Citation: | MA J N, HAN C Y, ZHAO X Q, ZHENG R, LI M Y, LU Z Y, JIANG W, WU H L. Research progress on using cellulose degrading bacteria to improve straw returning efficiency*[J]. Chinese Journal of Eco-Agriculture, 2025, 33(5): 1−13. DOI: 10.12357/cjea.20240711 |
The prosperous development of Chinese agriculture has generated diverse and abundant straw resources. As one of the abundant renewable biological resources, straw has the characteristics of large quantity, diverse types, and wide distribution. However, how to efficiently utilize straw resources has become an urgent problem to be solved, and returning straw to the field is currently an effective solution strategy. Under natural environmental conditions, the decomposition rate of straw is very slow, but long-term accumulation may lead to a decrease in soil fertility, which can seriously affect crop yield. Numerous studies have shown that using microorganisms to treat straw is an effective method to accelerate straw decomposition. Cellulose-degrading bacteria play a critical role in this process; their efficient degradation capabilities significantly enhance straw return efficiency while reducing the incidence of soil-borne diseases. This paper focuses on the core role of cellulose-degrading bacteria in improving the efficiency of straw return to the field, outlining the main types of cellulose-degrading bacteria and exploring their key roles in different methods of straw return, particularly in the current research status and progress regarding direct return to the field and composting. Additionally, it summarizes the effects of adding microbial agents during the straw return and degradation process on soil physical and chemical properties, microbial community dynamics, and soil-borne diseases. Research indicates that various bacteria and fungi can efficiently degrade cellulose; however, most studies are concentrated on the screening and optimization of single strains. Currently, the focus is on constructing composite microbial consortia using efficient cellulose-degrading strains, exploring cellulose degradation mechanisms to identify high-efficiency strains, and enhancing strain degradation capacity through molecular biology techniques. This includes identifying enzyme-producing genes and using metagenomics and meta transcriptomics to elucidate the functional patterns of cellulose-degrading bacteria within ecosystems, aiming for efficient straw decomposition and resource conversion. However, the construction of composite microbial consortia, the dynamic changes in soil microbial communities, and the mechanisms of cellulose-degrading bacteria in controlling soil-borne diseases still require further exploration. Future research could integrate bioinformatics and genetic engineering approaches to optimize cellulose-degrading bacteria, providing theoretical and technical support for the effective implementation of straw return. This would offer ideas and strategies for constructing composite microbial consortia, deeply analyzing dynamic changes in soil microbial communities, and understanding mechanisms of soil-borne disease control, ultimately aiming to enhance the efficiency of straw return and promote the sustainable development of agriculture.
[1] |
樊战辉, 杨琴, 李忠华, 等. 秸秆覆盖还田应用与展望[J]. 四川农业科技, 2023(5): 12−14 doi: 10.3969/j.issn.1004-1028.2023.05.005
FAN Z H, YANG Q, LI Z H, et al. Application and prospect of straw mulching and returning to field[J]. Sichuan Agricultural Science and Technology, 2023(5): 12−14 doi: 10.3969/j.issn.1004-1028.2023.05.005
|
[2] |
刘富玉. 农作物秸秆综合利用现状及对策分析[J]. 世界热带农业信息, 2023(10): 78−80 doi: 10.3969/j.issn.1009-1726.2023.10.032
LIU F Y. Present situation and countermeasure analysis of comprehensive utilization of crop straw[J]. World Tropical Agriculture Information, 2023(10): 78−80 doi: 10.3969/j.issn.1009-1726.2023.10.032
|
[3] |
叶敏, 金磊磊, 郑思伟. 国内农作物秸秆综合利用技术研究进展[J]. 绿色科技, 2024, 26(6): 174−180,185 doi: 10.3969/j.issn.1674-9944.2024.06.032
YE M, JIN L L, ZHENG S W. Research progress of comprehensive utilization technologies of crop straw[J]. Journal of Green Science and Technology, 2024, 26(6): 174−180,185 doi: 10.3969/j.issn.1674-9944.2024.06.032
|
[4] |
于博, 徐松鹤, 任琴, 等. 秸秆还田研究进展及内蒙古玉米秸秆深翻还田现状[J]. 作物杂志, 2022(2): 6−15
YU B, XU S H, REN Q, et al. Research progress of straw returning and present situation of maize straw returning by deep ploughing in Inner Mongolia[J]. Crops, 2022(2): 6−15
|
[5] |
张鹍, 张静华, 武新娟, 等. 秸秆还田和微生物菌剂对黑穗醋栗土壤理化指标和产量的影响[J]. 湖北农业科学, 2022, 61(6): 23−26,133
ZHANG K, ZHANG J H, WU X J, et al. Effects of straw returning and microbial agent on soil physical and chemical indexes and yield of black currant (Ribes nigrum L. )[J]. Hubei Agricultural Sciences, 2022, 61(6): 23−26,133
|
[6] |
曹晴亚. 纤维素降解菌在抑菌、秸秆降解和土壤微生态方面的影响[D]. 太谷: 山西农业大学, 2019
CAO Q Y. Effects of cellulose-degrading bacteria on bacteriostasis, straw degradation and soil microecology[D]. Taigu: Shanxi Agricultural University, 2019
|
[7] |
任普鲜, 蒋剑春, 杨秀山, 等. 木质纤维素快速热解产物生产燃料乙醇研究进展[J]. 生物质化学工程, 2009, 43(3): 47−51 doi: 10.3969/j.issn.1673-5854.2009.03.012
REN P X, JIANG J C, YANG X S, et al. Research progress on production of ethanol as fuel from fast pyrolysis products of lignocellulose[J]. Biomass Chemical Engineering, 2009, 43(3): 47−51 doi: 10.3969/j.issn.1673-5854.2009.03.012
|
[8] |
张晓燕. 不同预处理方法对玉米秸秆和沙柳纤维素降解率和乙醇产量的影响[D]. 呼和浩特: 内蒙古工业大学, 2017
ZHANG X Y. Effects of different pretreatment methods on cellulose degradation rate and ethanol yield of corn stalk and Salix psammophila[D]. Hohhot: Inner Mongolia University of Tehchnology, 2017
|
[9] |
李雨佳, 刘爽, 孟庆欣. 纤维素降解菌在秸秆好氧堆肥中的研究进展[J]. 高师理科学刊, 2023, 43(8): 97−100 doi: 10.3969/j.issn.1007-9831.2023.08.017
LI Y J, LIU S, MENG Q X. Research progress on cellulose-degrading microorganisms in straw aerobic composting[J]. Journal of Science of Teachers’ College and University, 2023, 43(8): 97−100 doi: 10.3969/j.issn.1007-9831.2023.08.017
|
[10] |
王新光. 高效纤维素降解菌剂的构建及其在玉米秸秆堆肥中的应用研究[D]. 天津: 天津科技大学, 2022
WANG X G. Construction of high efficient cellulose degrading bacterium and its application in corn stalk composting[D]. Tianjin: Tianjin University of Science & Technology, 2022
|
[11] |
才金玲, 胡秦博, 郑薇琳, 等. 低温秸秆降解菌研究进展[J]. 微生物学通报, 2024, 51(7): 2312−2325
CAI J L, HU Q B, ZHENG W L, et al. Research progress in straw-degrading psychrotrophic microorganisms[J]. MicrobiologyChina, 2024, 51(7): 2312−2325
|
[12] |
王丹. 海洋真菌农用生物活性筛选及木贼镰刀菌D39次级代谢产物研究[D]. 北京: 中国农业科学院, 2019
WANG D. Screening of agricultural biological activities of marine fungi and study on secondary metabolites of Fusarium equisetum D39[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019
|
[13] |
张国言. 高效纤维素降解菌株筛选及其复合微生物菌剂在堆肥中的应用研究[D]. 泰安: 山东农业大学, 2023
ZHANG G Y. Screening of high efficient cellulose degrading strains and study on the application of composite microbial agents in composting[D]. Tai’an: Shandong Agricultural University, 2023
|
[14] |
DOBRZYŃSKI J, WRÓBEL B, GÓRSKA E B. Cellulolytic properties of a potentially lignocellulose-degrading Bacillus sp. 8E1A strain isolated from bulk soil[J]. Agronomy, 2022, 12(3): 665 doi: 10.3390/agronomy12030665
|
[15] |
陈芝娟, 王虹军, 田星, 等. 类芽孢杆菌CH2的筛选、酶活性及全基因组分析[J]. 应用生态学报, 2023, 34(12): 3404−3412
CHEN Z J, WANG H J, TIAN X, et al. Screening, enzyme activity and genomic analysis of Paenibacillus silvae CH2[J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3404−3412
|
[16] |
张慧, 赵恪, 林陈强, 等. 纤维素降解菌的分离筛选及产酶条件优化[J]. 福建农业学报, 2023, 38(9): 1117−1123
ZHANG H, ZHAO K, LIN C Q, et al. Isolation and enzymatic activity of cellulose-degrading bacteria[J]. Fujian Journal of Agricultural Sciences, 2023, 38(9): 1117−1123
|
[17] |
李瑞春, 季春丽, 苏胜, 等. 作物秸秆水解条件优化及其对小球藻培养的影响[J]. 应用生态学报, 2023, 34(4): 1123−1129
LI R C, JI C L, SU S, et al. Optimization of hydrolysis conditions of crop straw and its effect in Chlorella sorokiniana culture[J]. Chinese Journal of Applied Ecology, 2023, 34(4): 1123−1129
|
[18] |
胡媛媛. 纤维素降解菌的筛选及其降解特性的研究[D]. 长春: 长春理工大学, 2023
HU Y Y. Screening of cellulose-degrading bacteria and study on their degradation characteristics[D]. Changchun: Changchun University of Science and Technology, 2023
|
[19] |
董晨晨. 食木锯白蚁(Microcerotermes sp)肠道共生细菌多样性及其降解木质纤维素的功能特征[D]. 镇江: 江苏大学, 2023
DONG C C. Diversity of intestinal symbiotic bacteria of wood-eating Microcerotermes sp. and its functional characteristics of lignocellulose degradation[D]. Zhenjiang: Jiangsu University, 2023
|
[20] |
张鑫鹏, 王信, 孙健, 等. 一株假单胞菌的分离鉴定及其在青海地区堆肥中的应用潜力[J]. 浙江农业学报, 2022, 34(2): 343−351 doi: 10.3969/j.issn.1004-1524.2022.02.16
ZHANG X P, WANG X, SUN J, et al. Isolation and identification of a Pseudomonas strain and its application potential in rape straw composting in Qinghai, China[J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 343−351 doi: 10.3969/j.issn.1004-1524.2022.02.16
|
[21] |
唐玉佳, 陈欣, 夏萍, 等. 纤维素降解菌N32产酶条件优化及其酶学性质[J]. 东北农业科学, 2021, 46(2): 62−65,81
TANG Y J, CHEN X, XIA P, et al. Optimization of enzyme production condition for cellulose-degrading strain N32 and enzymatic characterization[J]. Journal of Northeast Agricultural Sciences, 2021, 46(2): 62−65,81
|
[22] |
单建荣. 低温纤维素降解复合菌的筛选及堆肥应用效果评价[D]. 哈尔滨: 东北农业大学, 2021
SHAN J R. Screening of low-temperature cellulose degrading complex bacteria and evaluation of composting application effect[D]. Harbin: Northeast Agricultural University, 2021
|
[23] |
张运晖, 赵瑛, 张艳萍, 等. 一株玉米秸秆纤维素降解放线菌的筛选、鉴定及酶学特性研究[J]. 微生物学杂志, 2023, 43(3): 52−59 doi: 10.3969/j.issn.1005-7021.2023.03.006
ZHANG Y H, ZHAO Y, ZHANG Y P, et al. Isolation, identification and enzymology characteristics of a corn stalk cellulose-degradable actinomycetes strain[J]. Journal of Microbiology, 2023, 43(3): 52−59 doi: 10.3969/j.issn.1005-7021.2023.03.006
|
[24] |
GONG X J, YU Y, HAO Y B, et al. Characterizing corn-straw-degrading actinomycetes and evaluating application efficiency in straw-returning experiments[J]. Frontiers in Microbiology, 2022, 13: 1003157 doi: 10.3389/fmicb.2022.1003157
|
[25] |
SHARMA S, KUMAWAT K C, KAUR P, et al. Crop residue heterogeneity: Decomposition by potential indigenous ligno-cellulolytic microbes and enzymatic profiling[J]. Current Research in Microbial Sciences, 2024, 6: 100227 doi: 10.1016/j.crmicr.2024.100227
|
[26] |
ZHAO Z X, LIU H Z, ZHAO S X, et al. Screening and combination selection of multifunctional actinomycetes for aerobic composting[J]. Microbiology Spectrum, 2023, 11(6): e0205323 doi: 10.1128/spectrum.02053-23
|
[27] |
郜道玉, 周源, 龚萍, 等. 耐高温纤维素降解菌株的筛选、鉴定及其酶活力的测定[J]. 饲料研究, 2022, 45(19): 69−73
GAO D Y, ZHOU Y, GONG P, et al. Screening and identification of strain resistant to high temperature cellulose degradation and determination of enzyme activity[J]. Feed Research, 2022, 45(19): 69−73
|
[28] |
ASHWINI JOHN J, SELVARAJAN E. Genomic analysis of lignocellulolytic enzyme producing novel Streptomyces sp. MS2A for the bioethanol applications[J]. International Journal of Biological Macromolecules, 2023, 250: 126138
|
[29] |
DJEBBAH F Z, BELYAGOUBI L, ABDELOUAHID D E, et al. Isolation and characterization of novel Streptomyces strain from Algeria and its in-vitro antimicrobial properties against microbial pathogens[J]. Journal of Infection and Public Health, 2021, 14(11): 1671−1678
|
[30] |
BALTACI M O. Enhancement of cellulase production by co-culture of Streptomyces ambofaciens OZ2 and Cytobacillus oceanisediminis OZ5 isolated from rumen samples[J]. Biocatalysis and Biotransformation, 2022, 40(2): 144−152 doi: 10.1080/10242422.2022.2038581
|
[31] |
BOOK A J, LEWIN G R, MCDONALD B R, et al. Evolution of high cellulolytic activity in symbiotic Streptomyces through selection of expanded gene content and coordinated gene expression[J]. PLoS Biology, 2016, 14(6): e1002475 doi: 10.1371/journal.pbio.1002475
|
[32] |
宫秀杰, 钱春荣, 于洋, 等. 近年纤维素降解菌株筛选研究进展[J]. 纤维素科学与技术, 2021, 29(2): 68−77
GONG X J, QIAN C R, YU Y, et al. Progress on screening of cellulose degrading strains in recent years[J]. Journal of Cellulose Science and Technology, 2021, 29(2): 68−77
|
[33] |
冯欣欣, 李凤兰, 徐永清, 等. 新疆寒冷地区腐木中产纤维素酶菌株的筛选与低温产酶特性[J]. 浙江农业学报, 2021, 33(8): 1468−1476 doi: 10.3969/j.issn.1004-1524.2021.08.14
FENG X X, LI F L, XU Y Q, et al. Screening of cellulase producing strains from rotten wood in Xinjiang cold area and analysis of their characteristics of enzyme production at low temperature[J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1468−1476 doi: 10.3969/j.issn.1004-1524.2021.08.14
|
[34] |
RISTINMAA A S, KOROTKOVA E, ARNTZEN M Ø, et al. Analyses of long-term fungal degradation of spruce bark reveals varying potential for catabolism of polysaccharides and extractive compounds[J]. Bioresource Technology, 2024, 402: 130768 doi: 10.1016/j.biortech.2024.130768
|
[35] |
DONG X L, JI J, ZHANG S H, et al. Study on a low-temperature cellulose-degrading strain: fermentation optimization, straw degradation, and the effect of fermentation broth on seed growth[J]. Biotechnology and Bioprocess Engineering, 2022, 27(4): 652−667 doi: 10.1007/s12257-021-0265-0
|
[36] |
CHRISTOPHER M, SREEJA-RAJU A, KOOLOTH-VALAPPIL P, et al. Cellulase hyper-producing fungus Penicillium janthinellum NCIM 1366 elaborates a wider array of proteins involved in transport and secretion, potentially enabling a diverse substrate range[J]. BioEnergy Research, 2023, 16(1): 61−73 doi: 10.1007/s12155-022-10407-3
|
[37] |
曾叶, 庄文颖, 余知和, 等. 低温降解玉米秸秆的木霉菌株筛选[J]. 微生物学通报, 2023, 50(9): 3939−3951
ZENG Y, ZHUANG W Y, YU Z H, et al. Screening of Trichoderma strains for maize straw degradation at low temperature[J]. Microbiology China, 2023, 50(9): 3939−3951
|
[38] |
台少华, 扈进冬, 位绍文, 等. 低温降解秸秆木霉菌的筛选、鉴定及功能评价[J]. 山东科学, 2023, 36(2): 50−58 doi: 10.3976/j.issn.1002-4026.2023.02.007
TAI S H, HU J D, WEI S W, et al. Screening, identification, and functional evaluation of low temperature degradation of straw Trichoderma[J]. Shandong Science, 2023, 36(2): 50−58 doi: 10.3976/j.issn.1002-4026.2023.02.007
|
[39] |
ZHANG R Q. Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation[J]. Applied Microbiology and Biotechnology, 2020, 104(8): 3229−3243 doi: 10.1007/s00253-020-10467-5
|
[40] |
张艳萍, 赵瑛, 张运晖. 长枝木霉菌M-1的突变株筛选以及纤维降解特性研究[J]. 中国饲料, 2023(17): 22−27
ZHANG Y P, ZHAO Y, ZHANG Y H. Screening of mutant strains from T. longibrachiatum M-1 and study on cellulose-degradation characteristics[J]. China Feed, 2023(17): 22−27
|
[41] |
岳林芳, 成立新, 李蕴华, 等. 常温和低温纤维素降解菌的筛选及其酶活特性[J]. 畜牧与饲料科学, 2023, 44(2): 9−16 doi: 10.12160/j.issn.1672-5190.2023.02.002
YUE L F, CHENG L X, LI Y H, et al. Screening and enzyme activity characteristics of cellulose-degrading bacteria and fungi isolated at room and low temperatures[J]. Animal Husbandry and Feed Science, 2023, 44(2): 9−16 doi: 10.12160/j.issn.1672-5190.2023.02.002
|
[42] |
MAHAPATRA S S, PARAMESWARAN C, CHOWDHURY T, et al. Unraveling the efficient cellulolytic and lytic polysaccharide monooxygenases producing microbes from paddy soil for efficient cellulose degradation[J]. Journal of Advances in Biology & Biotechnology, 2024, 27(3): 47−56
|
[43] |
王勇. 秸秆纤维素降解菌的筛选及其腐熟剂的制备[D]. 太谷: 山西农业大学, 2019
WANG Y. Screening of straw cellulose degrading bacteria and preparation of its decomposing agent[D]. Taigu: Shanxi Agricultural University, 2019
|
[44] |
张小艳. 水稻秸秆降解复合菌群的构建及降解效果评价[D]. 长沙: 湖南农业大学, 2020
ZHANG X Y. Construction of rice straw degradation complex flora and evaluation of degradation effect[D]. Changsha: Hunan Agricultural University, 2020
|
[45] |
HELAL G A, KHALIL R R, GALAL Y G, et al. Studies on cellulases of some cellulose-degrading soil fungi[J]. Archives of Microbiology, 2021, 204(1): 65
|
[46] |
刘霄. 高效降解玉米秸秆复合菌群的构建及其降解效果研究[D]. 哈尔滨: 东北农业大学, 2019
LIU X. Study on the construction and degradation effect of compound microbial community for efficient degradation of corn stalk[D]. Harbin: Northeast Agricultural University, 2019
|
[47] |
张根, 陈宝锐, 陈涛, 等. 农作物秸秆木质纤维素生物降解酶及降解菌的研究进展[J]. 农学学报, 2023, 13(2): 24−32 doi: 10.11923/j.issn.2095-4050.cjas2021-0193
ZHANG G, CHEN B R, CHEN T, et al. Research progress on enzymes and microorganisms for biodegradation of lignocelluloses from crop straw[J]. Journal of Agriculture, 2023, 13(2): 24−32 doi: 10.11923/j.issn.2095-4050.cjas2021-0193
|
[48] |
王晓涛, 魏佩玲, 胡波, 等. 纤维素降解酶研究进展[J]. 草食家畜, 2019(3): 13−18
WANG X T, WEI P L, HU B, et al. Research progress on cellulose degrading enzymes[J]. Grass-Feeding Livestock, 2019(3): 13−18
|
[49] |
王盼星, 陶施淼, 薛藩. 纤维素降解菌研究进展[J]. 绿色科技, 2018, 20(12): 161−163
WANG P X, TAO S M, XUE F. Research progress of cellulose degrading bacteria[J]. Journal of Green Science and Technology, 2018, 20(12): 161−163
|
[50] |
肖艳, 刘亚君, 冯银刚, 等. 热纤梭菌在生物质能源开发中的合成生物学研究进展[J]. 合成生物学, 2023, 4(6): 1055−1081 doi: 10.12211/2096-8280.2023-046
XIAO Y, LIU Y J, FENG Y G, et al. Progress in synthetic biology research of Clostridium thermocellum for biomass energy applications[J]. Synthetic Biology Journal, 2023, 4(6): 1055−1081 doi: 10.12211/2096-8280.2023-046
|
[51] |
张晶, 张浩睿, 曹云, 等. 嗜热纤维素降解菌研究进展[J]. 生物技术通报, 2023, 39(6): 73−87
ZHANG J, ZHANG H R, CAO Y, et al. Research progress in thermophilic microorganisms for cellulose degradation[J]. Biotechnology Bulletin, 2023, 39(6): 73−87
|
[52] |
冯银刚, 刘亚君, 崔球. 纤维小体在合成生物学中的应用研究进展[J]. 合成生物学, 2022, 3(1): 138−154 doi: 10.12211/2096-8280.2021-029
FENG Y G, LIU Y J, CUI Q. Research progress in cellulosomes and their applications in synthetic biology[J]. Synthetic Biology Journal, 2022, 3(1): 138−154 doi: 10.12211/2096-8280.2021-029
|
[53] |
常洪艳. 低温秸秆降解菌对玉米秸秆的降解效果及机理研究[D]. 长春: 吉林农业大学, 2021
CHANG H Y. Study on degradation effect and mechanism of corn straw by low temperature straw degrading bacteria[D]. Changchun: Jilin Agricultural University, 2021
|
[54] |
王治统, 凌俊, 刘子熙, 等. 秸秆还田方式对土壤理化性质和玉米产量的影响[J]. 中国生态农业学报(中英文), 2024, 32(4): 663−674 doi: 10.12357/cjea.20230517
WANG Z T, LING J, LIU Z X, et al. Effect of straw return practices on soil physico-chemical properties and maize yield[J]. Chinese Journal of Eco-Agriculture, 2024, 32(4): 663−674 doi: 10.12357/cjea.20230517
|
[55] |
李鹏, 李永春, 史加亮, 等. 水稻秸秆还田时间对土壤真菌群落结构的影响[J]. 生态学报, 2017, 37(13): 4309−4317
LI P, LI Y C, SHI J L, et al. Rice straw return of different decomposition days altered soil fungal community structure[J]. Acta Ecologica Sinic, 2017, 37(13): 4309−4317
|
[56] |
刘爽. 中低温秸秆降解菌的筛选及其秸秆降解效果研究[D]. 北京: 中国农业科学院, 2011
LIU S. Screening of medium-low temperature straw degradation bacteria and study on its straw degradation effect[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011
|
[57] |
青格尔. 玉米秸秆低温高效降解复合菌系GF-20的筛选及其特性研究[D]. 呼和浩特: 内蒙古农业大学, 2016
QING G E. Screening and characterization of composite strain GF-20 for corn stalk degradation at low temperature and high efficiency[D]. Hohhot: Inner Mongolia Agricultural University, 2016
|
[58] |
于慧娟. 秸秆降解菌的筛选及耐旱性优化[D]. 郑州: 郑州大学, 2019
YU H J. Screening of straw degrading bacteria and optimization of drought tolerance[D]. Zhengzhou: Zhengzhou University, 2019
|
[59] |
张鑫, 青格尔, 高聚林, 等. 玉米秸秆低温降解复合菌的筛选及其菌种组成[J]. 农业环境科学学报, 2021, 40(7): 1565−1574 doi: 10.11654/jaes.2021-0057
ZHANG X, QING G E, GAO J L, et al. Screening and composition of the microbial consortium with corn straw decomposition under low temperature[J]. Journal of Agro-Environment Science, 2021, 40(7): 1565−1574 doi: 10.11654/jaes.2021-0057
|
[60] |
颜淑慧, 孟庆俊, 许瑞, 等. 耐低温纤维素降解复合菌系的筛选[J]. 环境科学研究, 2023, 36(7): 1404−1415
YAN S H, MENG Q J, XU R, et al. Screening of cellulose degrading complex bacteria tolerant to low temperature[J]. Research of Environmental Sciences, 2023, 36(7): 1404−1415
|
[61] |
李龙涛, 饶中秀, 董春华, 等. 微生物菌剂在餐厨垃圾和水稻秸秆堆肥上的效果研究[J]. 湖南农业科学, 2021(8): 28−31
LI L T, RAO Z X, DONG C H, et al. Effects of microbial agents on kitchen waste and rice straw composting[J]. Hunan Agricultural Sciences, 2021(8): 28−31
|
[62] |
龙昊驰. 生物有机肥的研制及在小麦/玉米上的应用效果[D]. 郑州: 河南农业大学, 2024
LONG H C. Development of bio-organic fertilizer and its application effect on wheat/corn[D]. Zhengzhou: Henan Agricultural University, 2024
|
[63] |
陈海霞. 秸秆降解菌的筛选与复合微生物菌剂应用研究[D]. 鞍山: 辽宁科技大学, 2023
CHEN H X. Screening of straw degrading bacteria and application of compound microbial agents[D]. Anshan: University of Science and Technology Liaoning, 2023
|
[64] |
竹江良, 刘晓琳, 李少明, 等. 两种微生物菌剂对烟草废弃物高温堆肥腐熟进程的影响[J]. 农业环境科学学报, 2010, 29(1): 194−199
ZHU J L, LIU X L, LI S M, et al. Effect of two microbial agents on tobacco fine waste high-temperature compost maturity[J]. Journal of Agro-Environment Science, 2010, 29(1): 194−199
|
[65] |
孙学习, 王东娇, 罗露伟, 等. 耐高温农作物秸秆降解菌的筛选及腐熟剂制备研究[J]. 化学工程与装备, 2019(11): 8−10
SUN X X, WANG D J, LUO L W, et al. Screening of high-temperature resistant crop straw degrading bacteria and preparation of decomposing agent[J]. Chemical Engineering & Equipment, 2019(11): 8−10
|
[66] |
江高飞, 暴彦灼, 杨天杰, 等. 高温秸秆降解菌的筛选及其纤维素酶活性研究[J]. 农业环境科学学报, 2020, 39(10): 2465−2472 doi: 10.11654/jaes.2020-0958
JIANG G F, BAO Y Z, YANG T J, et al. Screening of thermophilic cellulolytic bacteria and investigation of cellulase thermostability[J]. Journal of Agro-Environment Science, 2020, 39(10): 2465−2472 doi: 10.11654/jaes.2020-0958
|
[67] |
刘煜. 一株耐冷菌的筛选及对玉米秸秆腐解效果研究[D]. 哈尔滨: 东北农业大学, 2023
LIU Y. Screening of a cold-tolerant bacterium and its decomposition effect on corn stalk[D]. Harbin: Northeast Agricultural University, 2023
|
[68] |
JIANG G F, CHEN P J, BAO Y Z, et al. Isolation of a novel psychrotrophic fungus for efficient low-temperature composting[J]. Bioresource Technology, 2021, 331: 125049 doi: 10.1016/j.biortech.2021.125049
|
[69] |
周东兴, 刘煜, 葛闫, 等. 一株纤维素降解菌株筛选及在低温好氧堆肥起爆应用[J]. 东北农业大学学报, 2023, 54(4): 45−54 doi: 10.3969/j.issn.1005-9369.2023.04.005
ZHOU D X, LIU Y, GE Y, et al. Screening of a lignocellulose degradation psychrotrophs and application to starter of low temperature aerobic composting[J]. Journal of Northeast Agricultural University, 2023, 54(4): 45−54 doi: 10.3969/j.issn.1005-9369.2023.04.005
|
[70] |
饶越悦, 周顺利, 黄毅, 等. 秸秆富集深层还田对农田土壤质量影响的研究进展[J]. 中国生态农业学报(中英文), 2023, 31(10): 1579−1587 doi: 10.12357/cjea.20230145
RAO Y Y, ZHOU S L, HUANG Y, et al. Advances in research involving deep incorporation of enriched straw on soil quality[J]. Chinese Journal of Eco-Agriculture, 2023, 31(10): 1579−1587 doi: 10.12357/cjea.20230145
|
[71] |
赵伟, 孙泰朋, 田宗泽, 等. 秸秆配施低温菌剂直接还田对黑土土壤碳、氮的影响[J]. 玉米科学, 2018, 26(3): 147−152
ZHAO W, SUN T P, TIAN Z Z, et al. Effects of low-temperature agent adding into straw and returning to field on carbon and nitrogen in black soil ecosystem[J]. Journal of Maize Sciences, 2018, 26(3): 147−152
|
[72] |
史文欣. 玉米秸秆还田配施微生物菌剂对小麦产量及土壤碳氮组分的影响[D]. 泰安: 山东农业大学, 2022
SHI W X. Effects of corn stalk returning to field combined with microbial inoculants on wheat yield and soil carbon and nitrogen components[D]. Tai’an: Shandong Agricultural University, 2022
|
[73] |
何丽, 吴景贵, 李建明, 等. 粪/菌秸秆条带混施对黑土有机无机复合体组成及有机碳分布特征的影响[J]. 中国生态农业学报(中英文), 2024, 32(2): 273−282 doi: 10.12357/cjea.20230351
HE L, WU J G, LI J M, et al. Effects of manure/biological agent-straw strip mixing on the composition of organo-inorganic complexes and characteristics of organic carbon distribution in black soil[J]. Chinese Journal of Eco-Agriculture, 2024, 32(2): 273−282 doi: 10.12357/cjea.20230351
|
[74] |
郭悦, 万雨欣, 徐伟慧, 等. 3种类型秸秆降解对黑土微生物群落及功能的影响[J]. 高师理科学刊, 2023, 43(9): 51−58 doi: 10.3969/j.issn.1007-9831.2023.09.012
GUO Y, WAN Y X, XU W H, et al. Effects of degradation of three types of straw on microbial communities and functions in black soil[J]. Journal of Science of Teachers’ College and University, 2023, 43(9): 51−58 doi: 10.3969/j.issn.1007-9831.2023.09.012
|
[75] |
王时聪. 外源腐秆菌对还田秸秆降解的影响及作用机制[D]. 合肥: 安徽农业大学, 2021
WANG S C. Effect of exogenous stalk rot fungi on the degradation of returning straw and its mechanism[D]. Hefei: Anhui Agricultural University, 2021
|
[76] |
吴立鹏, 张士荣, 娄金华, 等. 秸秆还田与优化施氮对稻田土壤碳氮含量及产量的影响[J]. 华北农学报, 2019, 34(4): 158−166 doi: 10.7668/hbnxb.201751345
WU L P, ZHANG S R, LOU J H, et al. Effects of straw returning and nitrogen fertilizer on soil C and N content and yield of rice[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4): 158−166 doi: 10.7668/hbnxb.201751345
|
[77] |
WU L P, MA H, ZHAO Q L, et al. Changes in soil bacterial community and enzyme activity under five years straw returning in paddy soil[J]. European Journal of Soil Biology, 2020, 100: 103215
|
[78] |
SONG K L, ZHOU Z C, LENG J H, et al. Effects of rumen microorganisms on the decomposition of recycled straw residue[J]. Journal of Zhejiang University: Science B, 2023, 24(4): 336−344
|
[79] |
马志梅, 吕卫光, 裴亚楠, 等. 秸秆还田配施促腐菌剂对稻田土壤理化性质与微生物数量的影响[J]. 土壤通报, 2023, 54(4): 889−896
MA Z M, LYU W G, PEI Y N, et al. Effect of straw returning with decomposing inoculants to soil physico-chemical properties and the abundance of bacteria and fungi community[J]. Chinese Journal of Soil Science, 2023, 54(4): 889−896
|
[80] |
孙旭超, 张紫薇, 王若飞, 等. 秸秆还田下氮肥水平对秸秆碳固定及土壤有机碳储量的影响[J]. 中国生态农业学报(中英文), 2024, 32(9): 1556−1565 doi: 10.12357/cjea.20240204
SUN X C, ZHANG Z W, WANG R F, et al. Effects of nitrogen fertilizer level on straw carbon sequestration and soil organic carbon stock under straw returning[J]. Chinese Journal of Eco-Agriculture, 2024, 32(9): 1556−1565 doi: 10.12357/cjea.20240204
|
[81] |
萨如拉, 杨恒山, 邰继承, 等. 秸秆还田条件下腐熟剂对不同质地土壤真菌多样性的影响[J]. 中国生态农业学报(中英文), 2020, 28(7): 1061−1071
SA R L, YANG H S, TAI J C, et al. Effect of straw maturing agents on fungal diversity in soil with different textures under returned straw conditions[J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 1061−1071
|
[82] |
何亚登. 2种生防菌的发酵、土壤定殖及防治烟草土传病害的研究[D]. 福州: 福建农林大学, 2019
HE Y D. Study on fermentation, soil colonization and prevention of tobacco soil-borne diseases of two biocontrol bacteria[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019
|
[83] |
董振寰. 具有促生抗病能力的纤维素降解真菌的筛选及其促生效果研究[D]. 雅安: 四川农业大学, 2016
DONG Z H. Screening of cellulose-degrading fungi with growth-promoting and disease-resistant ability and its growth-promoting effect[D]. Ya’an: Sichuan Agricultural University, 2016
|
[84] |
李双, 张伟, 王丽, 等. 秸秆还田对不同地力黑土培肥与茎腐病害发生的影响[J]. 中国农业科技导报, 2021, 23(8): 80−90
LI S, ZHANG W, WANG L, et al. Effect of straw returning on fertility and stem rot of black soil with different land fertility[J]. Journal of Agricultural Science and Technology, 2021, 23(8): 80−90
|
[85] |
杨艳铭. 秸秆降解多功能复合菌剂筛选、降解效果研究及Catellatospora tritici多相分类鉴定[D]. 哈尔滨: 东北农业大学, 2022
YANG Y M. Screening of multifunctional compound microbial inoculum for straw degradation, study on degradation effect and multi-phase classification and identification of Catellatospora tritici[D]. Harbin: Northeast Agricultural University, 2022
|
[86] |
张翰林, 白娜玲, 郑宪清, 等. 秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响[J]. 中国生态农业学报(中英文), 2021, 29(3): 531−539
ZHANG H L, BAI N L, ZHENG X Q, et al. Effects of straw returning and fertilization on soil bacterial and fungal community structures and diversities in rice-wheat rotation soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(3): 531−539
|