留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同耕作深度对土壤物理性状及烤烟根系空间分布特征的影响

童文杰 邓小鹏 徐照丽 马二登 晋艳 李军营

童文杰, 邓小鹏, 徐照丽, 马二登, 晋艳, 李军营. 不同耕作深度对土壤物理性状及烤烟根系空间分布特征的影响[J]. 中国生态农业学报(中英文), 2016, 24(11): 1464-1472. doi: 10.13930/j.cnki.cjea.160555
引用本文: 童文杰, 邓小鹏, 徐照丽, 马二登, 晋艳, 李军营. 不同耕作深度对土壤物理性状及烤烟根系空间分布特征的影响[J]. 中国生态农业学报(中英文), 2016, 24(11): 1464-1472. doi: 10.13930/j.cnki.cjea.160555
TONG Wenjie, DENG Xiaopeng, XU Zhaoli, MA Erdeng, JIN Yan, LI Junying. Effect of plowing depth on soil physical characteristics and spatial distribution of root system of flue-cured tobacco[J]. Chinese Journal of Eco-Agriculture, 2016, 24(11): 1464-1472. doi: 10.13930/j.cnki.cjea.160555
Citation: TONG Wenjie, DENG Xiaopeng, XU Zhaoli, MA Erdeng, JIN Yan, LI Junying. Effect of plowing depth on soil physical characteristics and spatial distribution of root system of flue-cured tobacco[J]. Chinese Journal of Eco-Agriculture, 2016, 24(11): 1464-1472. doi: 10.13930/j.cnki.cjea.160555

不同耕作深度对土壤物理性状及烤烟根系空间分布特征的影响

doi: 10.13930/j.cnki.cjea.160555
基金项目: 云南省烟草公司项目(2015YN03, 2016YN28, 2016YN34)资助

Effect of plowing depth on soil physical characteristics and spatial distribution of root system of flue-cured tobacco

  • 摘要: 为探讨不同耕作深度对烤烟产量产值的影响, 揭示烟田深耕增产增效机理, 以烤烟‘K326’品种为材料, 基于田间定位试验, 设置对照翻耕20 cm(GS20)、翻耕30 cm(GS30)和翻耕40 cm(GS40)3个处理, 研究不同耕作深度对烟叶产量产值、烟田土壤物理性状和烤烟根系空间分布特征的影响。结果表明: 深耕措施对改良土体结构、促进土壤蓄水、优化烤烟根系构型和增加烟叶产量产值有较好效果。深耕处理显著降低亚表层20~40 cm土壤容重, 同时显著增加该土层土壤总孔隙度和土壤毛管孔隙度。其中, 与GS20处理相比, GS30和GS40处理土壤容重分别降低8.4%和9.4%, 总孔隙度分别提高15.6%和13.1%, 毛管孔隙度分别提高25.8%和24.8%。与对照GS20相比, GS30和GS40处理显著增加团棵期表层0~20 cm土壤含水量, 显著增加旺长期、成熟期亚表层20~40 cm土壤含水量。深耕处理不仅显著增加烤烟根系绝对量, 还促进根系向深层土壤生长, 提高烤烟根系根深指数。其中, GS30和GS40处理根系生物量鲜重分别比GS20高31.2%和89.2%, 根深指数分别提高7.6%和4.5%。与对照GS20相比, GS30和GS40处理烟叶产量分别提高7.0%和27.3%, 均价分别提高1.8%和6.2%, 上等烟比例分别提高10.4%和24.4%, 产值分别提高9.0%和35.1%, 其中GS40与GS20存在显著性差异。研究发现, 深耕措施首先作用于土壤容重、空隙等物理结构, 然后影响烟田土壤蓄水储熵, 促进烤烟早生快发, 优化烤烟根系空间分布构型, 进而作用于地上部形态建成, 最终影响烟叶产量产值。
  • [1] 张世煌, 李少昆. 国内外玉米产业技术发展报告—2009年[M]. 北京: 中国农业科学技术出版社, 2010: 111–113

    Zhang S H, Li S K. Report of Corn Industry Development in China and Abroad[M]. Beijing: China Agricultural Science and Technology Press, 2010: 111–113
    [2] 王娜, 兰建强, 王定伟, 等. 不同耕作深度对烤烟生长及产、质量的影响[J]. 西南农业学报, 2014, 27(4): 1737–1740

    Wang N, Lan J Q, Wang D W, et al. Effect of different plowing depths on growth-development, yield and quality of flue-cured tobacco[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(4): 1737–1740
    [3] 徐天养, 赵正雄, 李忠环, 等. 耕作深度对烤烟生长、养分吸收及产量、质量的影响[J]. 作物学报, 2009, 35(7): 1364–1368

    Xu T Y, Zhao Z X, Li Z H, et al. Effect of tilling depth on growth, nutrient uptake, yield and quality of flue-cured tobacco plant[J]. Acta Agronomica Sinica, 2009, 35(7): 1364–1368
    [4] Lynch J P. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops[J]. Plant Physiology, 2011, 156(3): 1041–1049
    [5] Pagès L. Links between root developmental traits and foraging performance[J]. Plant, Cell & Environment, 2011, 34(10): 1749–1760
    [6] 张喜英. 提高农田水分利用效率的调控机制[J]. 中国生态农业学报, 2013, 21(1): 80–87

    Zhang X Y. Regulating mechanisms for improving farmland water use efficiency[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 80–87
    [7] 曹庆军, 姜晓莉, 杨粉团, 等. 深松条件下春玉米花后衰老过程中根系生物学变化特征[J]. 玉米科学, 2014, 22(5): 86–91

    Cao Q J, Jiang X L, Yang F T, et al. Changes of root biologic properties during senescence after anthesis of spring maize under subsoiling treatment[J]. Journal of Maize Sciences, 2014, 22(5): 86–91
    [8] Jabro J D, Iversen W M, Stevens W B, et al. Physical and hydraulic properties of a sandy loam soil under zero, shallow and deep tillage practices[J]. Soil and Tillage Research, 2016, 159: 67–72
    [9] Gronle A, Lux G, B?hm H, et al. Effect of ploughing depth and mechanical soil loading on soil physical properties, weed infestation, yield performance and grain quality in sole and intercrops of pea and oat in organic farming[J]. Soil and Tillage Research, 2015, 148: 59–73
    [10] Bogunovi? I, Kisi? I, Jurisi? A. Soil compaction under different tillage system on Stagnic Luvisols[J]. Agriculturae Conspectus Scientificus, 2014, 79(1): 57–63
    [11] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978: 512–514

    Institute of Soil Science, Chinese Academy of Sciences. Soil Physical and Chemical Analyses[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1978: 512–514
    [12] 赵明. 作物产量性能与高产技术[M]. 北京: 中国农业出版社, 2013: 304–308

    Zhao M. The Crop Yield Performance and High Yield Technology[M]. Beijing: China Agriculture Press, 2013: 304–308
    [13] 王新兵, 侯海鹏, 周宝元, 等. 条带深松对不同密度玉米群体根系空间分布的调节效应[J]. 作物学报, 2014, 40(12): 2136–2148

    Wang X B, Hou H P, Zhou B Y, et al. Effect of strip subsoiling on population root spatial distribution of maize under different planting densities[J]. Acta Agronomica Sinica, 2014, 40(12): 2136–2148
    [14] 查丽, 谢孟林, 朱敏, 等. 垄作与覆膜对川中丘陵春玉米根系分布及产量的影响[J]. 应用生态学报, 2016, 27(3): 855–862

    Zha L, Xie M L, Zhu M, et al. Effects of ridge-cultivation and plastic film mulching on root distribution and yield of spring maize in hilly area of central Sichuan basin, China[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 855–862
    [15] 唐拴虎, 徐培智, 张发宝, 等. 一次性全层施用控释肥对水稻根系形态发育及抗倒伏能力的影响[J]. 植物营养与肥料学报, 2006, 12(1): 63–69

    Tang S H, Xu P Z, Zhang F B, et al. Influence of single basal application controlled-release fertilizer on morphologic development of root system and lodging resistance of rice[J]. Plant Nutrition and Fertilizer Science, 2006, 12(1): 63–69
    [16] 王崇桃, 李少昆. 玉米生产限制因素评估与技术优先序[J]. 中国农业科学, 2010, 43(6): 1136–1146

    Wang C T, Li S K. Assessment of limiting factors and techniques prioritization for maize production in China[J]. Scientia Agricultura Sinica, 2010, 43(6): 1136–1146
    [17] Whalley W R, Dumitru E, Dexter A R. Biological effects of soil compaction[J]. Soil and Tillage Research, 1995, 35(1/2): 53–68
    [18] Xu D, Mermoud A. Topsoil properties as affected by tillage practices in North China[J]. Soil and Tillage Research, 2001, 60(1/2): 11–19
    [19] Munkholm L J, Schj?nning P, Rasmussen K J. Non-inversion tillage effects on soil mechanical properties of a humid sandy loam[J]. Soil and Tillage Research, 2001, 62(1/2): 1–14
    [20] Birkás M, Jolánkai M, Gyuricza C, et al. Tillage effects on compaction, earthworms and other soil quality indicators in Hungary[J]. Soil and Tillage Research, 2004, 78(2): 185–196
    [21] Borghei A M, Taghinejad J, Minaei S, et al. Effect of subsoiling on soil bulk density, penetration resistance and cotton yield in northwest of Iran[J]. International Journal of Agriculture and Biology, 2008, 10: 120–123
    [22] Lampurlanés J, Angás P, Cantero-Mart??nez C. Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions[J]. Field Crops Research, 2001, 69(1): 27–40
    [23] Ji B, Zhao Y, Mu X, et al. Effects of tillage on soil physical properties and root growth of maize in loam and clay in central China[J]. Plant Soil and Environment, 2013, 59(7): 295–302
    [24] Hope G D. Effects of Mechanical Site Preparation on Soil and Foliar Nutrients in the Drier Subzones of the IDF, MS and ESSF Zones-Project 3.50[M]. Victoria BC: Res. Dev. Agree. Res., 1991: 193
    [25] Bécel C, Vercambre G, Pagès L. Soil penetration resistance, a suitable soil property to account for variations in root elongation and branching[J]. Plant and Soil, 2012, 353(1/2): 169–180
    [26] 侯鹏, 陈新平, 崔振岭, 等. 4种典型土壤上玉米产量潜力的实现程度及其因素分析[J]. 中国生态农业学报, 2012, 20(7): 874–881

    Hou P, Chen X P, Cui Z L, et al. Potential maize yield realization and related driving factors in four typical soils[J]. Chinese Journal of Eco-Agriculture, 2012, 20(7): 874–881
    [27] 张希彪, 上官周平. 人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J]. 生态学报, 2006, 26(11): 3685–3695

    Zhang X B, Shangguan Z P. Effect of human-induced disturbance on physical properties of soil in artificial Pinus tabulaeformis Carr. forests of the Loess Plateau[J]. Acta Ecological Sinica, 2006, 26(11): 3685–3695
    [28] Whalley W R, Watts C W, Gregory A S, et al. The effect of soil strength on the yield of wheat[J]. Plant and Soil, 2008, 306(1/2): 237–247
    [29] Mu?oz-Romero V, López-Bellido L, López-Bellido R J. The effects of the tillage system on chickpea root growth[J]. Field Crops Research, 2012, 128: 76–81
    [30] Smith S, De Smet I. Root system architecture: Insights from Arabidopsis and cereal crops[J]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2012, 367(1595): 1441–1452
    [31] 朱献玳, 陈学留, 刘益同, 等. 玉米根系的生长及其在土壤中的分布[J]. 莱阳农学院学报, 1991, 8(1): 15–19

    Zhu X D, Chen X L, Liu Y T, et al. Root growth and distribution in soil of maize[J]. Journal of Laiyang Agricultural College, 1991, 8(1): 15–19
    [32] 王空军, 郑洪建, 刘开昌, 等. 我国玉米品种更替过程中根系时空分布特性的演变[J]. 植物生态学报, 2001, 25(4): 472–475

    Wang K J, Zheng H J, Liu K C, et al. Evolution of maize root distribution in space-time during maize varieties replacing in China[J]. Acta Phytoecologica Sinica, 2001, 25(4): 472–475
  • 加载中
计量
  • 文章访问数:  1086
  • HTML全文浏览量:  18
  • PDF下载量:  822
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-21
  • 修回日期:  2016-09-12
  • 刊出日期:  2016-11-01

目录

    /

    返回文章
    返回