留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

麦秸与氮肥配施对水稻根际区土壤微生物量碳氮的影响

罗佳琳 赵亚慧 于建光 王宁 薛利红 杨林章

罗佳琳, 赵亚慧, 于建光, 王宁, 薛利红, 杨林章. 麦秸与氮肥配施对水稻根际区土壤微生物量碳氮的影响[J]. 中国生态农业学报(中英文), 2021, 29(9): 1582−1591 doi: 10.13930/j.cnki.cjea.201019
引用本文: 罗佳琳, 赵亚慧, 于建光, 王宁, 薛利红, 杨林章. 麦秸与氮肥配施对水稻根际区土壤微生物量碳氮的影响[J]. 中国生态农业学报(中英文), 2021, 29(9): 1582−1591 doi: 10.13930/j.cnki.cjea.201019
LUO J L, ZHAO Y H, YU J G, WANG N, XUE L H, YANG L Z. Effects of wheat straw and nitrogen fertilizer application on the soil microbial biomass carbon and nitrogen in the rhizosphere of rice[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1582−1591 doi: 10.13930/j.cnki.cjea.201019
Citation: LUO J L, ZHAO Y H, YU J G, WANG N, XUE L H, YANG L Z. Effects of wheat straw and nitrogen fertilizer application on the soil microbial biomass carbon and nitrogen in the rhizosphere of rice[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1582−1591 doi: 10.13930/j.cnki.cjea.201019

麦秸与氮肥配施对水稻根际区土壤微生物量碳氮的影响

doi: 10.13930/j.cnki.cjea.201019
基金项目: 国家自然科学基金项目(41601261)和江苏省自然科学基金项目(BK20201240)资助
详细信息
    作者简介:

    罗佳琳, 主要从事土壤氮转化方面的研究。E-mail: luojialin1995@163.com

    通讯作者:

    王宁, 主要从事微生物生态学研究。E-mail: wang.ning4113@163.com

  • 中图分类号: S154.3

Effects of wheat straw and nitrogen fertilizer application on the soil microbial biomass carbon and nitrogen in the rhizosphere of rice

Funds: The study was supported by the National Natural Science Foundation of China (41601261) and the Natural Science Foundation of Jiangsu Province (BK20201240).
More Information
  • 摘要: 土壤微生物生物量碳氮(SMBC、SMBN)是表征土壤肥力高低及变化的关键因子。水稻根际是水稻-土壤-微生物相互作用的场所, 根际微生物作为根际生态的重要组成部分, 是土壤有机质和养分转化的动力。本试验针对长江中下游典型水稻-小麦轮作区水稻非根际和根际区土壤SMBC和SMBN对麦秸还田与氮肥配施的响应规律开展研究。基于盆栽模拟试验, 采用根际袋法研究了不施加秸秆+不施加氮肥(CK)、麦秸直接还田(SN0)、麦秸与低量氮肥配施(SN1)、麦秸与高量氮肥配施(SN2) 4种模式下, 两种类型土壤(高砂土和黄泥土)水稻成熟期非根际和根际区SMBC和SMBN含量的变化。结果表明: 与CK相比, SN0处理下高砂土根际和非根际SMBC含量分别显著提高40.3%和48.1%, 而黄泥土根际和非根际区SMBC分别显著提高95.7%和75.4%。与SMBC不同, 与CK相比, SN0处理下高砂土根际SMBN含量变化不显著, 非根际显著降低19.9%; 而黄泥土根际和非根际土SMBN含量分别显著降低19.5%和49.0%。与SN0相比, 低量氮肥施用(SN1)显著提高了高砂土根际区和黄泥土非根际区SMBC含量, 提高比例约5.1%和11.1%, 同时SN1处理也显著提高了两种类型土壤根际和非根际SMBN含量, 其中高砂土提高17.3%和9.8%, 黄泥土提高36.1%和68.9%; 随着施氮量增加, 与SN0相比, 高量氮肥施用(SN2)显著提高两种类型土壤根际和非根际区SMBC和SMBN含量, 其中高砂土提高8.58%和13.5%, 黄泥土提高25.6%和232.9%。综合分析认为, 无论氮肥施用量高低, 秸秆还田配施氮肥都可以有效提高非根际和根际区SMBC和SMBN含量, 从而提升土壤养分有效性。因此, 秸秆还田配施氮肥对于提高长江中下游稻麦轮作区土壤肥力和促进作物生长具有重要意义。
  • 图  1  麦秸与不同量氮肥配施下高砂土(A)和黄泥土(B)水稻非根际和根际区土壤有机碳含量的变化

    CK: 不施加秸秆也不施加氮肥; SN0: 麦秸直接还田; SN1: 麦秸与低量氮肥配施[施尿素125 mg(N)∙kg−1]; SN2: 麦秸与高量氮肥配施[施尿素250 mg(N)∙kg−1]。不同字母表示处理间差异显著(P<0.05)。CK: no straw or nitrogen fertilizer; SN0: straw addition; SN1: straw and low nitrogen fertilizer [125 mg(N)∙kg−1 urea] addition; SN2: straw and high nitrogen fertilizer [250 mg(N)∙kg−1 urea] addition. There was significant difference among the treatments with different letters at P<0.05 level.

    Figure  1.  Changes of soil organic carbon contents in bulk and rhizosphere of rice in high sandy soil (A) and yellow mud soil (B) under combined application of wheat straw and different amounts of nitrogen fertilizer

    图  2  麦秸与不同量氮肥配施下高砂土(A)和黄泥土(B)水稻非根际和根际区土壤微生物生物量碳(MBC)含量的变化

    CK: 不施加秸秆也不施加氮肥; SN0: 麦秸直接还田; SN1: 麦秸与低量氮肥配施[施尿素125 mg(N)∙kg−1]; SN2: 麦秸与高量氮肥配施[施尿素250 mg(N)∙kg−1]。不同字母表示处理间差异显著(P<0.05)。CK: no straw or nitrogen fertilizer; SN0: straw addition; SN1: straw and low nitrogen fertilizer [125 mg(N)∙kg−1 urea] addition; SN2: straw and high nitrogen fertilizer [250 mg(N)∙kg−1 urea] addition. There was significant difference among the treatments with different letters at P<0.05 level.

    Figure  2.  Changes of soil microbial biomass carbon (MBC) contents in bulk and rhizosphere of rice in high sandy soil (A) and yellow mud soil (B) under combined application of wheat straw and different amounts of nitrogen fertilizer

    图  3  麦秸与氮肥配施下高砂土(A)和黄泥土(B)水稻非根际和根际区土壤微生物熵的变化

    CK: 不施加秸秆也不施加氮肥; SN0: 麦秸直接还田; SN1: 麦秸与低量氮肥配施[施尿素125 mg(N)∙kg−1]; SN2: 麦秸与高量氮肥配施[施尿素250 mg(N)∙kg−1]。不同字母表示处理间差异显著(P<0.05)。CK: no straw or nitrogen fertilizer; SN0: straw addition; SN1: straw and low nitrogen fertilizer [125 mg(N)∙kg−1 urea] addition; SN2: straw and high nitrogen fertilizer [250 mg(N)∙kg−1 urea] addition. There was significant difference among the treatments with different letters at P<0.05 level.

    Figure  3.  Changes of soil microbial entropy in bulk and rhizosphere of rice in high sandy soil (A) and yellow mud soil (B) under combined application of wheat straw and different amounts of nitrogenous fertilizer

    图  4  麦秸与氮肥配施下高砂土(A)和黄泥土(B)水稻非根际和根际区土壤微生物生物量氮(MBN)含量的变化

    CK: 不施加秸秆也不施加氮肥; SN0: 麦秸直接还田; SN1: 麦秸与低量氮肥配施[施尿素125 mg(N)∙kg−1]; SN2: 麦秸与高量氮肥配施[施尿素250 mg(N)∙kg−1]。不同字母表示处理间差异显著(P<0.05)。CK: no straw or nitrogen fertilizer; SN0: straw addition; SN1: straw and low nitrogen fertilizer [125 mg(N)∙kg−1 urea] addition; SN2: straw and high nitrogen fertilizer [250 mg(N)∙kg−1 urea] addition. There was significant difference among the treatments with different letters at P<0.05 level.

    Figure  4.  Changes of soil microbial biomass nitrogen (MBN) content in bulk and rhizosphere of rice in high sandy soil (A) and yellow mud soil (B) under combined application of wheat straw and different amounts of nitrogen fertilizer

    图  5  麦秸与氮肥配施下高砂土(A)和黄泥土(B)水稻非根际和根际区土壤微生物生物量碳氮比值的变化

    CK: 不施加秸秆也不施加氮肥; SN0: 麦秸直接还田; SN1: 麦秸与低量氮肥配施[施尿素125 mg(N)∙kg−1]; SN2: 麦秸与高量氮肥配施[施尿素250 mg(N)∙kg−1]。不同字母表示处理间差异显著(P<0.05)。CK: no straw or nitrogen fertilizer; SN0: straw addition; SN1: straw and low nitrogen fertilizer [125 mg(N)∙kg−1 urea] addition; SN2: straw and high nitrogen fertilizer [250 mg(N)∙kg−1 urea] addition. There was significant difference among the treatments with different letters at P<0.05 level.

    Figure  5.  Changes of soil microbial biomass carbon-nitrogen ratio in bulk and rhizosphere of rice in high sandy soil (A) and yellow mud soil (B) under combined application of wheat straw and different amounts of nitrogen fertilizer

  • [1] WANG W, LAI, D Y F, WANG C, et al. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field[J]. Soil & Tillage Research, 2015, 152: 8−16
    [2] BECKER M, ASCH F, MASKEY S L, et al. Effects of transition season management on soil N dynamics and system N balances in rice-wheat rotations of Nepa[J]. Field Crops Research, 2007, 103(2): 98−108 doi: 10.1016/j.fcr.2007.05.002
    [3] SHINDO H, NISHIO T. Immobilization and remineralization of N following addition of wheat straw into soil: determination of gross N transformation rates by 15N-ammonium isotope dilution technique[J]. Soil Biology & Biochemistry, 2005, 7: 425−432
    [4] HUANG Y, ZOU J W, ZHENG X H, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C∶N ratios[J]. Soil Biology & Biochemistry, 2004, 36: 973−981
    [5] 王改玲, 郝明德, 陈德立. 秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响[J]. 植物营养与肥料学报, 2006, 12(6): 840−844 doi: 10.3321/j.issn:1008-505X.2006.06.014

    WANG G L, HAO M D, CHEN D L. Effect of stubble incorporaton and nitrogen on denitrifocation and nitrous oxide emission in an irrigated maize soil[J]. Journal of Plant Nutrition and Fertilizer, 2006, 12(6): 840−844 doi: 10.3321/j.issn:1008-505X.2006.06.014
    [6] ZHANG P, WEI T, LI Y L, et al. Effects of straw incorporation on the stratification of the soil organic C, total N and C∶N ratio in a semiarid region of China[J]. Soil & Tillage Research, 2015, 153: 28−35
    [7] 马想, 黄晶, 赵惠丽, 等. 秸秆与氮肥不同配比对红壤微生物量碳氮的影响[J]. 植物营养与肥料学报, 2018, 24(6): 1574−1580 doi: 10.11674/zwyf.18163

    MA X, HUANG J, ZHAO H L, et al. Straw and nitrogen fertilizer ratios influence microbial biomass carbon and nitrogen in red soil[J]. Journal of Plant Nutrition and Fertilizer, 2018, 24(6): 1574−1580 doi: 10.11674/zwyf.18163
    [8] 曹慧, 杨浩, 孙波, 等. 不同种植时间菜园土壤微生物生物量和酶活性变化特征[J]. 土壤, 2002, (4): 197−200 doi: 10.3321/j.issn:0253-9829.2002.04.005

    CAO H, YANG H, SUN B, et al. Variation characteristics of soil microbial biomass and enzyme activity in vegetable garden at different planting time[J]. Soils, 2002, (4): 197−200 doi: 10.3321/j.issn:0253-9829.2002.04.005
    [9] JENKINSON D S. Determination of microbial biomass carbon and nitrogen in soil. Wilson J R. Advances in nitrogen cycling in agricultural ecosystems[J]. Wallingford, England: CAB International, 1988: 368−386
    [10] 胡婵娟, 刘国华, 吴雅琼. 土壤微生物生物量及多样性测定方法评述[J]. 生态环境学报, 2011, 20(Z1): 1161−1167

    HU C J, LIU G H, WU Y Q. A review of soil microbial biomass and diversity measurements[J]. Journal of Ecologial Environment, 2011, 20(Z1): 1161−1167
    [11] 王淑英, 樊廷录, 丁宁平, 等. 长期施肥下黄土旱塬黑垆土供氮能力的变化[J]. 植物营养与肥料学报, 2015, 21(6): 1487−1495 doi: 10.11674/zwyf.2015.0614

    WANG S Y, FAN T L, DING N P, et al. Changes of soil nitrogen supply in black loessial in Loess Plateau under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1487−1495 doi: 10.11674/zwyf.2015.0614
    [12] 俞慎, 李振高. 熏蒸提取法测定土壤微生物量研究进展[J]. 土壤学进展, 1994, 22(6): 42−50

    YU S, LI Z G. Research progress on the determination of soil microbial biomass by fumigation extraction method[J]. Progress in Soil Science, 1994, 22(6): 42−50
    [13] 张丹, 付斌, 胡万里, 等. 秸秆还田提高水稻–油菜轮作土壤固氮能力及作物产量[J]. 农业工程学报, 2017, 33(9): 133−140 doi: 10.11975/j.issn.1002-6819.2017.09.017

    ZHANG D, FU B, HU W L, et al. Straw returning improves soil nitrogen fixation and crop yield in rice rape rotation[J]. Journal of Agricultural Engineering, 2017, 33(9): 133−140 doi: 10.11975/j.issn.1002-6819.2017.09.017
    [14] 唐晓雪, 刘明, 江春玉, 等. 不同秸秆还田方式对红壤性质及花生生长的影响[J]. 土壤, 2015, 47(2): 324−328

    TANG X X, LIU M, JIANG C Y, et al. Effects of different ways of straw returning on red soil properties and peanut growth[J]. Soils, 2015, 47(2): 324−328
    [15] 陆雅海, 张福锁. 根际微生物研究进展[J]. 土壤, 2006, 38(2): 113−121 doi: 10.3321/j.issn:0253-9829.2006.02.001

    LU Y H, ZHANG F S. Research progress of rhizosphere microorganism[J]. Soils, 2006, 38(2): 113−121 doi: 10.3321/j.issn:0253-9829.2006.02.001
    [16] 蔡晓红, 杨京平, 马维娜, 等. 稻田根际微生物生物量碳与水分、氮素影响效应分析[J]. 浙江大学学报: 农业与生命科学版, 2008, 34(6): 662−668

    CAI X H, YANG J P, MA W N, et al. Effects of nitrogen supply levels and water schemes on rice rhizosphere microbial biomass carbon in rice development stage at paddy field[J]. Journal of Zhejiang University: Agriculture and Sciences Edition, 2008, 34(6): 662−668
    [17] 中国土壤学会. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000

    China Soil Society. Analysis Methods of Soil Agrochemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000
    [18] 任金平. 水稻种子消毒方法[N]. 吉林农村报, 2012-02-10(003)

    REN J P. Disinfection methods of rice seeds[N]. Journal of Jilin Rural, 2012-02-10(003)
    [19] 吴晓玲, 张世熔, 蒲玉琳, 等. 川西平原土壤微生物生物量碳氮磷含量特征及其影响因素分析[J]. 中国生态农业学报: 中英文, 2019, 27(10): 1607−1616

    WU X L, ZHANG S R, PU Y L, et al. Distribution characteristics and impact factors of soil microbial biomass carbon, nitrogen and phosphorus in western Sichuan Plain[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1607−1616
    [20] 魏亮, 汤珍珠, 祝贞科, 等. 水稻不同生育期根际与非根际土壤胞外酶对施氮的响应[J]. 环境科学, 2017, 38(8): 3489−3496

    WEI L, TANG Z Z, ZHU Z K, et al. Responses of extracellular enzymes to nitrogen application in rice of various ages with rhizosphere and bulk soil[J]. Environment Science, 2017, 38(8): 3489−3496
    [21] 吴杨潇影. 种植模式及氮肥分配对稻田根际与非根际土壤氮素及微生物影响的研究[D]. 杭州: 浙江大学, 2019

    WU Y X Y. Effects of planting and nitrogen fertilizer allocation on rhizosphere and non-rhizosphere nitrogen and microorganisms in paddy field[D]. Hangzhou: Zhejiang University, 2019
    [22] NIE S A, LI H, YANG X R, et al. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere[J]. The ISME Journal, 2015, 9(9): 2059−2067 doi: 10.1038/ismej.2015.25
    [23] 马维娜, 杨京平, 汪华. 不同水分模式分次施氮对水稻根际土壤微生物生态效应的影响[J]. 浙江大学学报: 农业与生命科学版, 2007, 33(2): 184−189

    MA W N, YANG J P, WANG H. Ecological effect of rice rhizosphere microbes under water regimes and nitrogen fertilizer with split application in paddy field[J]. Journal of Zhejiang University: Agriculture and Sciences Edition, 2007, 33(2): 184−189
    [24] ZHU B, GUTKNECHT J L M, HERMAN D J, et al. Rhizospherepriming effects on soil carbon and nitrogen mineralization[J]. Soil Biology and Biochemistry, 2014, 76: 183−192 doi: 10.1016/j.soilbio.2014.04.033
    [25] BAUDOIN E, BENIZRI E, Guckert A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere[J]. Soil Biology & Biochemistry, 2003, 35(9): 1183−1192
    [26] 张四海, 曹志平, 胡婵娟, 等. 添加秸秆碳源对土壤微生物生物量和原生动物丰富度的影响[J]. 中国生态农业学报, 2011, 19(6): 1283−1288

    ZHANG S H, CAO Z P, HU C J, et al. Effect of added straw carbon on soil microbe and protoze abundance[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1283−1288
    [27] ANNI S F, WHALEN J K, SIMPSON M J, et al. Plant lignin and nitrogen contents control carbon dioxide production and nitrogen mineralization in soils incubated with Bt and non-Bt corn residues[J]. Soil Biology and Biochemistry, 2011, 43(1): 63−69 doi: 10.1016/j.soilbio.2010.09.012
    [28] MORITSKKA N, YANAI J, MORI K, et al. Biotic and abiotic processes of nitrogen immobilization in the soil-residue interface[J]. Soil Biology and Biochemistry, 2004, 36(7): 1141−1148 doi: 10.1016/j.soilbio.2004.02.024
    [29] WEN X, HU C, SUN X, et al. Research on the nitrogen transformation in rhizosphere of winter wheat (Triticum aestivum) under molybdenum addition[J]. Environmental Science and Pollution Research, 2019, 26(3): 2363−2374 doi: 10.1007/s11356-018-3565-y
    [30] 朱秋莲, 邢肖毅, 程曼, 等. 宁南山区典型植物根际与非根际土壤碳、氮形态[J]. 应用生态学报, 2013, 24(4): 983−988

    ZHU Q L, XING X Y, CHENG M, et al. Concentrations of different carbon and nitrogen fractions in rhizosphere and non-rhizosphere soils of typical plant species in mountainous area of southern Ningxia, Northwest China[J]. Chinese Journal of Applied Ecology, 2013, 24(4): 983−988
    [31] 任改弟, 王光飞, 马艳. 根系分泌物与土传病害的关系研究进展[J]. 土壤, 2021, 53(2): 229−235

    REN G D, WANG G F, MA Y. Research progresses on relationship between plant root exudates and soil-borne diseases[J]. Soils, 2021, 53(2): 229−235
    [32] 徐国伟, 李帅, 赵永芳, 等. 秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究[J]. 草业学报, 2014, 23(2): 140−146 doi: 10.11686/cyxb20140217

    XU G W, LI S, ZHAO Y F, et al. Effects of straw returning and nitrogen fertilizer application on root secretion and nitrogen utilization of rice[J]. Acta Prataculturae Sinica, 2014, 23(2): 140−146 doi: 10.11686/cyxb20140217
    [33] 栗笑阳, 郭夏丽. 不同施氮水平对小麦根际土壤氨氧化微生物的影响[J]. 河南农业科学, 2020, 49(12): 69−76

    LI X Y, GUO X L. Effects of different nitrogen levels on ammonia oxidizing microorganisms in wheat rhizosphere soil[J]. Journal of Henan Agricultural Science, 2020, 49(12): 69−76
    [34] 王飞, 李清华, 何春梅, 等. 稻秆与紫云英联合还田提高黄泥田氮素利用率和土壤肥力[J]. 植物营养与肥料学报, 2021, 27(1): 66−74

    WANG F, LI Q H, HE C M, et al. Combined returning of milk vetch and rice straw improves fertilizer nitrogen recovery and fertility of yellow-mud paddy soil[J]. Journal of Plant Nutrition and Fertilizer, 2021, 27(1): 66−74
    [35] HENRIKSEN T M, BRELAND T A. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil[J]. Soil Biology and Biochemistry, 1999, 31(8): 1121−1134 doi: 10.1016/S0038-0717(99)00030-9
    [36] SHAUKAT A A, TIAN X H, WANG D, et al. Decomposition characteristic of maize straw with different carbon to nitrogen (C/N) ratios under various moisture regimes[J]. African Journal of Biotechnology, 2011, 10(50): 10149−10156 doi: 10.5897/AJB10.2261
    [37] 蔡晓布, 钱成, 张元, 等. 西藏中部地区退化土壤秸秆还田的微生物变化特征及其影响[J]. 应用生态学报, 2004, (3): 463−468 doi: 10.3321/j.issn:1001-9332.2004.03.021

    CAI X B, QIAN C, ZHANG Y, et al. Microbial characteristics of straw-amended degraded soils in central Tibet and its effect on soil fertility[J]. Chinese Journal of Applied Ecology, 2004, (3): 463−468 doi: 10.3321/j.issn:1001-9332.2004.03.021
    [38] VRIES F T D, HOFFLANG E, EEKEREN N V, et al. Fungal/bacterial ratios in grasslands with contrasting nitrogen management[J]. Soil Biology and Biochemistry, 2006, 38(8): 2092−2103 doi: 10.1016/j.soilbio.2006.01.008
  • 加载中
图(5)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  13
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 录用日期:  2021-03-15
  • 网络出版日期:  2021-07-26
  • 刊出日期:  2021-09-06

目录

    /

    返回文章
    返回