微润管埋深与密度对日光温室番茄产量及品质的影响
Effects of moistube depth and density on tomato yield and quality in solar greenhouse
-
摘要: 为了探寻微润灌溉在日光温室的适宜应用技术参数, 以膜下滴灌为对照(CK), 设置3种微润管埋深(10 cm、20 cm、30 cm)和3种密度[2行番茄埋设1条(1管2行)、2条(2管2行)、3条(3管2行)微润管], 研究了微润管不同埋深及密度对日光温室番茄生长、产量及品质的影响。试验结果表明, 与CK相比, 微润灌溉更有利于日光温室番茄的生长。番茄的果实横径、单果质量、单果体积、总产量及灌溉水分利用效率增加显著, 分别较CK平均增加8.58%、11.99%、18.79%、60.93%和103.40%, 平均节水37.73%。微润灌溉显著提高了番茄果实维生素C、可溶性糖及糖酸比的含量, 较之CK平均增幅分别为27.07%、4.48%和21.38%。相同微润管密度下, 番茄的综合品质表现为: 埋深30 cm>埋深10 cm>埋深20 cm; 相同埋深下, 表现为: 1管2行>2管2行>3管2行。番茄的株高、茎粗、果实形态及总产量, 随微润管埋深的增加而减小, 随微润管密度的增加而增加, 茎粗与灌溉水分利用效率随微润管密度的增加而减小。综合考虑番茄的总产量、灌溉水分利用效率、品质以及微润管的经济成本等因素, 埋深10 cm, 1管2行(番茄总产量为87.38 t·hm-2, 灌溉水分利用效率为108.91 kg·m-3, 品质综合排序第3)为日光温室番茄种植较为适宜的微润灌溉技术参数。Abstract: Tomato (Solanum lycopersicum Mill.) is one of the vegetables widely cultivated in solar greenhouses in North China. As irrigation is the main source of soil moisture in solar greenhouse, it is very important to select appropriate irrigation methods and technical parameters to improve agricultural production, keep greenhouse air humidity, and reduce the incidence of pests and diseases. Moistube irrigation is a new underground irrigation technology with semi-permeable membrane as the core material which provides water to crop root zone soils in a slow and continuous flow. The advantages of this new irrigation technology include energy saving, low operation cost, easy operation, good anti-clogging performance, less deep leakage, etc. However, this technology is still in experimental stage and therefore has not been applied at large scale, and some important parameters needed to be optimized. In this experiment, drip irrigation with mulch was used as control to explore suitable technical parameters of moistube irrigation in solar greenhouse conditions. Three depths (10, 20, 30 cm) and three densities (one, two and three moistubes with two lines of tomatoes in one planting ridge, respectively expresses as 1 tube with 2 lines, 2 tubes with 2 lines, 3 tubes with 2 lines) were set up to study the effect of different depths and densities of moistube on the growth, yield and quality of tomato in solar greenhouse conditions. The experiment was done from October 2015 through April 2016 in a 108 m by 8 m solar greenhouse (108°02′E, 34°17′N) in Yangling Agricultural Hi-tech Industries Demonstration Zone, Shaanxi Province, China. The results showed that moistube irrigation enhanced the growth of tomato compared with the drip irrigation with mulch. Compared with control, moistube irrigation increased fruit diameter, weight, volume, total yield and irrigation water use efficiency by 8.58%, 11.99%, 18.79%, 60.93% and 103.40%, respectively. Our results suggested that water-saving under moistube irrigation conditions was as high as 37.73%. For tomato quality, compared with control, the contents of vitamin C, soluble sugar and sugar-acid ratio also increased under moistube irrigation, with average increasing rates of 27.07%, 4.48% and 21.38%, respectively. In terms of comprehensive quality of tomato, the moistube depth was in the order of 30 cm > 10 cm > 20 cm under the same moistube density, the moistube density was in order of 1 tube with 2 lines > 2 tubes with 2 lines > 3 tubes with 2 lines under the same moistube depth. In general, plant height, stem diameter, fruit shape and total yield of tomato decreased with increasing moistube depth. These parameters also increased with increasing moistube density. However, stem diameter and irrigation water use efficiency decreased with increasing moistube density. Based on total yield, irrigation water use efficiency and quality of tomato and the economic cost of moistube and other factors, 10 cm depth and 1 tube with 2 lines (with total tomato yield of 87.38 t.hm-2, irrigation water use efficiency of 108.91 kg.m-3, and third in comprehensive quality rank) were the most suitable technical parameters for moistube irrigation in solar greenhouse condition.
-
Keywords:
- Moistube irrigation /
- Moistube buried depth /
- Moistube density /
- Solar greenhouse /
- Tomato /
- Yield /
- Quality
-
-
[1] 李天来. 我国日光温室产业发展现状与前景[J]. 沈阳农业大学学报, 2005, 36(2): 131–138 Li T L. Current situation and prospects of green house industry development in China[J]. Journal of Shenyang Agricultural University, 2005, 36(2): 131–138
[2] Abdalhi M A M, 程吉林, 冯绍元, 等. 滴灌条件下不同供水水平对温室番茄生长、产量及其品质的影响[J]. 灌溉排水学报, 2016, 35(1): 36–41 Abdalhi M A M, Cheng J L, Feng S Y, et al. Response of greenhouse tomato growth, yield and quality to drip-irrigation[J]. Journal of Irrigation and Drainage, 2016, 35(1): 36–41
[3] Liu H, Duan A W, Li F S, et al. Drip irrigation scheduling for tomato grown in solar greenhouse based on pan evaporation in North China Plain[J]. Journal of Integrative Agriculture, 2013, 12(3): 520–531
[4] Patel N, Rajput T B S. Effect of drip tape placement depth and irrigation level on yield of potato[J]. Agricultural Water Management, 2007, 88(1/3): 209–223
[5] 张辉, 张玉龙, 虞娜, 等. 温室膜下滴灌灌水控制下限与番茄产量、水分利用效率的关系[J]. 中国农业科学, 2006, 39(2): 425–432 Zhang H, Zhang Y L, Yu N, et al. Relationship between low irrigation limit and yield, water use efficiency of tomato in under-mulching-drip irrigation in greenhouse[J]. Scientia Agricultura Sinica, 2006, 39(2): 425–432
[6] 诸葛玉平, 张玉龙, 李爱峰, 等. 保护地番茄栽培渗灌灌水指标的研究[J]. 农业工程学报, 2002, 18(2): 53–57 Zhuge Y P, Zhang Y L, Li A F, et al. Irrigation scheduling of tomato by subsurface irrigation with porous pipe in greenhouse[J]. Transactions of the CSAE, 2002, 18(2): 53–57
[7] 吴玉芹, 杨鹏, 刘思若. 关于我国微灌技术发展的几点思考[J]. 灌溉排水学报, 2015, 34(12): 1–4 Wu Y Q, Yang P, Liu S R. Thinking about the development of micro-irrigation technology in China[J]. Journal of Irrigation and Drainage, 2015, 34(12): 1–4
[8] 张立坤, 窦超银, 李光永, 等. 微润灌溉技术在大棚娃娃菜种植中的应用[J]. 中国农村水利水电, 2013(4): 53–55 Zhang L K, Dou C Y, Li G Y, et al. Application of self-suction micro-irrigation to baby cabbage planting in greenhouses[J]. China Rural Water and Hydropower, 2013(4): 53–55
[9] 朱燕翔, 王新坤, 程岩, 等. 半透膜微润管水力性能试验的研究[J]. 中国农村水利水电, 2015(5): 23–25 Zhu Y X, Wang X K, Cheng Y, et al. Research on the hydraulic performance of semi-permeable membrane moistube[J]. China Rural Water and Hydropower, 2015(5): 23–25
[10] 杨文君, 田磊, 杜太生, 等. 半透膜节水灌溉技术的研究进展[J]. 水资源与水工程学报, 2008, 19(6): 60–63 Yang W J, Tian L, Du T S, et al. Research prospect of the water-saving irrigation by semi-permeable film[J]. Journal of Water Resources & Water Engineering, 2008, 19(6): 60–63
[11] 张俊, 牛文全, 张琳琳, 等. 初始含水率对微润灌溉线源入渗特征的影响[J]. 排灌机械工程学报, 2014, 32(1): 72–79 Zhang J, Niu W Q, Zhang L L, et al. Effects of soil initial water content on line-source infiltration characteristic in moistube irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(1): 72–79
[12] 牛文全, 张俊, 张琳琳, 等. 埋深与压力对微润灌湿润体水分运移的影响[J]. 农业机械学报, 2013, 44(12): 128–134 Niu W Q, Zhang J, Zhang L L, et al. Effects of buried depth and pressure head on water movement of wetted soil during moistube-irrigation[J]. Transactions of the CSAM, 2013, 44(12): 128–134
[13] 薛万来, 牛文全, 张俊, 等. 压力水头对微润灌土壤水分运动特性影响的试验研究[J]. 灌溉排水学报, 2013, 32(6): 7–11 Xue W L, Niu W Q, Zhang J, et al. Effects of hydraulic head on soil water movement under moistube-irrigation[J]. Journal of Irrigation and Drainage, 2013, 32(6): 7–11
[14] 何玉琴, 成自勇, 张芮, 等. 不同微润灌溉处理对玉米生长和产量的影响[J]. 华南农业大学学报, 2012, 33(4): 566–569 He Y Q, Cheng Z Y, Zhang R, et al. Effects of different ways of micro-moist irrigation on growth and yield of maize[J]. Journal of South China Agricultural University, 2012, 33(4): 566–569
[15] 薛万来, 牛文全, 张子卓, 等. 微润灌溉对日光温室番茄生长及水分利用效率的影响[J]. 干旱地区农业研究, 2013, 31(6): 61–66 Xue W L, Niu W Q, Zhang Z Z, et al. Effects of the tomato growth and water use efficiency in sunlight greenhouse by moistube-irrigation[J]. Agricultural Research in the Arid Areas, 2013, 31(6): 61–66
[16] 魏镇华, 陈庚, 徐淑君, 等. 交替控水条件下微润灌溉对番茄耗水和产量的影响[J]. 灌溉排水学报, 2014, 33(4/5): 139–143 Wei Z H, Chen G, Xu S J, et al. Responses of tomato water consumption and yield to moistube-irrigation under controlled alternate partial root-zone Irrigation[J]. Journal of Irrigation and Drainage, 2014, 33(4/5): 139–143
[17] 张子卓, 张珂萌, 牛文全, 等. 微润带埋深对温室番茄生长和土壤水分动态的影响[J]. 干旱地区农业研究, 2015, 33(2): 122–129 Zhang Z Z, Zhang K M, Niu W Q, et al. Effects of burying depth on growth of tomato and soil moisture dynamics by moistube-irrigation in green house[J]. Agricultural Research in the Arid Areas, 2015, 33(2): 122–129
[18] 何华, 康绍忠, 曹红霞. 地下滴灌埋管深度对冬小麦根冠生长及水分利用效率的影响[J]. 农业工程学报, 2001, 17(6): 31–33 He H, Kang S Z, Cao H X. Effect of lateral depth on root and seedling growth and water use efficiency of winter wheat[J]. Transactions of the CSAE, 2001, 17(6): 31–33
[19] 谢海霞, 何帅, 周建伟, 等. 灌溉量及滴灌管埋深对无膜地下滴灌棉花产量的影响[J]. 灌溉排水学报, 2012, 31(2): 134–136 Xie H X, He S, Zhou J W, et al. Effect of irrigation amount and buried depth of drip irrigation tape on cotton production in subsurface drip irrigation and no mulch plastic film farmland[J]. Journal of Irrigation and Drainage, 2012, 31(2): 134–136
[20] 刘玉春, 李久生. 毛管埋深和土壤层状质地对地下滴灌番茄根区水氮动态和根系分布的影响[J]. 水利学报, 2009, 40(7): 782–790 Liu Y C, Li J S. Effects of lateral depth and layered-textural soils on water and nitrate dynamics and root distribution for drip fertigated tomato[J]. Journal of Hydraulic Engineering, 2009, 40(7): 782–790
[21] 农业部. 水肥一体化技术指导意见[J]. 中国农技推广, 2013, 29(3): 20–22 Ministry of Agriculture of China. Issued guidance on the integration of water and fertilizer technology[J]. China Agricultural Technology Extension, 2013, 29(3): 20–22
[22] 张明智, 牛文全, 王京伟, 等. 微润管布置方式对夏玉米苗期生长的影响[J]. 节水灌溉, 2016(3): 80–83 Zhang M Z, Niu W Q, Wang J W, et al. Effect of moistube arrangements on the growth of maize at seedling stage[J]. Water Saving Irrigation, 2016(3): 80–83
[23] 李波, 任树梅, 杨培岭, 等. 供水条件对温室番茄根系分布及产量影响[J]. 农业工程学报, 2007, 23(9): 39–44 Li B, Ren S M, Yang P L, et al. Impacts of different water supply on root distribution and yield of tomato in greenhouse[J]. Transactions of the CSAE, 2007, 23(9): 39–44
[24] 刘国宏, 谢香文, 王则玉. 微润灌毛管不同布设方式对新定植红枣生长的影响[J]. 新疆农业科学, 2016, 53(2): 248–253 Liu G H, Xie X W, Wang Z Y. Effects of different layout methods of micro-run irrigation tube for the growth of newly-planted date trees[J]. Xinjiang Agricultural Sciences, 2016, 53(2): 248–253
[25] 蔡焕杰, 邵光成, 张振华. 棉花膜下滴灌毛管布置方式的试验研究[J]. 农业工程学报, 2002, 18(1): 45–48 Cai H J, Shao G C, Zhang Z H. Lateral layout of drip irrigation under plastic mulch for cotton[J]. Transactions of the CSAE, 2002, 18(1): 45–48
[26] 罗勤, 陈竹君, 闫波, 等. 水肥减量对日光温室土壤水分状况及番茄产量和品质的影响[J]. 植物营养与肥料学报, 2015, 21(2): 449–457 Luo Q, Chen Z J, Yan B, et al. Effects of reducing water and fertilizer rates on soil moisture and yield and quality of tomato in solar greenhouse[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 449–457
[27] 唐丽, 张泽锦, 李跃建. 膜下滴灌水量对避雨栽培番茄产量和品质的影响[J]. 节水灌溉, 2015(12): 44–46 Tang L, Zhang Z J, Li Y J. Effect of subsurface drip irrigation quantity on yield and quality of tomato under sheltered cultivation[J]. Water Saving Irrigation, 2015(12): 44–46
[28] 蒋树芳, 万书勤, 冯棣, 等. 地下滴灌不同埋深对番茄产量和灌溉水利用效率的影响[J]. 节水灌溉, 2015(8): 26–28 Jiang S F, Wan S Q, Feng D, et al. Response of tomato yield and irrigation water use efficiency under subsurface drip irrigation at different lateral depths[J]. Water Saving Irrigation, 2015(8): 26–28
[29] 张俊. 微润线源入渗湿润体特性试验研究[D]. 北京: 中国科学院大学, 2013 Zhang J. Experimental study on characters of wetted soil from line-source infiltration in moistube irrigation[D]. Beijing: University of Chinese Academy of Sciences, 2013
[30] 李元, 牛文全, 许健, 等. 加气滴灌提高大棚甜瓜品质及灌溉水分利用效率[J]. 农业工程学报, 2016, 32(1): 147–154 Li Y, Niu W Q, Xu J, et al. Aerated irrigation enhancing quality and irrigation water use efficiency of muskmelon in plastic greenhouse[J]. Transactions of the CSAE, 2016, 32(1): 147–154
[31] 吴雪, 王坤元, 牛晓丽, 等. 番茄综合营养品质指标构建及其对水肥供应的响应[J]. 农业工程学报, 2014, 30(7): 119–127 Wu X, Wang K Y, Niu X L, et al. Construction of comprehensive nutritional quality index for tomato and its response to water and fertilizer supply[J]. Transactions of the CSAE, 2014, 30(7): 119–127
[32] 夏秀波, 于贤昌, 高俊杰. 水分对有机基质栽培番茄生理特性、品质及产量的影响[J]. 应用生态学报, 2007, 18(12): 2710–2714 Xia X B, Yu X C, Gao J J. Effects of moisture content in organic substrate on the physiological characters, fruit quality and yield of tomato plant[J]. Chinese Journal of Applied Ecology, 2007, 18(12): 2710–2714
[33] 田义, 张玉龙, 虞娜, 等. 温室地下滴灌灌水控制下限对番茄生长发育、果实品质和产量的影响[J]. 干旱地区农业研究, 2006, 24(5): 88–92 Tian Y, Zhang Y L, Yu N, et al. Effect of different low irrigation limit on growth, quality and yield of tomato under subsurface drip irrigation in greenhouse[J]. Agricultural Research in the Arid Areas, 2006, 24(5): 88–92
[34] Mahajan G, Singh K G. Response of greenhouse tomato to irrigation and fertigation[J]. Agricultural Water Management, 2006, 84(1/2): 202–206
[35] 刘玉春, 李久生. 毛管埋深和层状质地对番茄滴灌水氮利用效率的影响[J]. 农业工程学报, 2009, 25(6): 7–12 Liu Y C, Li J S. Effects of lateral depth and layered-textural soils on water and nitrogen use efficiency of drip irrigated tomato[J]. Transactions of the CSAE, 2009, 25(6): 7–12
-
期刊类型引用(13)
1. 张凯璐,申丽霞,孟涵,李彬楠,李杰. 微润灌有机肥配施对土壤硝态氮和番茄生长的影响. 北方园艺. 2023(15): 10-16 . 百度学术
2. 蒋诗瑶,刘小刚,易怀峰,赵璐,崔宁博,李义林. 微灌方式耦合施肥水平对土壤质量、芒果幼树生长和水肥利用效率的影响. 植物营养与肥料学报. 2023(10): 1896-1910 . 百度学术
3. 吕望,张敬晓,王艳华,景明,胡亚伟. 日光温室土壤次生盐渍化研究进展. 黑龙江农业科学. 2021(08): 112-116 . 百度学术
4. 梁博惠,牛文全,郭丽丽,杨小坤,李学凯. 滴灌灌水均匀系数对温室番茄生长的影响. 干旱地区农业研究. 2020(02): 37-43 . 百度学术
5. 赵伟,唐磊,杨圆圆,张锋,杨兆森,陈志杰. 不同灌水方式对番茄品质、土壤养分及地温的影响. 北方园艺. 2018(09): 133-138 . 百度学术
6. 王银花,申丽霞,梁鹏,陈建琦,李锦涛. 基于微润交替灌溉下不同压力水头对辣椒生长的影响. 北方园艺. 2018(15): 70-74 . 百度学术
7. 宋时雨,杨昊霖,许文其,张毅杰,余杨. 微润灌溉系统在云南红壤土中主要工作性能研究. 灌溉排水学报. 2018(02): 16-23 . 百度学术
8. 王银花,申丽霞,梁鹏,陈建琦,李锦涛. 基于微润灌不同交替周期对大棚大叶茼蒿生长的影响. 节水灌溉. 2018(08): 1-4+8 . 百度学术
9. 雷涛,毕远杰,雷明杰,张少文,孙西欢,马娟娟,郭向红. 微润管埋深及压力水头对青椒生长和水分利用的影响. 农机化研究. 2018(08): 104-110 . 百度学术
10. 梁鹏,申丽霞,王银花,陈建琦,刘泽宇. 基于微润灌不同灌水方式对大棚辣椒生长的影响. 节水灌溉. 2018(12): 5-7+11 . 百度学术
11. 牛文全,吕望,古君,梁博惠,郭丽丽,官雅辉. 微润管埋深与间距对日光温室番茄土壤水盐运移的影响. 农业工程学报. 2017(19): 131-140 . 百度学术
12. 古君,牛文全,吕望,李元,梁博惠,郭丽丽. 灌水下限与毛管埋深对温室番茄生长的影响. 中国生态农业学报. 2017(05): 698-707 . 百度学术
13. 王书吉,韩松,张正良,费良军,王利书. 微润管不同埋深对番茄生长、产量、品质的影响. 中国农村水利水电. 2017(08): 28-31+35 . 百度学术
其他类型引用(14)
计量
- 文章访问数: 1733
- HTML全文浏览量: 55
- PDF下载量: 775
- 被引次数: 27