-
摘要: 生物质炭的性状与原料中木质纤维含量密切相关,为探明不同原料生物质炭对土壤腐殖质组成的影响,选取玉米秸秆和紫茎泽兰分别作为纤维类和木质类原材料制备生物质炭,向酸性紫色土分别添加5%玉米秸秆生物质炭(MB)和5%紫茎泽兰生物质炭(EB),测定90 d室内培养期间土壤胡敏酸(HA)、富里酸(FA)、胡敏素(HM)含量以及HA光学性质和元素组成变化。结果表明:MB和EB的比表面积分别为2.32 m2·g-1和0.72 m2·g-1,总孔体积分别为42.71 mm3·g-1和12.59 mm3·g-1,碳与氢元素摩尔比(C/H)分别为1.91和1.46,氧、硫之和与碳元素摩尔比[(O+S)/C]分别为0.09和0.16,玉米秸秆生物质炭的吸附能力更强、有机质成分的缩合度更大且氧化度更小。与对照(不添加生物质炭,CK)相比,培养结束后,施入生物质炭的土壤HA、FA和HM含量分别显著增加(P < 0.05)65.59%~102.82%、85.87%~118.54%和137.25%~161.23%,MB处理对这3种腐殖质含量的增加效应较EB处理更明显。培养结束时添加生物质炭的土壤HA/土壤有机碳(SOC)降低13.53%~27.06%,FA/SOC降低6.81%~18.03%,其中EB处理的降低效应达显著水平;HM/SOC则增加4.58%~11.40%,其中MB处理的增加效应达显著水平。添加生物质炭的土壤HA色调系数(ΔlgK)增加2.40%~5.60%,HA的缩合度(C/H)降低3.51%~11.81%,(O+S)/C增加1.51%~8.74%。总体来看,施入生物质炭均能相对增加腐殖质各组分含量,降低C/H,提高HA的氧化度[(O+S)/C],且纤维类原料(玉米秸秆)生物质炭的效果更明显。纤维类原料(玉米秸秆)生物质炭显著提高了稳定性较高的土壤胡敏素碳比例(HM/SOC),但降低了土壤HA的稳定性[HA的C/H降低,(O+S)/C增加];木质类原料(紫茎泽兰)生物质炭显著降低土壤胡敏酸碳比例(HA/SOC)和富里酸碳比例(FA/SOC),对HM/SOC增加效益不显著,反之提高了土壤易分解有机碳比例。Abstract: Biochar characteristics are similar to feedstock lignin and cellulose contents. Two kinds of biochar were produced from cellulosic (maize straw) and ligneous (Eupatorium adenophorum) feedstocks, respectively, to evaluate how lignocellulosic feedstock biochar influence the humus composition in acidic purplish soil. Acidic purplish soil was treated with 5% maize straw biochar (MB) or 5% E. adenophorum biochar (EB) for 90 days, and the humic acid (HA), fulvic acid (FA), and humin (HM) contents, chemical elements, and HA color tonal coefficient were analyzed. The biochar specific surface areas were 2.32 m2·g-1 (MB) and 0.72 m2·g-1 (EB), and the total pore volumes were 42.71 mm3·g-1(MB) and 12.59 mm3×g-1 (EB). The carbon to hydrogen molar ratios (C/H) were 1.91 (MB) and 1.46 (EB), and the oxygen and sulfur to carbon molar ratios[(O+S)/C] were 0.09 (MB) and 0.16 (EB), indicating that the MB had a stronger adsorption capacity, a higher organic matter, condensation degree, and a lower oxidation degree. Biochar application significantly increased the soil HA, FA, and HM contents (P < 0.05) compared to no application (CK). After 90 days, biochar amendment increased the HA content by 65.59%-102.82%, increased the FA content by 85.87%-118.54%, and increased the HM content by 137.25%-161.23%. The MB increased the humus composition contents more than EB, and both treatments reduced the soil HA/soil organic carbon (SOC) values by 13.53%-27.06% and the FA/SOC values by 6.81%-18.03% (EB treatment P < 0.05). Both treatments also increased the HM/SOC values by 4.58%-11.40% (MB treatment P < 0.05). Biochar amendment increased the HA color tonal coefficient (ΔlgK) degree by 2.40%-5.60%, reduced the C/H of HA by 3.51%-11.81%, and increased the (O+S)/C by 1.51%-8.74%. The biochar application increased the content of each humic component, reduced the C/H condensation degree, and improved the HA oxidation degree; the effect was more prominent when MB was applied. MB application significantly increased the proportion and stability of HM/SOC, but reduced the stability of HA[C/H decreased, (O+S)/C increased]. EB biochar significantly reduced the proportion of HA/SOC and FA/SOC, and had no effect on the proportion of HM/SOC, and increased the proportion of labile organic carbon.
-
图 2 玉米秸秆生物质炭和紫茎泽兰生物质炭对土壤胡敏酸(HA)、富里酸(FA)、胡敏素(HM)含量和HA/FA的影响
CK:不添加生物质炭; MB:添加玉米秸秆生物质炭; EB:添加紫茎泽兰生物质炭。
Figure 2. Effects of maize straw biochar and Eupatorium adeophorum biochar application on soil humic acid (HA), fulvic acid (FA), humin (HM) contents and HA/FA values
CK: no biochar application; MB: maize straw biochar application; EB: Eupatorium adeophorum biochar application.
图 3 玉米秸秆生物质炭和紫茎泽兰生物质炭对土壤胡敏酸色调系数(ΔlgK)的影响
CK:不添加生物质炭; MB:添加玉米秸秆生物质炭; EB:添加紫茎泽兰生物质炭。
Figure 3. Effects of maize straw biochar and Eupatorium adeophorum biochar application on the color tonal coefficient (ΔlgK) of soil humic acid
CK: no application; MB: maize straw biochar application; EB: Eupatorium adeophorum biochar application.
表 1 供试两种生物质炭的基本理化性质
Table 1. Basic physical and chemical properties of biochars
生物质炭类型
Biochar type产率
Productive rate (%)灰分
Ash content (%)pH 阳离子交换量
CEC (cmol·kg-1)C (%) 碱提取酸不溶物
Acid-insoluble fraction of alkaline extract (%)碱提取酸溶物
Acid-soluble fraction of alkaline extract (%)碱提取残渣
Residues of alkaline extract (%)玉米秸秆生物质炭
Maize straw biochar46.27 36.27 10.30 128.25 58.00 4.39 5.78 20.99 紫茎泽兰生物质炭
Eupatorium adeophorum biochar52.44 43.54 9.82 96.22 55.85 3.10 3.62 16.84 表 2 玉米秸秆生物质炭和紫茎泽兰生物质炭的比表面积、总孔体积及元素摩尔比
Table 2. Specific surface area, total pore volume and molar ratio of chemical elements of maize straw biochar and Eupatorium adeophorum biochar
生物质炭类型
Biochar type比表面积
Specific surface area (m2·g-1)总孔体积
Total pore volume (mm3·g-1)元素摩尔比
Molar ratioC/H (O+S)/C 玉米秸秆生物质炭
Maize straw biochar2.32 42.71 1.91 0.09 紫茎泽兰生物质炭
Eupatorium adeophorum biochar0.72 12.59 1.46 0.16 表 3 玉米秸秆生物质炭和紫茎泽兰生物质炭对土壤腐殖质组分相对含量的影响
Table 3. Effects of maize straw biochar and Eupatorium adeophorum biochar application on relative contents of soil humus composition
% 腐殖质组分
Humus composition处理
Treatment培养时间
Incubation time (d)1 3 5 7 15 30 60 90 胡敏酸
Humic acidCK 17.69±0.54a 17.76±0.66a 18.47±0.90a 20.07±0.71a 22.09±0.88a 19.75±0.71a 20.10±0.95a 19.44±0.82a MB 14.50±0.40b 14.45±0.45b 15.18±0.50b 15.74±0.46b 18.03±0.62b 17.43±0.49b 16.63±0.66b 16.81±0.50b EB 12.46±0.58c 12.28±0.46c 13.14±0.37c 13.85±0.59c 15.95±0.56c 15.27±0.65c 14.25±0.69c 14.18±0.57c 富里酸
Fulvic acidCK 10.47±0.41a 11.50±0.51a 12.22±0.38a 13.96±0.35a 14.01±0.49a 11.19±0.56a 10.64±0.38a 9.54±0.33a MB 9.67±0.26a 10.01±0.25b 10.75±0.37b 11.28±0.54b 10.31±0.48b 9.69±0.28b 9.12±0.37b 8.89±0.30a EB 8.45±0.39b 8.76±0.24c 9.72±0.29b 10.43±0.33c 9.49±0.44c 8.88±0.31b 7.92±0.29c 7.82±0.38b 胡敏素
HuminCK 37.03±1.79a 37.02±1.08a 36.81±1.75a 36.45±1.13a 33.74±1.21a 34.25±1.28a 35.67±1.30a 38.24±1.80a MB 40.70±1.12b 40.91±0.98b 40.93±0.90b 40.53±1.29b 39.00±0.78b 39.10±1.16b 40.90±1.06b 42.60±1.31b EB 37.19±0.95a 37.42±1.60a 37.43±0.85a 37.61±1.09c 36.74±1.08c 36.95±1.02b 38.32±1.18b 39.99±1.08ab CK:不添加生物质炭; MB:添加玉米秸秆生物质炭; EB:添加紫茎泽兰生物质炭。表中同列不同小写字母表示处理间差异显著(P < 0.05)。CK: no biochar application; MB: maize straw biochar application; EB: Eupatorium adeophorum biochar application. Different lowercase letters in the same column indicate significant differences among different treatments (P < 0.05). 表 4 玉米秸秆生物质炭和紫茎泽兰生物质炭对土壤胡敏酸元素组成的影响
Table 4. Effects of maize straw biochar and Eupatorium adeophorum biochar application on elements composition of soil humic acid
培养时间
Incubation time (d)处理
Treatment含量
Content (%)元素摩尔比
Molar ratio of elementsC H O N S C/H (O+S)/C 1 CK 48.86 4.23 37.94 3.51 5.46 0.96 0.62 MB 57.70 4.79 29.21 3.87 4.43 1.00 0.41 EB 58.35 4.56 27.58 3.48 6.03 1.07 0.39 90 CK 54.64 4.30 34.02 3.41 3.63 1.06 0.47 MB 52.06 4.65 34.50 3.54 5.26 0.93 0.50 EB 53.72 4.38 34.32 3.36 4.22 1.02 0.48 CK:不添加生物质炭; MB:添加玉米秸秆生物质炭; EB:添加紫茎泽兰生物质炭。CK: no application; MB: maize straw biochar application; EB: Eupatorium adeophorum biochar application. -
[1] 刘园, KHAN J M, 靳海洋, 等.秸秆生物炭对潮土作物产量和土壤性状的影响[J].土壤学报, 2015, 52(4):849-858LIU Y, KHAN J M, JIN H Y, et al. Effects of successive application of crop-straw biochar on crop yield and soil properties in cambosols[J]. Acta Pedologica Sinica, 2015, 52(4):849-858 [2] BEESLEY L, MORENO-JIMÉNEZ E, GOMEZ-EYLES J L, et al. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental Pollution, 2011, 159(12):3269-3282 doi: 10.1016/j.envpol.2011.07.023 [3] AGEGNEHU G, BASS A M, NELSON P N, et al. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil[J]. Science of the Total Environment, 2016, 543:295-306 doi: 10.1016/j.scitotenv.2015.11.054 [4] DE LA ROSA J M, ROSADO M, PANEQUE M, et al. Effects of aging under field conditions on biochar structure and composition:Implications for biochar stability in soils[J]. Science of the Total Environment, 2017, 613:969-976 [5] YANG F, ZHAO L, GAO B, et al. The interfacial behavior between biochar and soil minerals and its effect on biochar stability[J]. Environmental Science & Technology, 2016, 50(5):2264-2271 [6] 陈颖, 刘玉学, 陈重军, 等.生物炭对土壤有机碳矿化的激发效应及其机理研究进展[J].应用生态学报, 2018, 29(1):314-320CHEN Y, LIU Y X, CHEN C J, et al. Priming effect of biochar on the mineralization of native soil organic carbon and the mechanisms:A review[J]. Chinese Journal of Applied Ecology, 2018, 29(1):314-320 [7] SPOKAS K A, KOSKINEN W C, BAKER J M, et al. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil[J]. Chemosphere, 2009, 77(4):574-581 doi: 10.1016/j.chemosphere.2009.06.053 [8] SINGH R, BABU J N, KUMAR R, et al. Multifaceted application of crop residue biochar as a tool for sustainable agriculture:An ecological perspective[J]. Ecological Engineering, 2015, 77:324-347 doi: 10.1016/j.ecoleng.2015.01.011 [9] PURAKAYASTHA T J, DAS K C, GASKIN J, et al. Effect of pyrolysis temperatures on stability and priming effects of C3 and C4 biochars applied to two different soils[J]. Soil and Tillage Research, 2016, 155:107-115 doi: 10.1016/j.still.2015.07.011 [10] KERRÉ B, HERNANDEZ-SORIANO M C, SMOLDERS E. Partitioning of carbon sources among functional pools to investigate short-term priming effects of biochar in soil:A 13C study[J]. Science of the Total Environment, 2016, 547:30-38 doi: 10.1016/j.scitotenv.2015.12.107 [11] 张桐, 何小松, 李猛, 等.开垦和长期施肥下青海黑钙土中腐殖质的光谱特征[J].土壤学报, 2019, 56(2):398-407ZHANG T, HE X S, LI M, et al. Spectral characteristics of humus in chernozem in Qinghai-Tibet Plateau under reclamation and long-term fertilization[J]. Acta Pedologica Sinica, 2019, 56(2):398-407 [12] RODRÍGUEZ F J, SCHLENGER P, GARCÍA-VALVERDE M. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and 1H NMR techniques[J]. Science of the Total Environment, 2016, 541:623-637 doi: 10.1016/j.scitotenv.2015.09.127 [13] 唐晓红, 罗友进, 任振江, 等.长期垄作稻田腐殖质稳定碳同位素丰度(δ13C)分布特征[J].应用生态学报, 2011, 22(4):985-991 http://www.cnki.com.cn/Article/CJFDTotal-YYSB201104023.htmTANG X H, LUO Y J, REN Z J, et al. Distribution characteristics of soil humus fractions stable carbon isotope natural abundance (δ13C) in paddy field under long-term ridge culture[J]. Chinese Journal of Applied Ecology, 2011, 22(4):985-991 http://www.cnki.com.cn/Article/CJFDTotal-YYSB201104023.htm [14] 孟凡荣, 窦森, 尹显宝, 等.施用玉米秸秆生物质炭对黑土腐殖质组成和胡敏酸结构特征的影响[J].农业环境科学学报, 2016, 35(1):122-128MENG F R, DOU S, YIN X B, et al. Effects of maize stalk biochar on humus composition and humic acid structure in black soil[J]. Journal of Agro-Environment Science, 2016, 35(1):122-128 [15] UCHIMIYA M, OHNO T, HE Z Q. Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104:84-94 doi: 10.1016/j.jaap.2013.09.003 [16] YUN L, MUNROE P, JOSEPH S, et al. Water extractable organic carbon in untreated and chemical treated biochars[J]. Chemosphere, 2012, 87(2):151-157 doi: 10.1016/j.chemosphere.2011.12.007 [17] GWENZI W, CHAUKURA N, MUKOME F N D, et al. Biochar production and applications in sub-Saharan Africa:Opportunities, constraints, risks and uncertainties[J]. Journal of Environmental Management, 2015, 150:250-261 [18] CHENG C H, LEHMANN J, THIES J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37(11):1477-1488 doi: 10.1016/j.orggeochem.2006.06.022 [19] 周桂玉, 窦森, 刘世杰.生物质炭结构性质及其对土壤有效养分和腐殖质组成的影响[J].农业环境科学学报, 2011, 30(10):2075-2080 http://d.wanfangdata.com.cn/Periodical/nyhjbh201110024ZHOU G Y, DOU S, LIU S J. The structural characteristics of biochar and its effects on soil available nutrients and humus composition[J]. Journal of Agro-Environment Science, 2011, 30(10):2075-2080 http://d.wanfangdata.com.cn/Periodical/nyhjbh201110024 [20] ZHAO S X, TA N, LI Z H, et al. Varying pyrolysis temperature impacts application effects of biochar on soil labile organic carbon and humic fractions[J]. Applied Soil Ecology, 2018, 123:484-493 doi: 10.1016/j.apsoil.2017.09.007 [21] YAASHIKAA P R, KUMAR P S, VARJANI S J, et al. Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants[J]. Bioresource Technology, 2019, 292:122030 doi: 10.1016/j.biortech.2019.122030 [22] 赵文霞, 杨朝旭, 刘帅, 等.典型农作物秸秆组成及燃烧动力学分析[J].农业环境科学学报, 2019, 38(4):921-927 http://www.cnki.com.cn/Article/CJFDTotal-NHBH201904024.htmZHAO W X, YANG Z X, LIU S, et al. Composition and combustion dynamics analysis of typical crop straws[J]. Journal of Agro-Environment Science, 2019, 38(4):921-927 http://www.cnki.com.cn/Article/CJFDTotal-NHBH201904024.htm [23] 孙康, 蒋剑春, 李静, 等.紫茎泽兰制备活性炭及其性质[J].林业科学, 2010, 46(3):178-182SUN K, JIANG J C, LI J, et al. Preparation and characterization of activated carbon from Eupatorium adenophorum[J]. Scientia Silvae Sinicae, 2010, 46(3):178-182 [24] 郭晓慧, 康康, 于秀男, 等.磁改性柚子皮与杏仁壳生物炭的理化性质研究[J].农业工程学报, 2018, 34(S1):164-171 http://www.zhangqiaokeyan.com/academic-journal-cn_transactions-chinese-society-agricultural-engineering_thesis/0201272218113.htmlGUO X H, KANG K, YU X N, et al. Study on physicochemical properties of magnetic modified biochar derived from pyrolysis of pomelo peel and apricot kernel shell[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S1):164-171 http://www.zhangqiaokeyan.com/academic-journal-cn_transactions-chinese-society-agricultural-engineering_thesis/0201272218113.html [25] 国家质量技术监督局. GB/T 12496.4-1999木质活性炭试验方法灰分含量的测定[S].北京: 中国标准出版社, 2005The Quality and Technology Supervision Bureau of People's Republic of China. GB/T 12496.4-1999 Test Methods of Wooden Activated Carbon-Determination of Ash Content[S]. Beijing: Standards Press of China, 2005 [26] 国家质量技术监督局. GB/T 12496.7-1999木质活性炭试验方法pH值的测定[S].北京: 中国标准出版社, 2005The Quality and Technology Supervision Bureauof People's Republic of China. GB/T 12496.7-1999 Test Methods of Wooden Activated Carbon-Determination of pH[S]. Beijing: Standards Press of China, 2005 [27] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000LU R K. Soil Agricultural Chemistry Analysis Method[M]. Beijing:China Agricultural Science Technology Press, 2000 [28] 于水强, 窦森, 张晋京, 等.不同氧气浓度对玉米秸秆分解期间腐殖物质形成的影响[J].吉林农业大学学报, 2005, 27(5):528-533 http://www.cqvip.com/Main/Detail.aspx?id=20299771YU S Q, DOU S, ZHANG J J, et al. Effects of different oxygen concentrations on formation of humic substances during corn stalk decomposition[J]. Journal of Jilin Agricultural University, 2005, 27(5):528-533 http://www.cqvip.com/Main/Detail.aspx?id=20299771 [29] KUMADA K, SATO O, OHSUMI Y, et al. Humus composition of mountain soils in Central Japan with special reference to the distribution of P type humic acid[J]. Soil Science and Plant Nutrition, 1967, 13(5):151-158 doi: 10.1080/00380768.1967.10431990 [30] HUA L, WANG Y T, WANG T P, et al. Effect of biochar on organic matter conservation and metabolic quotient of soil[J]. Environmental Progress & Sustainable Energy, 2015, 34(5):1467-1472 [31] 赵世翔, 于小玲, 李忠徽, 等.不同温度制备的生物质炭对土壤有机碳及其组分的影响:对土壤腐殖物质组成及性质的影响[J].环境科学, 2017, 38(2):769-782 http://d.wanfangdata.com.cn/Periodical/hjkx201702045ZHAO S X, YU X L, LI Z H, et al. Effects of biochar pyrolyzed at varying temperatures on soil organic carbon and its components:Influence on the composition and properties of humic substances[J]. Environmental Science, 2017, 38(2):769-782 http://d.wanfangdata.com.cn/Periodical/hjkx201702045 [32] 郝翔翔, 窦森, 韩晓增, 等.典型黑土区不同生态系统下土壤团聚体中胡敏酸的结构特[J].土壤学报, 2014, 51(4):824-833 http://www.cnki.com.cn/Article/CJFDTotal-TRXB201404016.htmHao X X, Dou S, Han X Z, et al. Structure of humic acid in soil aggregates under different ecosystems in typical black soil region of northeast China[J]. Acta Pedologica Sinica, 2014, 51(4):824-833 http://www.cnki.com.cn/Article/CJFDTotal-TRXB201404016.htm [33] ZHANG J J, WEI Y X, LIU J Z, et al. Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol in Northeast China:A five-year field experiment[J]. Soil and Tillage Research, 2019, 190:1-9 doi: 10.1016/j.still.2019.02.014 [34] 刘鑫, 窦森, 李长龙, 等.开垦年限对稻田土壤腐殖质组成和胡敏酸结构特征的影响[J].土壤学报, 2016, 53(1):137-145 http://www.cnki.com.cn/Article/CJFDTotal-TRXB201601014.htmLIU X, DOU S, LI C L, et al. Composition of humus and structure of humic acid as a function of age of paddy field[J]. Acta Pedologica Sinica, 2016, 53(1):137-145 http://www.cnki.com.cn/Article/CJFDTotal-TRXB201601014.htm [35] 花莉, 金素素, 洛晶晶.生物质炭输入对土壤微域特征及土壤腐殖质的作用效应研究[J].生态环境学报, 2012, 21(11):1795-1799 http://www.cqvip.com/QK/97636C/201211/44545174.htmlHUA L, JIN S S, LUO J J. Effect of Bio-char on the micro-environment characteristics and humus in soil[J]. Ecology and Environmental Sciences, 2012, 21(11):1795-1799 http://www.cqvip.com/QK/97636C/201211/44545174.html [36] 林洪羽, 周明华, 张博文, 等.生物炭及秸秆长期施用对紫色土坡耕地土壤团聚体有机碳的影响[J].中国生态农业学报(中英文), 2020, 28(1):96-103 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0111&flag=1LIN H Y, ZHOU M H, ZHANG B W, et al. Effect of long-term application of biochar and straw on soil organic carbon in purple soil aggregates of sloping uplands[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1):96-103 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0111&flag=1 [37] 郑延云, 张佳宝, 谭钧, 等.不同来源腐殖质的化学组成与结构特征研究[J].土壤学报, 2019, 56(2):386-397ZHENG Y Y, ZHANG J B, TAN J, et al. Chemical composition and structure of humus relative to sources[J]. Acta Pedologica Sinica, 2019, 56(2):386-397 [38] DEMIRBAS A. Mechanisms of liquefaction and pyrolysis reactions of biomass[J]. Energy Conversion and Management, 2000, 41(6):633-646 doi: 10.1016/S0196-8904(99)00130-2 [39] IPPOLITO J A, STROMBERGER M E, LENTZ R D, et al. Hardwood biochar and manure co-application to a calcareous soil[J]. Chemosphere, 2016, 142:84-91 doi: 10.1016/j.chemosphere.2015.05.039 [40] 赵占辉, 张丛志, 蔡太义, 等.不同稳定性有机物料对砂姜黑土理化性质及玉米产量的影响[J].中国生态农业学报, 2015, 23(10):1228-1235ZHAO Z H, ZHANG C Z, CAI T Y, et al. Effects of different stable organic matters on physicochemical properties of lime concretion black soil and maize yield[J]. Chinese Journal of Eco-Agriculture, 2015, 23(10):1228-1235 -