刘兰兰, 郭凤霞, 陈垣, 陈永中, 王红燕, 张碧全, 郭爱惠. 有机栽培条件下种苗大小对党参成药特性的影响[J]. 中国生态农业学报(中英文), 2021, 29(11): 1902−1912. DOI: 10.13930/j.cnki.cjea.210188
引用本文: 刘兰兰, 郭凤霞, 陈垣, 陈永中, 王红燕, 张碧全, 郭爱惠. 有机栽培条件下种苗大小对党参成药特性的影响[J]. 中国生态农业学报(中英文), 2021, 29(11): 1902−1912. DOI: 10.13930/j.cnki.cjea.210188
LIU L L, GUO F X, CHEN Y, CHEN Y Z, WANG H Y, ZHANG B Q, GUO A H. Effect of seedling size on the medicinal properties of Codonopsis pilosula under organic cultivation[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1902−1912. DOI: 10.13930/j.cnki.cjea.210188
Citation: LIU L L, GUO F X, CHEN Y, CHEN Y Z, WANG H Y, ZHANG B Q, GUO A H. Effect of seedling size on the medicinal properties of Codonopsis pilosula under organic cultivation[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1902−1912. DOI: 10.13930/j.cnki.cjea.210188

有机栽培条件下种苗大小对党参成药特性的影响

Effect of seedling size on the medicinal properties of Codonopsis pilosula under organic cultivation

  • 摘要: 生态栽培是中药材产业发展的必然趋势。党参种苗大小参差不齐, 为了探明种苗大小对其成药特性的影响, 将种苗分为大苗(BS)、中苗(MS)、小苗(SS)和特小苗(SLS), 并进行全程有机肥栽培, 系统比较各级种苗的成药产量特性。结果表明, 不同大小种苗返青后阶段性异速生长趋势明显, 种苗越大返青越早, 前期长势越强中后期减弱越明显, 侧根数显著增加, 根显著伸长, 根含水量高, 发病率越高; 而种苗越小返青率越低, 但返青株抗病性越强, 成活率越高, 前期长势弱但中后期加快。不同大小种苗的成药株个体和群体的产量差异并不显著, 平均鲜药材产量MS组最高(8225.1 kg·hm–2), SS组次之(8125.0 kg·hm–2), 较BS组分别提高23.4%和21.9%, 较SLS组分别提高45.2%和43.4%; 平均干药材产量SS组最高(2938.1 kg·hm–2), MS组次之(2681.1 kg·hm–2), 较BS组分别提高37.8%和25.7%, 较SLS组分别提高53.6%和40.1%。各级种苗成药根发病率差异性虽不显著, 但发病程度差异性极显著, MS和BS的病情指数分别为4.66%和2.93%, 均较SLS (1.32%)和SS (0.97%)极显著增大(P<0.01)。综评指数排序为SS (0.734)>SLS (0.636)>MS (0.409)>BS (0.282)。这说明有机栽培党参药材产出性能并不随种苗增大而提高, 党参种苗可塑性强, 在成药期建植策略不同, 研究结果打破了对党参种苗选留的传统认知, 建议生产上不盲目追求大苗, 轻易淘汰特小苗, 特小苗可适当增加移栽密度和生态防鸟虫提高返青率, 大苗可适当降低移栽密度或搭架提高返青株成活率, 有效提高党参的生态有机栽培成效。

     

    Abstract: Ecological organic cultivation is an increasing trend in the industrialized development of traditional Chinese medicine. The medicinal properties of Codonopsis pilosula vary with seedling size. To explore the effects of seedling size on medicinal formation in organic cultivated C. pilosula, seedlings were categorized as big (BS), middle (MS), small (SS), and slender (SLS) seedlings and transplanted under full organic conditions to comparatively evaluate the yield and medicinal characteristics of the medicinal roots. The results showed that the seedling sizes had an allometric growth pattern. After transplantation, bigger seedlings showed earlier regreening, greater growth at the early stages and weaker growth at the later stages with significant increases in lateral roots number, and higher water content of roots, and higher disease incidence. The smaller seedlings showed later regreening, faster growth at the mid and later stages with increased diameter, less root water content and lower disease incidence. These differences led to non-significant differences in the single root weight and total medicinal yield. The average fresh medicinal yields of MS (8225.1 kg·hm–2) and SS (8125.0 kg·hm–2) were the highest and second highest, respectively, increasing by 23.4% and 21.9% compared with the BS group and by 45.2% and 43.4% compared with the SLS group. The average dry medicinal yield of SS (2938.1 kg·hm–2) and MS (2681.1 kg·hm–2) was the highest and second highest, increasing by 37.8% and 25.7% compared with the BS group and by 53.6% and 40.1% compared with the SLS group, respectively. Among the four seedling sizes, the root disease incidence did not significantly differ, ranked as BS (6.4%) > MS (5.6%) > SS (3.9%)> SLS (3.6%). However, the disease severity showed significant differences, and the disease indices for MS and BS were 4.66% and 2.93%, respectively, both of which were significantly higher than those for SLS (1.32%) and SS (0.97%). The comprehensive evaluation indices were SS (0.734) > SLS (0.636) > MS (0.409) > BS (0.282). In summary, yield did not increase with seedling size largening. Plant seedlings have strong plasticity and manifest various strategies for establishment during the medicinal formation period. These results challenge the traditional selection and retention practices for plant seedlings, suggesting that the big seedlings should not be blindly chosen and that the slender seedlings should not be eliminated during production. Slender plants should be cultivated by increasing the transplantation density and controlling pests and birds to improve the regreening rate, whereas larger seedlings should be cultivated by decreasing the density. Together, these practices could improve the effectiveness of C. pilosula organic cultivation.

     

/

返回文章
返回