Effect of integrated rice-crayfish farming system on soil physico-chemical properties in waterlogged paddy soils
-
摘要: 稻虾共作模式是一种以涝渍水田为基础,以种稻为中心,稻草还田养虾为特点的复合生态系统。本文通过10年(2005-2015年)定位试验,以中稻单作模式为对照,研究了稻虾共作模式对0~10 cm、10~20 cm、20~30 cm和30~40 cm土层土壤理化性状以及水稻产量的影响;采用投入产出法,评估了稻虾共作模式的经济效益。结果表明,长期稻虾共作模式显著降低了15~30 cm土层的土壤紧实度,其在15 cm、20 cm、25 cm和30 cm处的土壤紧实度较中稻单作模式分别降低了20.9%、29.9%、24.8%和14.7%。长期稻虾共作模式提高了0~40 cm土层中>0.25 mm水稳性团聚体数量、平均质量直径和几何平均直径,但降低了0~20 cm土层的团聚体分形维数。相对于中稻单作模式,长期稻虾共作模式显著提高了0~40 cm土层有机碳、全钾和碱解氮含量,0~30 cm土层全氮含量,0~10 cm土层全磷和速效磷含量以及20~40 cm土层速效钾含量。稻虾共作模式显著降低了0~10 cm土层还原性物质总量,但提高了20~30 cm土层土壤还原性物质总量。稻虾共作模式的水稻产量较中稻单作模式显著提高,增幅为9.5%,其总产值、利润和产投比较中稻单作模式分别增加了46 818.0元·hm-2、40 188.0元·hm-2和100.0%。可见稻虾共作模式改善了土壤结构,增加了土壤养分,提高了水稻产量以及经济效益,但增加了10 cm以下土层潜育化的风险。Abstract: Integrated rice-crayfish system is a complex ecological system based on waterlogged paddy field cultivation characterized with crayfish fed by rice straw. Using rice monoculture system as the control, a 10-year (2005-2015) field experiment was conducted to study the effects of integrated rice-crayfish system on rice yield and soil physico-chemical properties at soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. The economic benefit of integrated rice-crayfish system was evaluated using the input-output method. The results indicated that long-term integrated rice-crayfish system significantly reduced soil compaction at the 15-30 cm layer. The soil compaction in 15 cm, 20 cm, 25 cm and 30 cm soil was lower in integrated rice-crayfish system than in rice monoculture system by 20.9%, 29.9%, 24.8% and 14.7%, respectively. Long-term integrated rice-crayfish system increased soil water-stable aggregates (>0.25 mm) content, aggregate mean weight diameter (MWD) and geometric mean diameter (GMD) in the 0-40 cm layer, but decreased aggregate fractal dimension (D) in the 0-20 cm layer. Compared with rice monoculture system, long-term integrated rice-crayfish system significantly increased the contents of soil organic carbon, total K and available N in the 0-40 cm layer, then total N in the 0-30 cm layer, total P and available P in the 0-10 cm layer and available K in the 20-40 cm layer. The total amount of reducing matter in the 0-10 cm soil layer of the long-term integrated rice-crayfish system was lower than that in the monoculture rice system, but it was higher in the 20-30 cm soil layer. Rice yield in integrated rice-crayfish system significantly increased by 9.5% than that in the monoculture rice system. The output, profit and ratio of output to input in integrated rice-crayfish system were higher than those in the monoculture rice system by 46 818.0 ¥·hm-2, 40 188.0 ¥·hm-2 and 100.0%, respectively. It was therefore clear that integrated rice-crayfish system improved soil structure, enhanced soil nutrient and increased rice yield and economic benefit. However, it also increased the risk of soil gleying in the 10 cm depth.
-
表 1 稻虾共作模式对不同土层深度土壤紧实度的影响
Table 1. Effect of integrated rice-crayfish system on soil compaction in different soil layers
kPa 处理Treatment 土层深度Soil depth (cm) 5 10 15 20 25 30 35 40 MR 165.42±43.37a 318.55±37.12a 589.07±64.67a 813.39±139.82a 903.72±97.58a 922.35±80.83a 897.99±132.63a 941.78±137.64a CR 156.53±30.72a 331.14±22.32a 462.06±79.38b 558.68±112.45b 672.27±69.06b 780.96±75.54b 850.23±74.11a 907.73±83.41a 同列数据后不同字母表示处理间差异达5%显著水平。CR:稻虾共作模式; MR:中稻单作模式。Values followed by different letters in a column are significantly different at 5% level. CR: integrated rice-crayfish system; MR: rice monoculture system. 表 2 稻虾共作模式对不同土层深度土壤水稳性团聚体稳定性指标的影响s
Table 2. Effect of integrated rice-crayfish system on the stability index of soil water-stable aggregate in different soil layers
土层深度Soil depth (cm) > 0.25 mm的团聚体数量(R0.25) Content of aggregate > 0.25 mm (%) 平均质量直径(MWD) Mean weight diameter (mm) 几何平均直径(GMD) Geometric mean diameter (mm) 分形维数(D) Fractal dimension MR CR MR CR MR CR MR CR 0~10 72.06±6.37a 78.23±6.18a 1.60±1.60b 2.0±0.31a 0.74±0.08b 1.04±0.12a 2.59±0.05a 2.58±0.03a 10~20 66.14±6.30a 72.54±8.34a 1.47±0.19a 1.67±0.17a 0.61±0.04a 0.76±0.08a 2.61±0.07a 2.58±0.02a 20~30 67.37±3.06a 69.28±4.22a 1.12±0.91a 1.49±0.26a 0.50±0.08a 0.62±0.07a 2.61±0.04a 2.61±0.05a 30~40 58.48±4.89a 67.81±3.44a 1.08±0.11b 1.45±0.14a 0.40±0.04b 0.59±0.01a 2.60±0.01a 2.59±0.05a CR:稻虾共作模式; MR:中稻单作模式。同行数据后不同字母表示处理间差异达5%显著水平。CR: integrated rice-crayfish system; MR: rice monoculture system. Values of the same index followed by different letters in a row are significantly different at 5% level. 表 3 稻虾共作模式对不同土层深度土壤全量养分的影响
Table 3. Effect of integrated rice-crayfish system on soil total nutrients contents in different soil layers
土层深度Soil depth (cm) 有机碳Organic carbon (g×kg-1) 全氮Total N (g×kg-1) 全磷Total P (g×kg-1) 全钾Total K (g×kg-) C/N MR CR MR CR MR CR MR CR MR CR 0~10 15.66±148b 20.90±0.81a 1.94±0.22b 2.52±0.28a 0.41±0.01b 0.45±0.02a 1.73±0.25b 1.82±0.09a 8.09±0.18a 8.35±0.69a 10~20 14.15±0.86b 17.34±1.17a 1.70±0.13b 2.09±0.19a 0.40±0.02a 0.43±0.01a 1.76±0.19b 1.85±0.15a 8.34±0.32a 8.32±1.05a 20~30 11.50±1.28b 15.73±1.73a 1.44±0.12b 1.85±0.18a 0.38±0.02a 0.37±0.05a 1.71±0.34b 1.86±0.20a 7.98±0.37a 8.47±0.52a 30~40 7.72±0.87b 10.16±0.99a 0.94±0.07a 1.13±0.12a 0.34±0.03a 0.34±0.04a 1.73±0.56b 1.90±0.64a 8.17±0.47a 9.02±0.35a CR:稻虾共作模式; MR:中稻单作模式。同行数据后不同字母表示处理间差异达5%显著水平。CR: integrated rice-crayfish system; MR: rice monoculture system. Values of the same index followed by different letters in a row are significantly different at 5% level. 表 4 稻虾共作模式对不同土层深度土壤pH和速效养分的影响
Table 4. Effect of integrated rice-crayfish system on soil pH and available nutrients contents in different soil layers
土层深度Soil depth (cm) pH 碱解氮Available N (mg×kg-1) 速效磷Available P (mg×kg-1) 速效钾Available K (mg×kg-1) MR CR MR CR MR CR MR CR 0~10 7.17±0.13a 7.29±0.04a 141.06±8.06b 188.75±26.09a 7.39±1.24b 10.10±0.54a 192.07±17.75a 189.64±6.71a 10~20 7.20±0.08a 7.34±0.04a 130.47±6.07b 167.33±16.12a 9.32±0.91a 8.64±1.11a 175.02±13.36a 184.36±6.33a 20~30 7.21±0.11a 7.38±0.06a 102.21±5.94b 146.80±24.15a 7.70±0.51a 8.31±1.19a 160.00±4.39b 184.36±6.45a 30~40 7.31±0.11a 7.45±0.05a 65.79±5.55b 89.41±9.97a 5.54±1.23a 5.83±0.69a 145.38±11.16b 178.68±2.81a CR:稻虾共作模式; MR:中稻单作模式。同行数据后不同字母表示处理间差异达5%显著水平。CR: integrated rice-crayfish system; MR: rice monoculture system. Values of the same index followed by different letters in a row are significantly different at 5% level. 表 5 稻虾共作模式对不同土层深度土壤还原性物质的影响
Table 5. Effect of integrated rice-crayfish system on soil reducing substances contents in different soil layers
土层深度Soil depth (cm) Fe2+ (cmol·kg-1) Mn2+ (cmol·kg-1) 还原性物质总量Total amount of reducing substance (cmol·kg-1) MR CR MR CR MR CR 0~10 0.062±0.009b 0.075±0.005a 0.022±0.004a 0.018±0.003a 0.214±0.032a 0.131±0.014b 10~20 0.062±0.007b 0.100±0.010a 0.020±0.003a 0.023±0.004a 0.171±0.024a 0.184±0.024a 20~30 0.084±0.010a 0.097±0.009a 0.028±0.005a 0.025±0.005a 0.141±0.022b 0.286±0.513a 30~40 0.048±0.007b 0.073±0.009a 0.017±0.002a 0.020±0.002a 0.094±0.016a 0.122±0.019a CR:稻虾共作模式; MR:中稻单作模式。同行数据后不同字母表示处理间差异达5%显著水平。CR: integrated rice-crayfish system; MR: rice monoculture system. Values of the same index followed by different letters in a row are significantly different at 5% level. 表 6 稻虾共作模式对水稻产量及经济效益的影响
Table 6. Effect of integrated rice-crayfish system on rice yield and economic benefit
处理
Treatment水稻Rice 克氏原鳌虾Procambarus clarkii 总产值
Total output value
(¥·hm-2)总投入
Total input value
(¥·hm-2)利润
Profit
(¥·hm-2)产投比
Ratio of
output to input产量
Yield
(kg·hm-2)产值
Output value
(¥·hm-2)投入
Input value
(¥·hm-2)产量
Yield
(kg·hm-2)产值
Output value
(¥·hm-2)投入
Input value
(¥·hm-2)MR 7 933.5±748.1b 19 040.4±1795.5b 9 075.0 - - - 19 040.4 9 075.0 9 965.4 2.1 CR 8 691.0±460.6a 20 858.4±1105.5a 9 075.0 2 250.0 45 000.0 6 630.0 65 858.4 15 705.0 50 153.4 4.2 CR:稻虾共作模式; MR:中稻单作模式。水稻季投入包括整地、育苗、化肥农药和收割等4项费用, 价格分别为1 275 ¥·hm-2、2 550¥·hm-2、4 350¥·hm-2和900 ¥·hm-2; 克氏原鳌虾养殖季投入包括虾苗、饲料和稻田工程改造折旧等3项费用, 价格分别为2 250¥·hm-2、3 000¥·hm-2和1 380¥·hm-2; 水稻按照2.4 ¥·kg-1计算, 克氏原鳌虾按照20 ¥·kg-1计算。同列数据后不同字母表示处理间差异达5%显著水平。CR: integrated rice-crayfish system; MR: rice monoculture system. Input value of rice season includes the expense of land preparation, grow seedling, fertilizer & pesticide and harvesting, whose prices are 1 275¥·hm-2, 2 550 ¥·hm-2, 4 350 ¥·hm-2 and 900 ¥·hm-2, respectively. Input value of Procambarus clarkiicultivation season includes the expense of young crayfish, feed and depreciation of paddy fields reconstruction, whose prices are 2 250¥·hm-2, 3 000¥·hm-2 and 1 380¥·hm-2, respectively. The price of rice is 2.4 ¥·kg-1, and the price of Procambarus clarkiiis 20¥·kg-1. -
[1] 苏春华, 曹志强.可持续的生态农业是我国农业现代化道路的选择[J].农业现代化研究, 1999, 20(6):325-328 http://www.cnki.com.cn/Article/CJFDTOTAL-NXDH199906002.htmSu C H, Cao Z Q. Sustainable ecological agriculture:the pre-ferred road to agricultural modernization in China[J]. Research of Agricultural Modernization, 1999, 20(6):325-328 http://www.cnki.com.cn/Article/CJFDTOTAL-NXDH199906002.htm [2] 孙刚, 盛连喜, 千贺裕太郎.生物扰动在水层-底栖界面耦合中的作用[J].生态环境, 2006, 15(5):1106-1110 http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200605043.htmSun G, Sheng L X, Yutaro S. Advance in bioturbation effect in benthic-pelagic interface[J]. Ecology and Environment, 2006, 15(5):1106-1110 http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200605043.htm [3] 刘军, 谢祥林, 严维辉, 等.克氏原螯虾稻田高效生态养殖试验总结[J].水产养殖, 2011, 32(5):37-38 http://www.cnki.com.cn/Article/CJFDTOTAL-SCYZ201105024.htmLiu J, Xie X L, Yan W H, et al. Experimental summary of efficient ecological farming of Procambarus clarkii in rice fields[J]. Aquaculture, 2011, 32(5):37-38 http://www.cnki.com.cn/Article/CJFDTOTAL-SCYZ201105024.htm [4] 程慧俊.克氏原螯虾稻田养殖生态学的初步研究[D].武汉:湖北大学, 2014:10-15Cheng H J. A preliminary study on the ecology aspects culture of the crayfish (Procambarus clarkii) in rice fields[D]. Wuhan:Hubei University, 2014:10-15 [5] 陈飞星, 张增杰.稻田养蟹模式的生态经济分析[J].应用生态学报, 2002, 13(3):323-326 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200203015.htmChen F X, Zhang Z J. Ecological economic analysis of a rice-crab model[J]. Chinese Journal of Applied Ecology, 2002, 13(3):323-326 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200203015.htm [6] 曹志强, 梁知洁, 赵艺欣, 等.北方稻田养鱼的共生效应研究[J].应用生态学报, 2001, 12(3):405-408 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200103023.htmCao Z Q, Liang Z J, Zhao Y X, et al. Symbiotic effect of cul-tivating fish in rice field in north China[J]. Chinese Journal of Applied Ecology, 2001, 12(3):405-408 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200103023.htm [7] 孙刚, 房岩, 韩国军, 等.稻-鱼复合生态系统对水田土壤理化性状的影响[J].中国土壤与肥料, 2009(4):21-24 http://www.cnki.com.cn/Article/CJFDTOTAL-TRFL200904006.htmSun G, Fang Y, Han G J, et al. Effects of rice-fish integrated ecosystem on physical and chemical properties of paddy soil[J]. Soil and Fertilizer Sciences in China, 2009(4):21-24 http://www.cnki.com.cn/Article/CJFDTOTAL-TRFL200904006.htm [8] 佀国涵, 赵书军, 王瑞, 等.连年翻压绿肥对植烟土壤物理及生物性状的影响[J].植物营养与肥料学报, 2014, 20(4):905-912 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201404012.htmSi G H, Zhao S J, Wang R, et al. Effects of consecutive over-turning of green manure on soil physical and biological characteristics in tobacco-planting fields[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4):905-912 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201404012.htm [9] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000:146-190Lu R K. The Analysis Method of Soil Agricultural Chemis-try[M]. Beijing:China Agricultural Science and Technology Press, 2000:146-190 [10] 刘志光, 于天仁.水稻土中氧化还原过程的研究(Ⅴ)还原性物质的测定[J].土壤学报, 1962, 10(1):13-28 http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB196201001.htmLiu Z G, Yu T R. Studies on oxidation-reduction processes in paddy soils Ⅴ. Determination of the reducing compounds[J]. Acta Pedologica Sinica, 1962, 10(1):13-28 http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB196201001.htm [11] Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3):627-633 doi: 10.2136/sssaj1986.03615995005000030017x [12] 依艳丽.土壤物理研究法[M].北京:北京大学出版社, 2009:81-85Yi Y L. Soil Physic Research Methods[M]. Beijing:Peking University Press, 2009:81-85 [13] Kemper W D, Rosenau R C. Aggregate stability and size dis-tribution[M]//Klute A. Methods of Soil Analysis. Part 1. 2nd ed. Madison:SSSA, 1986:425-442 [14] 杨培岭, 罗远培, 石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报, 1993, 38(20):1896-1899 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199320018.htmYang P L, Luo Y P, Shi Y C. Soil fractal character token by particle mass distribution[J]. Chinese Science Bulletin, 1993, 38(20):1896-1899 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199320018.htm [15] 史衍玺, 唐克丽.人为加速侵蚀下土壤质量的生物学特性变化[J].土壤侵蚀与水土保持学报, 1998, 4(1):28-34 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS801.004.htmShi Y X, Tang K L. Changes of biological characteristics of soil quality under man made accelerated erosion[J]. Journal of Soil Water Conservation, 1998, 4(1):28-34 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS801.004.htm [16] 潘淑贞.长江中游不同潜育化土壤诊断指标探讨[J].长江流域资源与环境, 1997, 6(2):155-162 http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY702.010.htmPan S Z. On a quantitative index of identifying soils of vari-ous gleization types in the middle basin of the Yangtze Riv-er[J]. Resources and Environment in the Yangtze Basin, 1997, 6(2):155-162 http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY702.010.htm [17] Eshky A A, Atkinson R J A, Taylor A C. Physiological ecolo-gy of crabs from Saudi Arabian mangrove[J]. Marine Ecology Progress Series, 1995, 126:83-95 doi: 10.3354/meps126083 [18] 王清奎, 汪思龙.土壤团聚体形成与稳定机制及影响因素[J].土壤通报, 2005, 36(3):415-421 http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB20050300U.htmWang Q K, Wang S L. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(3):415-421 http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB20050300U.htm [19] 聂军, 郑圣先, 杨曾平, 等.长期施用化肥、猪粪和稻草对红壤性水稻土物理性质的影响[J].中国农业科学, 2010, 43(7):1404-1413 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201007012.htmNie J, Zheng S X, Yang Z P, et al. Effects of long-term appli-cation of chemical fertilizer, pig manure and rice straw on physical properties of a reddish paddy soil[J]. Scientia Agri-cultura Sinica, 2010, 43(7):1404-1413 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201007012.htm [20] Zhang B, Horn R. Mechanisms of aggregate stabilization in Ultisols from subtropical China[J]. Geoderma, 2001, 99(1/2):123-145 https://www.researchgate.net/publication/223051943_Mechanisms_of_aggregate_stabilization_in_Ultisols_from_subtropical_China?_sg=CDjimLvsE5wibLZbAmfoWnLxegOEZj_cykfHzQdKMf8z7Fw8U9mkDrrZB0R3RC93vbCdti7n7-yE7KgW2Co4SQ [21] Oades J M, Waters A G. Aggregate hierarchy in soils[J]. Aus-tralian Journal of Soil Research, 1991, 29(6):815-828 doi: 10.1071/SR9910815 [22] 胡祥, 王瑞霞, 奥岩松.壳聚糖对土壤理化性状的影响[J].土壤通报, 2006, 37(1):68-72 http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200601014.htmHu X, Wang R X, Ao Y S. Effects of chitosan on soil physical and chemical properties[J]. Chinese Journal of Soil Science, 2006, 37(1):68-72 http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200601014.htm [23] 周刚, 赵辉, 陈国玉, 等.花岗岩红壤区不同地类土壤抗蚀性分异规律研究[J].中国水土保持, 2008(9):27-29 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB200809012.htmZhou G, Zhao H, Chen G Y, et al. Differential rule of soil anti-erodibility in different land-use of granite red soil region[J]. Soil and Water Conservation in China, 2008(9):27-29 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB200809012.htm [24] 吕国红, 周莉, 赵先丽, 等.芦苇湿地土壤有机碳和全氮含量的垂直分布特征[J].应用生态学报, 2006, 17(3):384-389 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200603005.htmLü G H, Zhou L, Zhao X L, et al. Vertical distribution of soil organic carbon and total nitrogen in reed wetland[J]. Chinese Journal of Applied Ecology, 2006, 17(3):384-389 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200603005.htm [25] 张春华, 王宗明, 居为民, 等.松嫩平原玉米带土壤碳氮比的时空变异特征[J].环境科学, 2011, 32(5):1407-1414 http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201105031.htmZhang C H, Wang Z M, Ju W M, et al. Spatial and temporal variability of soil C/N ratio in Songnen Plain maize belt[J]. Environmental Science, 2011, 32(5):1407-1414 http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201105031.htm [26] 董凯凯, 王惠, 杨丽原, 等.人工恢复黄河三角洲湿地土壤碳氮含量变化特征[J].生态学报, 2011, 31(16):4778-4782 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201116033.htmDong K K, Wang H, Yang L Y, et al. Change characteristics of soil carbon and nitrogen contents in the Yellow River Delta soil after artificial restoration[J]. Acta Ecologica Sinica, 2011, 31(16):4778-4782 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201116033.htm [27] Sarr M, Agbogba C, Russell-Smith A, et al. Effects of soil faunal activity and woody shrubs on water infiltration rates in a semi-arid fallow of Senegal[J]. Applied Soil Ecology, 2001, 16(3):283-290 doi: 10.1016/S0929-1393(00)00126-8 [28] 吴明, 邵学新, 胡锋, 等.围垦对杭州湾南岸滨海湿地土壤养分分布的影响[J].土壤, 2008, 40(5):760-764 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA200805016.htmWu M, Shao X X, Hu F, et al. Effects of reclamation on soil nutrients distribution of coastal wetland in south Hangzhou Bay[J]. Soils, 2008, 40(5):760-764 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA200805016.htm [29] 吴建富, 王海辉, 刘经荣, 等.长期施用不同肥料稻田土壤养分的剖面分布特征[J].江西农业大学学报, 2001, 23(1):54-56 http://www.cnki.com.cn/Article/CJFDTOTAL-JXND200101010.htmWu J F, Wang H H, Liu J R, et al. The characters of the profile distribution of nutrients in rice fields after long-term application of different fertilizers[J]. Acta Agriculturae Universitatis Jiangxiensis, 2001, 23(1):54-56 http://www.cnki.com.cn/Article/CJFDTOTAL-JXND200101010.htm [30] 艾尤尔·亥热提, 王勇辉, 海米提·依米提.艾比湖湿地土壤速效钾空间变异性分析[J].土壤通报, 2015, 46(2):375-381 http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201502018.htmGhayrat G, Wang Y H, Yimid H. Spatial variability of soil available K concentrations in Ebinur lake wetland[J]. Chinese Journal of Soil Science, 2015, 46(2):375-381 http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201502018.htm [31] 黄绍文, 金继运, 杨俐苹, 等.粮田土壤养分的空间格局及其与土壤颗粒组成之间的关系[J].中国农业科学, 2002, 35(3):297-302 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200203013.htmHuang S W, Jin J Y, Yang L P, et al. Spatial distribution of soil nutrient and relationship between soil nutrient and soil granule composition for grain crop region[J]. Scientia Agricultura Sinica, 2002, 35(3):297-302 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200203013.htm [32] 丁昌璞.水稻土中的还原性物质[J].土壤学进展, 1984, 12(2):1-12 http://www.cnki.com.cn/Article/CJFDTOTAL-TRJZ198402000.htmDing C P. The reducing substances in paddy soils[J]. Progress in Soil Science, 1984, 12(2):1-12 http://www.cnki.com.cn/Article/CJFDTOTAL-TRJZ198402000.htm -

计量
- 文章访问数: 1810
- HTML全文浏览量: 196
- PDF下载量: 1017
- 被引次数: 0