Citation: | WEN R, GAO Y Y, WU Z H, QIAN H. Effects of land use change on the temporal and spatial pattern of carbon storage in Guanzhong Plain urban agglomeration[J]. Chinese Journal of Eco-Agriculture, 2024, 32(4): 592−604. DOI: 10.12357/cjea.20230508 |
The change in carbon storage in an ecosystem is closely related to the pattern of land use and studying changes in carbon storage is of great importance for achieving the dual carbon goal. The Guanzhong Plain urban agglomeration is the western region’s second-largest urban agglomeration, and the implementation of the national strategy affects the type of land use, which in turn affects the spatial and temporal distribution of carbon storage. By coupling the InVEST and PLUS models, this study analyzed the temporal and spatial evolution characteristics of land use types and carbon storage in the Guanzhong Plain urban agglomeration from 2000 to 2020 and then predicted the changes in land use and carbon storage in the urban agglomeration of the Guanzhong Plain in 2030 under three scenarios: natural evolution, ecological protection, and economic development. The results showed the following: 1) From 2000 to 2020, the main land use types in the Guanzhong Plain urban agglomeration were arable land and forest land, with the conversion of grassland to cultivated land, and forest land and cultivated land to construction land being the most common types of land use conversion in the study area. 2) The predicted 2030 changes show that the cultivated land area of the Guanzhong Plain urban agglomeration tends to decrease under all three scenarios. Under the scenarios of natural evolution and economic development, the areas of forestland and grassland show a decreasing trend and a significant expansion of construction land. Under the ecological protection scenario, forestland and grassland areas show an upward trend, while construction land decreases slightly. 3) From 2000 to 2020, the major reason for the reduction in carbon storage was the shrinkage of forest land and grassland, which decreased by 7.02×106 t. 4) In the 2030 changes, under the scenarios of natural evolution and economic development, both construction land and cultivated land in the Guanzhong Plain will expand significantly and the carbon storage will be significantly reduced; under the ecological protection scenario, the expansion area of construction land is relatively small, the carbon storage in the central and northeastern regions does not decrease significantly, and the overall carbon storage increases in a scattered manner. The results provide a scientific basis for future urban planning and land space management in the Guanzhong Plain urban agglomeration. In the future, the Guanzhong Plain urban agglomeration can be further developed based on ecological protection scenarios and construction land expansion can be limited while protecting the ecology.
[1] |
DONG K Y, DONG X C, JIANG Q Z, et al. Assessing energy resilience and its greenhouse effect: a global perspective[J]. Energy Economics, 2021, 104: 105659 doi: 10.1016/j.eneco.2021.105659
|
[2] |
刘燕华, 李宇航, 王文涛. 中国实现“双碳”目标的挑战、机遇与行动[J]. 中国人口·资源与环境, 2021, 31(9): 1−5
LIU Y H, LI Y H, WANG W T. Challenges, opportunities and actions for China to achieve the targets of carbon peak and carbon neutrality[J]. China Population, Resources and Environment, 2021, 31(9): 1−5
|
[3] |
张友国, 白羽洁. 区域差异化“双碳”目标的实现路径[J]. 改革, 2021(11): 1−18
ZHANG Y G, BAI Y J. Regional differ entiated paths for realizing “double carbon” targets[J]. Reform, 2021(11): 1−18
|
[4] |
FOWZIA A, ERIKA M, ADAM C, et al. Effects of landuse change and topography on the quantity and distribution of soil organic carbon stocks on Acrisol catenas in tropical small-scale shade cocoa systems of the Ashanti region of Ghana[J]. Catena, 2022, 216(PA): 106366
|
[5] |
WANG Q, YANG C H, WANG M L, et al. Decoupling analysis to assess the impact of land use patterns on carbon emissions: a case study in the Yellow River Delta efficient eco-economic zone, China[J]. Journal of Cleaner Production, 2023, 412: 137415 doi: 10.1016/j.jclepro.2023.137415
|
[6] |
ZHAO M M, HE Z B, DU J, et al. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models[J]. Ecological Indicators, 2019, 98: 29−38 doi: 10.1016/j.ecolind.2018.10.052
|
[7] |
耿思筱, 杨志, 党小虎, 等. 基于SD-FLUS模型的宁夏土地利用多情景模拟[J]. 地球科学与环境学报, 2023, 45(4): 806−818
GENG S X, YANG Z, DANG X H, et al. Multi-scenarios simulation of Ningxia land use in China based on SD-FLUS model[J]. Journal of Earth Sciences and Environment, 2023, 45(4): 806−818
|
[8] |
朱志强, 马晓双, 胡洪. 基于耦合FLUS-InVEST模型的广州市生态系统碳储量时空演变与预测[J]. 水土保持通报, 2021, 41(2): 222−229, 239
ZHU Z Q, MA X S, HU H. Spatio-temporal evolution and prediction of ecosystem carbon stocks in Guangzhou City by coupling FLUS-InVEST models[J]. Bulletin of Soil and Water Conservation, 2021, 41(2): 222−229, 239
|
[9] |
邵壮, 陈然, 赵晶, 等. 基于FLUS与InVEST模型的北京市生态系统碳储量时空演变与预测[J]. 生态学报, 2022, 42(23): 9456−9469
SHAO Z, CHEN R, ZHAO J, et al. Spatio-temporal evolution and prediction of carbon storage in Beijing’s ecosystem based on FLUS and InVEST models[J]. Acta Ecologica Sinica, 2022, 42(23): 9456−9469
|
[10] |
王超越, 郭先华, 郭莉, 等. 基于FLUS-InVEST的西北地区土地利用变化及其对碳储量的影响−以呼包鄂榆城市群为例[J]. 生态环境学报, 2022, 31(8): 1667−1679
WANG C Y, GUO X H, GUO L, et al. Land use change and its impact on carbon storage in northwest China based on FLUS-Invest: a case study of Hu-Bao-Er-Yu urban agglomeration[J]. Ecology and Environmental Sciences, 2022, 31(8): 1667−1679
|
[11] |
丁岳, 王柳柱, 桂峰, 等. 基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J]. 环境科学, 2023, 44(6): 3343−3352
DING Y, WANG L Z, GUI F, et al. Ecosystem carbon storage in Hangzhou Bay area based on InVEST and PLUS models[J]. Environmental Science, 2023, 44(6): 3343−3352
|
[12] |
邓亮, 崔耀平, 唐晔, 等. 城市绿地碳储量分布特征及其影响因素[J]. 森林与环境学报, 2023, 43(3): 319−328
DENG L, CUI Y P, TANG Y, et al. Distribution characteristics and influencing factors of carbon storage in urban green space[J]. Journal of Forest and Environment, 2023, 43(3): 319−328
|
[13] |
ZANK B, BAGSTAD K J, VOIGT B, et al. Modeling the effects of urban expansion on natural capital stocks and ecosystem service flows: a case study in the Puget Sound, Washington, USA[J]. Landscape and Urban Planning, 2016, 149: 31−42 doi: 10.1016/j.landurbplan.2016.01.004
|
[14] |
KAFY A A, SAHA M L, FATTAH M A, et al. Integrating forest cover change and carbon storage dynamics: leveraging Google Earth Engine and InVEST model to inform conservation in hilly regions[J]. Ecological Indicators, 2023, 152: 110374 doi: 10.1016/j.ecolind.2023.110374
|
[15] |
王成武, 罗俊杰, 唐鸿湖. 基于InVEST模型的太行山沿线地区生态系统碳储量时空分异驱动力分析[J]. 生态环境学报, 2023, 32(2): 215−225
WANG C W, LUO J J, TANG H H. Analysis on the driving force of spatial and temporal differentiation of carbon storage in the Taihang Mountains based on InVEST model[J]. Ecology and Environmental Sciences, 2023, 32(2): 215−225
|
[16] |
帕茹克·吾斯曼江, 艾东, 方一舒, 等. 基于InVEST与CA-Markov模型的昆明市碳储量时空演变与预测[J]. 环境科学, 2024, 45(1): 287−299
PARUKE W, AI D, FANG Y S, et al. Spatial and temporal evolution and prediction of carbon storage in Kunming City based on InVEST and CA-Markov model[J]. Environmental Science, 2024, 45(1): 287−299
|
[17] |
吴楠, 陈凝, 程鹏, 等. 安徽省陆地生态系统碳储量变化对未来土地覆被情景的响应[J]. 长江流域资源与环境, 2023, 32(2): 415−426
WU N, CHEN N, CHENG P, et al. Evaluation of carbon storage on terrestrial ecosystem responses to land cover change under five future scenarios in Anhui Province[J]. Resources and Environment in the Yangtze Basin, 2023, 32(2): 415−426
|
[18] |
刘洋, 张军, 周冬梅, 等. 基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报, 2021, 41(10): 4052−4065
LIU Y, ZHANG J, ZHOU D M, et al. Temporal and spatial variation of carbon storage in the Shule River Basin based on InVEST model[J]. Acta Ecologica Sinica, 2021, 41(10): 4052−4065
|
[19] |
张双悦, 刘明. 区域协调发展: 战略定位、面临的挑战及路径选择[J]. 经济问题, 2023(5): 103−109
ZHANG S Y, LIU M. Regional coordinated development: strategic positioning, challenges and path[J]. On Economic Problems, 2023(5): 103−109
|
[20] |
方创琳. 黄河流域城市群形成发育的空间组织格局与高质量发展[J]. 经济地理, 2020, 40(6): 1−8
FANG C L. Spatial organization pattern and high-quality development of urban agglomeration in the Yellow River Basin[J]. Economic Geography, 2020, 40(6): 1−8
|
[21] |
靳紫含, 赵安周, 相恺政, 等. 基于GEE的关中平原城市群植被时空演变及影响因素[J]. 水土保持通报, 2023, 43(2): 164−172
JIN Z H, ZHAO A Z, XIANG K Z, et al. Temporal and spatial evolution and driving factors of vegetation index in Guanzhong Plain urban agglomeration based on GEE[J]. Bulletin of Soil and Water Conservation, 2023, 43(2): 164−172
|
[22] |
崔秀萍, 郭永新. 近40a西部城市群土地利用结构时空动态演化分析[J]. 干旱区资源与环境, 2022, 36(2): 16−24
CUI X P, GUO Y X. Analysis on the spatio-temporal dynamic evolution of land use structure of western urban agglomerations in the past 40 years[J]. Journal of Arid Land Resources and Environment, 2022, 36(2): 16−24
|
[23] |
唐晓灵, 冯艳蓉, 杜莉. 产业结构调整与能源生态效率的演变特征及耦合关系−以关中平原城市群为例[J]. 技术经济, 2021, 40(4): 58−64
TANG X L, FENG Y R, DU L. The evolution characteristics and coupling relationship between industrial structure adjustment and energy eco-efficiency: taking Guanzhong Plain urban agglomeration as an example[J]. Journal of Technology Economics, 2021, 40(4): 58−64
|
[24] |
CHEN J, WANG S S, ZOU Y T. Construction of an ecological security pattern based on ecosystem sensitivity and the importance of ecological services: a case study of the Guanzhong Plain urban agglomeration, China[J]. Ecological Indicators, 2022, 136: 108688 doi: 10.1016/j.ecolind.2022.108688
|
[25] |
达成, 张富涛, 钱勇生, 等. 关中平原城市群“交通-产业-环境”耦合协调发展的动态演化特征分析[J]. 干旱区地理, 2022, 45(3): 955−965
DA C, ZHANG F T, QIAN Y S, et al. Dynamic evolution characteristics of coordinated development of transportation-industry-environment in Guanzhong Plain urban agglomeration[J]. Arid Land Geography, 2022, 45(3): 955−965
|
[26] |
ZHENG H L, CAO X S. Impact of high-speed railway construction on spatial relationships in the Guanzhong Plain urban agglomeration[J]. Regional Sustainability, 2021, 2(1): 47−59 doi: 10.1016/j.regsus.2021.01.001
|
[27] |
ZHAO N Z, LIU Y, CAO G F, et al. Forecasting China’s GDP at the pixel level using nighttime lights time series and population images[J]. GIScience & Remote Sensing, 2017, 54(3): 407−425
|
[28] |
如克亚·热合曼, 阿里木江·卡斯木, 希丽娜依·多来提, 等. 天山北坡城市群碳储量时空变化及预测研究[J]. 中国环境科学, 2022, 42(12): 5905−5917
REHEMAN R, KASIMU·A, DUOLAT·X, et al. Temporal and spatial variation and prediction of carbon storage in urban agglomeration on the northern slope of Tianshan Mountains[J]. China Environmental Science, 2022, 42(12): 5905−5917
|
[29] |
GAO L N, TAO F, LIU R R, et al. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: a case study of Nanjing[J]. Sustainable Cities and Society, 2022, 85: 104055 doi: 10.1016/j.scs.2022.104055
|
[30] |
WEI Q Q, ABUDUREHEMAN M, HALIKE A, et al. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China[J]. Ecological Indicators, 2022, 145: 109632 doi: 10.1016/j.ecolind.2022.109632
|
[31] |
LIANG X, GUAN Q F, CLARKE K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021, 85: 101569 doi: 10.1016/j.compenvurbsys.2020.101569
|
[32] |
LI H H, SONG W. Pattern of spatial evolution of rural settlements in the Jizhou District of China during 1962−2030[J]. Applied Geography, 2020, 122: 102247 doi: 10.1016/j.apgeog.2020.102247
|
[33] |
徐丽, 何念鹏, 于贵瑞. 2010s中国陆地生态系统碳密度数据集[J]. 中国科学数据, 2019, 4(1): 86−92
XU L, HE N P, YU G R. A dataset of carbon density in Chinese terrestrial ecosystems (2010s)[J]. China Scientific Data, 2019, 4(1): 86−92
|
[34] |
雒舒琪, 胡晓萌, 孙媛, 等. 耦合PLUS-InVEST模型的多情景土地利用变化及其对碳储量影响[J]. 中国生态农业学报(中英文), 2023, 31(2): 300−314
LUO S Q, HU X M, SUN Y, et al. Multi-scenario land use change and its impact on carbon storage based on coupled Plus-Invest model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 300−314
|
[35] |
ALAM S A, STARR M, CLARK B J F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: a regional carbon sequestration study[J]. Journal of Arid Environments, 2013, 89: 67−76 doi: 10.1016/j.jaridenv.2012.10.002
|
[36] |
GIARDINA C P, RYAN M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000, 404(6780): 858−861 doi: 10.1038/35009076
|
[37] |
陈光水, 杨玉盛, 刘乐中, 等. 森林地下碳分配(TBCA)研究进展[J]. 亚热带资源与环境学报, 2007, 2(1): 34−42
CHEN G S, YANG Y S, LIU L Z, et al. Research review on total belowground carbon allocation in forest ecosystems[J]. Journal of Subtropical Resources and Environment, 2007, 2(1): 34−42
|
[38] |
张斌, 李璐, 夏秋月, 等. “三线”约束下土地利用变化及其对碳储量的影响−以武汉城市圈为例[J]. 生态学报, 2022, 42(6): 2265−2280
ZHANG B, LI L, XIA Q Y, et al. Land use change and its impact on carbon storage under the constraints of “three lines”: a case study of Wuhan City circle[J]. Acta Ecologica Sinica, 2022, 42(6): 2265−2280
|
[39] |
糜毅, 李涛, 吴博, 等. 基于优化模拟的长株潭3+5城市群碳储量时空演变与预测[J]. 环境工程技术学报, 2023, 13(5): 1740−1751
MI Y, LI T, WU B, et al. Spatio-temporal evolution and prediction of carbon storage in Chang-Zhu-Tan 3+5 urban agglomeration based on optimization simulation[J]. Journal of Environmental Engineering Technology, 2023, 13(5): 1740−1751
|
[40] |
李国平, 李宏伟. 经济区规划促进了西部地区经济增长吗? −基于合成控制法的研究[J]. 经济地理, 2019, 39(3): 20−28
LI G P, LI H W. Can the policy of the economic zone promote the western economic growth? research based on synthetic control method[J]. Economic Geography, 2019, 39(3): 20−28
|
[41] |
牛丽楠, 邵全琴, 宁佳, 等. 西部地区生态状况变化及生态系统服务权衡与协同[J]. 地理学报, 2022, 77(1): 182−195
NIU L N, SHAO Q Q, NING J, et al. Ecological changes and the tradeoff and synergy of ecosystem services in Western China[J]. Acta Geographica Sinica, 2022, 77(1): 182−195
|
[42] |
董锁成, 李泽红, 石广义, 等. 西部地级城市竞争力评价与“十四五”国家级新区布局[J]. 自然资源学报, 2022, 37(7): 1657−1672 doi: 10.31497/zrzyxb.20220701
DONG S C, LI Z H, SHI G Y, et al. Comprehensive assessment of prefecture-level cities and future allocation of national new areas of Western China[J]. Journal of Natural Resources, 2022, 37(7): 1657−1672 doi: 10.31497/zrzyxb.20220701
|
[43] |
唐晓灵, 康铭敏. 区域资源环境与经济增长协调发展研究−以关中平原城市群为例[J]. 价格理论与实践, 2021(6): 161−164, 167
TANG X L, KANG M M. Research on the coordinated development of regional resources environment and economic growth — Taking the Guanzhong Plain Urban Agglomeration as an example[J]. Price: Theory & Practice, 2021(6): 161−164, 167
|
[44] |
靳甜甜, 曹二佳, 巩杰. 2000—2018年子午岭区植被覆盖时空变化及其与气候变化和人类活动的关系[J]. 水土保持通报, 2022, 42(1): 335−343
JIN T T, CAO E J, GONG J. Spatiotemporal variations of vegetation coverage and its relationships with climate change and human activities in Ziwuling region during 2000−2018[J]. Bulletin of Soil and Water Conservation, 2022, 42(1): 335−343
|
[45] |
杨潋威, 赵娟, 朱家田, 等. 基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感, 2022, 34(4): 175−182
YANG L W, ZHAO J, ZHU J T, et al. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources, 2022, 34(4): 175−182
|
[46] |
鱼冠雄, 海新权, 杨鑫. 泾河流域生态系统碳储量时空演变与预测[J]. 环境监测管理与技术, 2023, 35(5): 33−38
YU G X, HAI X Q, YANG X. Spatio-temporal evolution and prediction of carbon storage in Jinghe Basin ecosystem[J]. The Administration and Technique of Environmental Monitoring, 2023, 35(5): 33−38
|