Citation: | SHANG C Y, LAN Q, DENG Y F, ZHU F, ZHAO M C, WANG H G. Comprehensive evaluation of physiological responses and low nitrogen tolerance of foxtail millet at different domestication stages[J]. Chinese Journal of Eco-Agriculture, 2024, 32(10): 1650−1658. DOI: 10.12357/cjea.20240051 |
Enhancing crop tolerance to infertile conditions is crucial for improving the utilization rate of marginal lands. In the current study, 24 foxtail millet samples from three different stages of domestication (wild, landrace, and cultivar) were selected. A hydroponic setup with five low nitrogen concentration gradients was employed [0.05 mmol·L−1 NH4NO3 (N1), 0.1 mmol·L−1 NH4NO3 (N2), 0.2 mmol·L−1 NH4NO3 (N3), 0.4 mmol·L−1 NH4NO3 (N4), and 1.0 mmol·L−1 NH4NO3 (N5)], to compare the comprehensive low-nitrogen tolerance ability among the different genotypes of foxtail millet and to identify efficient physiological indicators for germplasm resource screening. This study aimed to gain a deeper understanding of the tolerance of foxtail millet to low-nitrogen stress at different stages of domestication, providing an important preliminary basis for the exploitation of foxtail millet germplasm resources and genes resistant to low-nitrogen. Our findings showed that all the tested physiological indicators, excluding chlorophyll content of flag leaf and root-to-shoot ratio, from the three domestication stages of foxtail millet showed significant increases in the N3 treatment compared to that in the N2 treatment. However, the plant height, aboveground dry weight, flag leaf area, and underground dry weight of the wild species reached their maximum values at N3 and then stabilized, whereas those indicators from landrace and cultivar species continued to increase. Wild species have a lower demand for nitrogen compared to that in landrace and cultivar species, suggesting that low nitrogen tolerance in foxtail millet has been reduced during domestication and breeding, and the threshold of nitrogen concentration required to maintain normal growth has been increasing. Based on a comprehensive evaluation using the nitrogen tolerance coefficient, it was observed that wild species had better nitrogen tolerance than landrace and cultivar species. Principal Component Analysis (PCA) revealed significant differences in the phenotypes between wild species, landraces, and cultivar species under low nitrogen stress, with aboveground dry weight, underground dry weight, and root volume showing high loadings and accounting value for a significant proportion of the data variance. Thus, the physiological indicators and results derived from the PCA effectively reflect the varying degrees of low-nitrogen tolerance exhibited by foxtail millet across different domestication levels. These results demonstrate that domestication reduces the tolerance of foxtail millet to low nitrogen stress. Aboveground dry weight, because of its convenient detection and close correlation with foxtail millet response to low nitrogen, can be used as a preferred phenotypic indicator for large-scale screening of low-nitrogen-tolerant foxtail millet varieties in the future. Our study provides a reference for efficient screening of foxtail millet varieties under infertile conditions.
[1] |
曹晓风, 孙波, 陈化榜, 等. 我国边际土地产能扩增和生态效益提升的途径与研究进展[J]. 中国科学院院刊, 2021, 36(3): 336−348
CAO X F, SUN B, CHEN H B, et al. Approaches and research progresses of marginal land productivity expansion and ecological benefit improvement in China[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(3): 336−348
|
[2] |
JU C X, BURESH R J, WANG Z Q, et al. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application[J]. Field Crops Research, 2015, 175: 47−55 doi: 10.1016/j.fcr.2015.02.007
|
[3] |
UNDURRAGA S F, IBARRA-HENRÍQUEZ C, FREDES I, et al. Nitrate signaling and early responses in Arabidopsis roots[J]. Journal of Experimental Botany, 2017, 68(10): 2541−2551 doi: 10.1093/jxb/erx041
|
[4] |
张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915−924 doi: 10.3321/j.issn:0564-3929.2008.05.018
ZHANG F S, WANG J Q, ZHANG W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915−924 doi: 10.3321/j.issn:0564-3929.2008.05.018
|
[5] |
巨晓棠, 张福锁. 关于氮肥利用率的思考[J]. 生态环境, 2003, 12(2): 192−197
JU X T, ZHANG F S. Thinking about nitrogen recovery rate[J]. Ecology and Environmental Sciences, 2003, 12(2): 192−197
|
[6] |
王帅丽, 穆心愿, 杨豫龙, 等. 供氮水平对不同氮效率玉米品种氮素吸收、干物质形成及产量的影响[J]. 玉米科学, 2023, 31(4): 118−130
WANG S L, MU X Y, YANG Y L, et al. Effects of nitrogen supply levels on nitrogen uptake, dry matter production and yield of maize varieties with different nitrogen efficiency[J]. Journal of Maize Sciences, 2023, 31(4): 118−130
|
[7] |
盛海君, 蒋昕, 马泉, 等. 低氮胁迫下不同小麦品种苗期性状差异分类研究[J]. 扬州大学学报(农业与生命科学版), 2022, 43(4): 22−28, 35
SHENG H J, JIANG X, MA Q, et al. Study on differential classification of different wheat varieties at seedling stage under low nitrogen stress[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2022, 43(4): 22−28, 35
|
[8] |
翟荣荣, 叶胜海, 朱国富, 等. 浙江省12个常规晚粳稻品种抗稻瘟病基因的分子检测[J]. 分子植物育种, 2020, 18(11): 3626−3633
ZHAI R R, YE S H, ZHU G F, et al. Molecular detection of rice blast resistance genes in 12 conventional late Japonica rice varieties in Zhejiang Province[J]. Molecular Plant Breeding, 2020, 18(11): 3626−3633
|
[9] |
徐福荣, 汤翠凤, 余藤琼, 等. 利用叶绿素仪SPAD值筛选耐低氮水稻种质[J]. 分子植物育种, 2005, 3(5): 695−700 doi: 10.3969/j.issn.1672-416X.2005.05.018
XU F R, TANG C F, YU T Q, et al. Screening of rice germplasms for tolerance to low-nitrogen using SPAD-value by chlorophyll meter[J]. Molecular Plant Breeding, 2005, 3(5): 695−700 doi: 10.3969/j.issn.1672-416X.2005.05.018
|
[10] |
LU H Y, ZHANG J P, LIU K B, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10, 000 years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7367−7372
|
[11] |
BENNETZEN J L, SCHMUTZ J, WANG H, et al. Reference genome sequence of the model plant Setaria[J]. Nature Biotechnology, 2012, 30: 555−561 doi: 10.1038/nbt.2196
|
[12] |
NADEEM F, AHMAD Z, HASSAN M U, et al. Adaptation of foxtail millet (Setaria italica L.) to abiotic stresses: A special perspective of responses to nitrogen and phosphate limitations[J]. Frontiers in Plant Science, 2020, 11: 187 doi: 10.3389/fpls.2020.00187
|
[13] |
GE L H, DOU Y N, LI M M, et al. SiMYB3 in foxtail millet (Setaria italica) confers tolerance to low-nitrogen stress by regulating root growth in transgenic plants[J]. International Journal of Molecular Sciences, 2019, 20(22): 5741 doi: 10.3390/ijms20225741
|
[14] |
HE Q, TANG S, ZHI H, et al. A graph-based genome and pan-genome variation of the model plant Setaria[J]. Nature Genetics, 2023, 55: 1232−1242 doi: 10.1038/s41588-023-01423-w
|
[15] |
努尔凯麦尔·木拉提, 杨亚杰, 帕尔哈提·阿布都克日木, 等. 小麦叶绿素含量测定方法比较[J]. 江苏农业科学, 2021, 49(9): 156−159
NURKAIMAR M, YANG Y J, PAERHATI A, et al. Comparative study on determination methods of chlorophyll content in wheat[J]. Jiangsu Agricultural Sciences, 2021, 49(9): 156−159
|
[16] |
PENG R H, ZHANG B H. Foxtail millet: A new model for C4 plants[J]. Trends in Plant Science, 2021, 26(3): 199−201 doi: 10.1016/j.tplants.2020.12.003
|
[17] |
NADEEM F, AHMAD Z, WANG R F, et al. Foxtail millet [ Setaria italica (L.) beauv.] grown under low nitrogen shows a smaller root system, enhanced biomass accumulation, and nitrate transporter expression[J]. Frontiers in Plant Science, 2018, 9: 205 doi: 10.3389/fpls.2018.00205
|
[18] |
MEIER M, LIU Y, LAY-PRUITT K S, et al. Auxin-mediated root branching is determined by the form of available nitrogen[J]. Nature Plants, 2020, 6: 1136−1145 doi: 10.1038/s41477-020-00756-2
|
[19] |
LIU K, CHEN Y, LI S Y, et al. Differing responses of root morphology and physiology to nitrogen application rates and their relationships with grain yield in rice[J]. The Crop Journal, 2023, 11(2): 618−627 doi: 10.1016/j.cj.2022.07.019
|
[20] |
FAN X R, XIE D, CHEN J G, et al. Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply[J]. Plant Science, 2014, 227: 1−11
|
[21] |
YANG X Y, WAN Z W, PERRY L, et al. Early millet use in Northern China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(10): 3726−3730
|
[22] |
LIU Y Q, WANG H R, JIANG Z M, et al. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature, 2021, 590: 600−605 doi: 10.1038/s41586-020-03091-w
|
[23] |
GE F, XIE P, WU Y, et al. Genetic architecture and molecular regulation of sorghum domestication[J]. aBiotech, 2023, 4(1): 57−71
|
[24] |
CHEN J, LIU Y, LIU M, et al. Pangenome analysis reveals genomic variations associated with domestication traits in broomcorn millet[J]. Nature Genetics, 2023, 55: 2243−2254 doi: 10.1038/s41588-023-01571-z
|
[25] |
PENG X Y, MIAO Y, WANG F. Research on efficient and intelligent regulation of nutrients in protected soilless culture[J]. Journal of Physics: Conference Series, 2021, 1744(4): 042238 doi: 10.1088/1742-6596/1744/4/042238
|
[26] |
ULLAH I, MAO H P, RASOOL G, et al. Effect of deficit irrigation and reduced N fertilization on plant growth, root morphology and water use efficiency of tomato grown in soilless culture[J]. Agronomy, 2021, 11(2): 228 doi: 10.3390/agronomy11020228
|
[27] |
CHEN Q Y, LI W Y, TAN L B, et al. Harnessing knowledge from maize and rice domestication for new crop breeding[J]. Molecular Plant, 2021, 14(1): 9−26 doi: 10.1016/j.molp.2020.12.006
|
[28] |
张洁. 谷子耐低氮品种的筛选及耐低氮相关性状的全基因组关联分析[D]. 太谷: 山西农业大学, 2020: 18–19
ZHANG J. Screening of low nitrogen tolerance varieties and genome-wide association analysis of low nitrogen tolerance-related traits in foxtail millet[D]. Taigu: Shanxi Agricultural University, 2020: 18–19
|
[29] |
连盈. 谷子耐低氮品种的筛选与转录组测序分析[D]. 太谷: 山西农业大学, 2020: 36–37
LIAN Y. Screening and transcriptome analysis of millet with low nitrogen tolerance under low nitrogen stress[D]. Taigu: Shanxi Agricultural University, 2020: 36–37
|
[30] |
张敏. 谷子苗期响应低氮胁迫生理及转录组特征分析[D]. 太谷: 山西农业大学, 2021: 16–19
ZHANG M. Analysis of physiological and transcriptome characteristics under low nitrogen stress at seedling stage in foxtail millet[D]. Taigu: Shanxi Agricultural University, 2021: 16–19
|
[31] |
于肖. 水、氮处理下谷子生长发育、生理特性及水肥利用效率的响应[D]. 济南: 山东师范大学, 2022: 25–26
YU X. Response of millet growth and development, physiological characteristics and water and fertilizer utilization efficiency under water and nitrogen treatment[D]. Jinan: Shandong Normal University, 2022: 25–26
|
[32] |
王宇珅, 张敏, 孟晓伟, 等. 低氮胁迫对谷子苗期光合指标及生理性能的影响[J]. 山西农业科学, 2021, 49(12): 1483−1490 doi: 10.3969/j.issn.1002-2481.2021.12.17
WANG Y S, ZHANG M, MENG X W, et al. Effects of low nitrogen stress on photosynthesis indexes and physiological performance of foxtail millet at seedling stage[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(12): 1483−1490 doi: 10.3969/j.issn.1002-2481.2021.12.17
|
[33] |
DA SILVA Á E, GABELMAN W H. Screening maize inbred lines for tolerance to low-P stress condition[J]. Plant and Soil, 1992, 146(1): 181−187
|
[34] |
KARUNARATHNE S D, HAN Y, ZHANG X Q, et al. Genome-wide association study and identification of candidate genes for nitrogen use efficiency in barley (Hordeum vulgare L.)[J]. Frontiers in Plant Science, 2020, 11: 571912 doi: 10.3389/fpls.2020.571912
|
[35] |
张美俊, 乔治军, 杨武德, 等. 不同糜子品种对低氮胁迫的生物学响应[J]. 植物营养与肥料学报, 2014, 20(3): 661−669 doi: 10.11674/zwyf.2014.0318
ZHANG M J, QIAO Z J, YANG W D, et al. Biological response of different cultivars of millet to low nitrogen stress[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 661−669 doi: 10.11674/zwyf.2014.0318
|