973−988
|
[76] |
ROSENBLUETH M, MARTINEZ-ROMERO J C, REYES-PRIETO M, et al. Environmental Mycobacteria: a threat to human health?[J]. DNA and Cell Biology, 2011, 30(9): 633−640 doi: 10.1089/dna.2011.1231
|
[77] |
ROSENBLUETH M, MARTÍ NEZ L, SILVA J, et al. Klebsiella variicola, a novel species with clinical and plant-associated isolates[J]. Systematic and Applied Microbiology, 2004, 27(1): 27−35 doi: 10.1078/0723-2020-00261
|
[78] |
MENDES R, PIZZIRANI-KLEINER A A, ARAUJO W L, et al. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates[J]. Applied and Environmental Microbiology, 2007, 73(22): 7259−7267 doi: 10.1128/AEM.01222-07
|
[79] |
FIORE A, LAEVENS S, BEVIVINO A, et al. Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy[J]. Environmental Microbiology, 2001, 3(2): 137−143 doi: 10.1046/j.1462-2920.2001.00175.x
|
[80] |
SAWANA A, ADEOLU M, GUPTA R S. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species[J]. Frontiers in Genetics, 2014, 5: 429
|
[81] |
FOUTS D E, TYLER H L, DEBOY R T, et al. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice[J]. PLoS Genetics, 2008, 4(7): e1000141 doi: 10.1371/journal.pgen.1000141
|
[82] |
OKON Y, ITZIGSOHN R. The development of Azospirillum as a commercial inoculant for improving crop yields[J]. Biotechnology Advances, 1995, 13(3): 415−424 doi: 10.1016/0734-9750(95)02004-M
|
[83] |
DIVAN BALDANI V L, BALDANI J I, DÖ BEREINER J. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp[J]. Biology and Fertility of Soils, 2000, 30(5/6): 485−491
|
[84] |
MUTHUKUMARASAMY R, CLEENWERCK I, REVATHI G, et al. Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice[J]. Systematic and Applied Microbiology, 2005, 28(3): 277−286 doi: 10.1016/j.syapm.2005.01.006
|
[85] |
BARBARA R, THOMAS H. Azoarcus spp. and their interactions with grass roots[J]. Plant and Soil, 1997, 194(1/2): 57−64 doi: 10.1023/A:1004216507507
|
[86] |
ZHANG J L, SONG X N, WEI H, et al. Effect of substituting nitrogen fertilizer with nitrogen-fixing cyanobacteria on yield in a double-rice cropping system in Southern China[J]. Journal of Applied Phycology, 2021, 33: 2221−2232
|