留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干旱胁迫下不同品种马铃薯块茎膨大期叶片对烯效唑的生理响应

丁凯鑫 王立春 田国奎 王海艳 李凤云 潘阳 庞泽 单莹

丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 干旱胁迫下不同品种马铃薯块茎膨大期叶片对烯效唑的生理响应[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−14 doi: 10.12357/cjea.20230184
引用本文: 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 干旱胁迫下不同品种马铃薯块茎膨大期叶片对烯效唑的生理响应[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−14 doi: 10.12357/cjea.20230184
DING K X, WANG L C, TIAN G K, WANG H Y, LI F Y, PAN Y, PANG Z, SHAN Y. Physiological responses of leaves of different potato varieties to uniconazole during tuber bulking stage under drought stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−14 doi: 10.12357/cjea.20230184
Citation: DING K X, WANG L C, TIAN G K, WANG H Y, LI F Y, PAN Y, PANG Z, SHAN Y. Physiological responses of leaves of different potato varieties to uniconazole during tuber bulking stage under drought stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−14 doi: 10.12357/cjea.20230184

干旱胁迫下不同品种马铃薯块茎膨大期叶片对烯效唑的生理响应

doi: 10.12357/cjea.20230184
基金项目: 现代农业产业技术体系建设专项资金(CARS-09-ES37)、黑龙江省农业科学院“农业科技创新跨越工程”专项(HNK2019CX07-08)和黑龙江省农业科学院克山分院先导培育项目(XDYBA2023-02)资助
详细信息
    作者简介:

    丁凯鑫, 主要研究方向为马铃薯栽培和生理, E-mail: ksfydkx@163.com

    通讯作者:

    王立春, 主要研究方向为马铃薯育种, E-mail: potato2008@126.com

  • 中图分类号: S532

Physiological responses of leaves of different potato varieties to uniconazole during tuber bulking stage under drought stress

Funds: This study was supported by the Special Fund for the Construction of Modern Agricultural Industry Technology System of China (CARS-09-ES37), the Agricultural Science and Technology Innovation Spanning Project of Heilongjiang Academy of Agricultural Sciences (HNK2019CX07-08) and the Leading Cultivation Project of Keshan Branch of Heilongjiang Academy of Agricultural Sciences (XDYBA2023-02).
More Information
  • 摘要: 为明确外源烯效唑对干旱胁迫下马铃薯的缓解效应, 以耐旱品种‘克新1号’和干旱敏感品种‘大西洋’为试验材料, 在块茎膨大期(第二花序开花)进行干旱处理(保持45.0%的土壤相对含水量)和喷施烯效唑(40 mg∙L−1), 每个品种各设3个处理: 对照组(CK)、干旱胁迫处理(D)和干旱胁迫+烯效唑(D+S), 测定外源烯效唑和干旱胁迫下马铃薯叶片叶绿素含量、光合气体交换参数、细胞膜脂过氧化程度(MDA)、活性氧(ROS)和抗氧化防御系统中抗氧化酶活性以及AsA-GSH循环产物和底物的含量。结果表明, 干旱胁迫能够降低2个品种叶片的叶绿素含量, 显著抑制了净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci), 而显著增加了MDA、H2O2含量和O2产生速率, 在干旱胁迫15 d时, D处理的‘克新1号’和‘大西洋叶’片的MDA、H2O2含量、O2产生速率分别较CK显著增加29.17%和43.58%、55.56%和73.13%、84.26%和110.59%, 2个品种抗氧化酶活性和非酶抗氧化剂含量均有所升高, 以适应干旱胁迫所产生的应激反应, 且耐旱品种克新1号受干旱损伤程度小于干旱敏感品种大西洋。外源烯效唑能够显著增加马铃薯叶片的叶绿素含量和光合气体交换参数, 降低了克新1号和大西洋叶片内MDA、O2产生速率和H2O2含量, 同时提高了抗氧化防御系统中抗氧化酶活性, 以清除过量积累的ROS, 降低膜脂过氧化程度, 同时烯效唑可进一步上调2个马铃薯品种干旱胁迫下AsA-GSH循环中抗坏血酸(AsA)、脱氢抗坏血酸(DHA)、谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)含量, 并提高AsA/DHA和GSH/GSSG比值, 以提高叶片内部还原力水平和抗氧化能力, 从而减轻活性氧对细胞膜造成的损害, 提高马铃薯耐旱性。综上, 外源烯效唑可在一定程度上促进叶片光合作用, 提高抗氧化防御能力, 以缓解干旱胁迫所造成的损伤。研究结果可为抗旱栽培提供理论依据
  • 图  1  烯效唑对不同时间干旱胁迫下不同品种马铃薯块茎膨大期叶片光合参数的影响

    CK: 正常水分管理; D: 干旱胁迫; D+S: 干旱胁迫+叶施烯效唑处理。同一干旱胁迫时间不同小写字母表示处理间差异显著(P<0.05)。CK: normal water; D: drought stress; D+S: drought stress + spraying uniconazole. Different small letters for the same drought stress time mean significant difference among different treatments at P<0.05 level.

    Figure  1.  Effects of uniconazole on gas exchange parameters in leaves of different potato cultivars under drought stress for different times during tuber expansion period

    图  2  烯效唑对不同时间干旱胁迫下不同品种马铃薯块茎膨大期叶片膜脂过氧化程度和ROS积累的影响

    CK: 正常水分管理; D: 干旱胁迫; D+S: 干旱胁迫+叶施烯效唑处理。同一干旱胁迫时间不同小写字母表示处理间差异显著(P<0.05)。CK: normal water; D: drought stress; D+S: drought stress + spraying uniconazole. Different small letters for the same drought stress time mean significant difference among different treatments at P<0.05 level.

    Figure  2.  Effects of uniconazole on membrane lipid peroxidation and ROS accumulation in leaves of different potato cultivars under drought stress for different times during tuber expansion period

    图  3  烯效唑对不同时间干旱胁迫下不同品种马铃薯块茎膨大期叶片抗氧化酶活性的影响

    CK: 正常水分管理; D: 干旱胁迫; D+S: 干旱胁迫+叶施烯效唑处理。同一干旱胁迫时间不同小写字母表示处理间差异显著(P<0.05)。CK: normal water; D: drought stress; D+S: drought stress + spraying uniconazole. Different small letters for the same drought stress time mean significant difference among different treatments at P<0.05 level.

    Figure  3.  Effects of uniconazole on antioxidant enzyme activities in leaves of different potato cultivars under drought stress for different times during tuber expansion period

    图  4  烯效唑对不同时间干旱胁迫下不同品种马铃薯块茎膨大期叶片ASA和DHA含量的影响

    CK: 正常水分管理; D: 干旱胁迫; D+S: 干旱胁迫+叶施烯效唑处理。同一干旱胁迫时间不同小写字母表示处理间差异显著(P<0.05)。CK: normal water; D: drought stress; D+S: drought stress + spraying uniconazole. Different small letters for the same drought stress time mean significant difference among different treatments at P<0.05 level.

    Figure  4.  Effects of uniconazole on ASA and DHA contents in leaves of different potato cultivars under drought stress for different times during tuber expansion period

    图  5  烯效唑对不同时间干旱胁迫下不同品种马铃薯块茎膨大期叶片GSH和GSSG含量的影响

    CK: 正常水分管理; D: 干旱胁迫; D+S: 干旱胁迫+叶施烯效唑处理。同一干旱胁迫时间不同小写字母表示处理间差异显著(P<0.05)。CK: normal water; D: drought stress; D+S: drought stress + spraying uniconazole. Different small letters for the same drought stress time mean significant difference among different treatments at P<0.05 level.

    Figure  5.  Effects of uniconazole on GSH and GSSG contents in leaves of different potato cultivars under drought stress for different times during tuber expansion period

    图  6  块茎膨大期干旱胁迫对马铃薯叶片光合作用和抗氧化防御的损伤及烯效唑的缓解效应

    红色箭头表示(增加或减少)对块茎膨大期干旱胁迫各指标的影响; 绿色箭头表示(增加或减少)对烯效唑处理块茎膨大期干旱胁迫各指标的影响。ROS: 活性氧物质; H2O2: 过氧化氢; MDA: 丙二醛; O2: 超氧阴离子; Chl a: 叶绿素 a; Chl b: 叶绿素 b; Car: 类胡萝卜素; Gs: 气孔导度; Ci: 细胞间 CO2浓度; Pn: 叶片净光合速率; Tr: 蒸腾速率; SOD: 超氧化物歧化酶; POD: 过氧化物酶; CAT: 过氧化氢酶; APX: 抗坏血酸过氧化物酶; AsA: 抗坏血酸; GSH: 谷胱甘肽; DHA: 脱氢抗坏血酸; GSSG: 氧化型谷胱甘肽。Red arrows indicate the effect (increase or decrease) on each indicator of drought stress in tuber expansion period; green arrows indicate the effect (increase or decrease) on each indicator of drought stress in tuber expansion period for the uniconazole treatment. ROS: reactive oxygen species; H2O2: hydrogen peroxide; MDA: malondialdehyde; O2: superoxide anion; Chl a: chlorophyll a; Chl b: chlorophyll b; Car: carotenoid; Gs: stomatal conductance; Ci: intercellular CO2 concentration; Pn: leaf net photosynthetic rate; Tr: transpiration rate; SOD: superoxide dismutase; POD: peroxidase; CAT: catalase; APX: ascorbate peroxidase; AsA: ascorbic acid; GSH: glutathione; DHA: dehydroascorbate; GSSG: glutathiol.

    Figure  6.  Damage of drought stress on photosynthesis and antioxidant defense of potato leaves during tuber expansion period and mitigation effect of uniconazole

    表  1  烯效唑对不同时间干旱胁迫下不同品种马铃薯块茎膨大期叶片光合色素含量的影响

    Table  1.   Effects of uniconazole on photosynthetic pigment content in leaves of different potato cultivars under drought stress for different times during tuber expansion period

    指标
    Indicator(mg·g−1)
    处理
    Treatment
    克新1号 KX 1大西洋 Atalantic
    5 d10 d15 d5 d10 d15 d
    叶绿素a
    Chlorophyll a
    CK2.48±0.03a2.62±0.00a2.59±0.02a1.99±0.01a2.18±0.08a2.14±0.08a
    D2.12±0.03b2.04±0.03c1.63±0.03c1.95±0.05a1.85±0.07b1.52±0.04c
    D+S2.36±0.08a2.39±0.02b1.97±0.07b1.94±0.04a1.88±0.03b1.77±0.09b
    叶绿素b
    Chlorophyllb
    CK0.65±0.01a0.51±0.01a0.79±0.00a0.95±0.03a0.75±0.01a0.80±0.01a
    D0.70±0.07a0.46±0.04a0.23±0.06c0.79±0.02b0.62±0.01b0.43±0.01b
    D+S0.68±0.04a0.42±0.02a0.43±0.02b0.87±0.03ab0.66±0.02b0.45±0.06b
    类胡萝卜素
    Carotenoid
    CK0.55±0.01a0.49±0.01a0.54±0.00a0.39±0.01a0.42±0.01a0.49±0.06a
    D0.45±0.04b0.46±0.02b0.25±0.03b0.35±0.01a0.34±0.03b0.23±0.01b
    D+S0.52±0.02ab0.50±0.01a0.32±0.03b0.36±0.01a0.35±0.00b0.23±0.02b
    总叶绿素
    Chlorophyll a+b
    CK3.13±0.03a3.13±0.01a3.38±0.02a2.94±0.04a2.99±0.14a2.94±0.07a
    D2.82±0.06b2.50±0.03c1.86±0.03c2.73±0.03b2.53±0.03b1.95±0.04c
    D+S3.04±0.04a2.81±0.01b2.40±0.07b2.81±0.02b2.54±0.02b2.22±0.07b
      CK: 正常水分管理; D: 干旱胁迫; D+S: 干旱胁迫+叶施烯效唑处理。同列不同小写字母表示同一指标不同处理间在P<0.05水平差异显著。CK: normal water; D: drought stress; D+S: drought stress + spraying uniconazole. Values of the same indicator followed by different lowercase letters in the same column are significantly different at the P<0.05 level.
    下载: 导出CSV
  • [1] 杨鑫, 樊吴静, 唐洲萍, 等. 广西马铃薯产业现状分析及其发展建议[J]. 南方农业学报, 2021, 52(6): 1501−1509

    YANG X, FAN W J, TANG Z P, et al. Development status and countermeasures of potato industry in Guangxi[J]. Journal of Southern Agriculture, 2021, 52(6): 1501−1509
    [2] 杨雅伦, 郭燕枝, 孙君茂. 我国马铃薯产业发展现状及未来展望[J]. 中国农业科技导报, 2017, 19(1): 29−36

    YANG Y L, GUO Y Z, SUN J M. Present status and future prospect for potato industry in China[J]. Journal of Agricultural Science and Technology, 2017, 19(1): 29−36
    [3] 姜秋香, 付强, 王子龙. 黑龙江省西部半干旱区土壤水分空间变异性研究[J]. 水土保持学报, 2007, 21(5): 118−122 doi: 10.3321/j.issn:1009-2242.2007.05.028

    JIANG Q X, FU Q, WANG Z L. Research on spatial variability of soil water characteristics in western semiarid area of Heilongjiang Province[J]. Journal of Soil and Water Conservation, 2007, 21(5): 118−122 doi: 10.3321/j.issn:1009-2242.2007.05.028
    [4] 沈国强, 郑海峰, 雷振锋. SPEI指数在中国东北地区干旱研究中的适用性分析[J]. 生态学报, 2017, 37(11): 3787−3795

    SHEN G Q, ZHENG H F, LEI Z F. Applicability analysis of SPEI for drought research in Northeast China[J]. Acta Ecologica Sinica, 2017, 37(11): 3787−3795
    [5] MAHMOUD M. Hassanien, 黄金柏, 王斌, 等. 黑龙江西部半干旱区干旱特性评估[J]. 水文, 2021, 41(4): 95−101,108

    HASSANIEN M, HUANG J B, WANG B, et al. Assessment of drought characteristics for the semiarid western Heilongjiang Province[J]. Journal of China Hydrology, 2021, 41(4): 95−101,108
    [6] 李玉恒, 成汶璟, 左文洁, 等. 东北黑土区农业干旱脆弱性及其应对策略研究——以黑龙江省为例[J/OL]. 农业资源与环境学报, 2023,DOI: 10.13254/j.jare.2022.0682.

    Li Y H, Cheng W J, Zuo W J, Du G M. Vulnerability of agricultural drought and its countermeasures in black soil region of Northeast China: taking Heilongjiang Province as an example[J]. Journal of Agricultural Resources and Environment, 2023,DOI: 10.13254/j.jare.2022.0682.
    [7] GURURANI M, VENKATESH J, TRAN L S P. Regulation of photosynthesis during abiotic stress-induced photoinhibition[J]. Molecular Plant, 2015, 8(9): 1304−1320 doi: 10.1016/j.molp.2015.05.005
    [8] 董奇琦, 艾鑫, 张艳正, 等. 干旱胁迫对不同耐性花生品种生理特性及产量的影响[J]. 沈阳农业大学学报, 2020, 51(1): 18−26

    DONG Q Q, AI X, ZHANG Y Z, et al. Effect of drought stress on physiological characteristics and yield in different tolerant peanut[J]. Journal of Shenyang Agricultural University, 2020, 51(1): 18−26
    [9] 张海燕, 解备涛, 汪宝卿, 等. 不同时期干旱胁迫对甘薯生长和抗氧化能力的影响[J]. 中国农业科学, 2020, 53(6): 1126−1139

    ZHANG H Y, XIE B T, WANG B Q, et al. Effects of drought treatments at different growth stages on growth and the activity of antioxidant enzymes in sweetpotato[J]. Scientia Agricultura Sinica, 2020, 53(6): 1126−1139
    [10] 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5): 868−882

    ZHANG C M, SHI S L, WU F. Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties[J]. Scientia Agricultura Sinica, 2018, 51(5): 868−882
    [11] 杨建军, 张国斌, 郁继华, 等. 盐胁迫下内源NO对黄瓜幼苗活性氧代谢和光合特性的影响[J]. 中国农业科学, 2017, 50(19): 3778−3788

    YANG J J, ZHANG G B, YU J H, et al. Effects of endogenous NO on reactive oxygen metabolism and photosynthetic characteristics of cucumber seedlings under salt stress[J]. Scientia Agricultura Sinica, 2017, 50(19): 3778−3788
    [12] 郑春芳, 刘伟成, 魏龙, 等. 外施褪黑素对低温胁迫下红树植物秋茄光合作用和抗坏血酸-谷胱甘肽循环的调控[J]. 植物生理学报, 2019, 55(8): 1211−1221

    ZHENG C F, LIU W C, WEI L, et al. Melatonin regulates photosynthesis and ascorbate-glutathione cycle in a mangrove Kandelia obovata under low temperature stress[J]. China Industrial Economics, 2019, 55(8): 1211−1221
    [13] 罗蛟, 李滢, 李玉婷, 等. 六种植物生长调节剂对光温胁迫下离体黄瓜叶片光系统Ⅱ和光系统Ⅰ光抑制的影响[J]. 植物生理学报, 2021, 57(1): 178−186

    LUO J, LI Y, LI Y T, et al. Effects of six plant growth regulators on photoinhibition of photosystem Ⅱ and photosystem Ⅰ in in vitro Cucumis sativus leaves under light and temperature stress[J]. Plant Physiology Journal, 2021, 57(1): 178−186
    [14] 张欧, 马强, 刘娜, 等. 植物生长调节剂苯肽胺酸对辣椒生长及逆境生理指标的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(8): 81−88,106

    ZHANG O, MA Q, LIU N, et al. Effect of plant growth regulator phthalanilic acid on growth and stress physiology of pepper (Capsicum annuum L.)[J]. Journal of Northwest A& F University (Natural Science Edition), 2018, 46(8): 81−88,106
    [15] 张义, 刘云利, 刘子森, 等. 植物生长调节剂的研究及应用进展[J]. 水生生物学报, 2021, 45(3): 700−708

    ZHANG Y, LIU Y L, LIU Z S, et al. The research and application progress of plant growth regulators[J]. Acta Hydrobiologica Sinica, 2021, 45(3): 700−708
    [16] 岳可心, 闫伊萌, 张鸿旭, 等. 植物生长调节剂的毒性研究进展[J]. 农药, 2021, 60(4): 239−243,276

    YUE K X, YAN Y M, ZHANG H X, et al. Advances in toxicity of plant growth regulators[J]. Agrochemicals, 2021, 60(4): 239−243,276
    [17] 丁凯鑫, 冯乃杰, 郑殿峰, 等. 植物生长调节剂对赤豆鼓粒期光合特性及氮代谢的影响[J]. 核农学报, 2022, 36(12): 2510−2518

    DING K X, FENG N J, ZHENG D F, et al. Effects of plant growth regulators on photosynthetic characteristics and nitrogen metabolism of adzuki bean during seed filling stage[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(12): 2510−2518
    [18] YU M L, HUANG L, FENG N J, et al. Exogenous uniconazole enhances tolerance to chilling stress in mung beans (Vigna radiata L.) through cross talk among photosynthesis, antioxidant system, sucrose metabolism, and hormones[J]. Journal of Plant Physiology, 2022, 276: 153772 doi: 10.1016/j.jplph.2022.153772
    [19] HASSANPOUR H, ALI KHAVARI-NEJAD R, NIKNAM V, et al. Penconazole induced changes in photosynthesis, ion acquisition and protein profile of Mentha pulegium L. under drought stress[J]. Physiology and Molecular Biology of Plants, 2013, 19(4): 489−498 doi: 10.1007/s12298-013-0192-4
    [20] 王诗雅, 郑殿峰, 冯乃杰, 等. 植物生长调节剂S3307对苗期淹水胁迫下大豆生理特性和显微结构的影响[J]. 作物学报, 2021, 47(10): 1988−2000

    WANG S Y, ZHENG D F, FENG N J, et al. Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean[J]. Acta Agronomica Sinica, 2021, 47(10): 1988−2000
    [21] HU H Q, FENG N, SHEN X F, et al. Transcriptomic analysis of Vigna radiata in response to chilling stress and uniconazole application[J]. BMC Genomics, 2022, 23(1): 205 doi: 10.1186/s12864-022-08443-6
    [22] HE J, LIN L J, MA Q Q, et al. Uniconazole (S-3307) strengthens the growth and cadmium accumulation of accumulator plant Malachium aquaticum[J]. International Journal of Phytoremediation, 2017, 19(4): 348−352 doi: 10.1080/15226514.2016.1225287
    [23] AL-RUMAIH M, AL-RUMAIH M M. Physiological response of two species of datura to uniconazole and salt stress[J]. Journal of Food Agriculture & Environment, 2007, 5: 450−453
    [24] AHMAD I, KAMRAN M, ALI S, et al. Seed filling in maize and hormones crosstalk regulated by exogenous application of uniconazole in semiarid regions[J]. Environmental Science and Pollution Research, 2018, 25(33): 33225−33239 doi: 10.1007/s11356-018-3235-0
    [25] 王景伟, 黄玉兰, 金喜军, 等. 干旱胁迫下烯效唑拌种对芸豆保护酶活性及渗透调节物质的影响[J]. 江苏农业科学, 2017, 45(12): 59−61

    WANG J W, HUANG Y L, JIN X J, et al. Effects of seed dressing with uniconazole on protective enzyme activity and osmotic adjustment substances of kidney beans under drought stress[J]. Jiangsu Agricultural Sciences, 2017, 45(12): 59−61
    [26] 黄玉兰, 向君亮, 殷奎德. 烯效唑(S3307)对干旱胁迫下薏苡幼苗生长及生理特性的影响(英文)[J]. 农业生物技术学报, 2017, 25(2): 231−239

    HUANG Y L, XIANG J L, YIN K D. Effect of uniconazole (S3307) on growth and physiological characteristics of Coix (Coix lachryma-jobi) seedlings under drought stress[J]. Journal of Agricultural Biotechnology, 2017, 25(2): 231−239
    [27] 刘丽琴, 张永清, 李鑫, 等. 烯效唑浸种对干旱胁迫下红小豆生长及其根系生理特性的影响[J]. 西北植物学报, 2017, 37(1): 144−153

    LIU L Q, ZHANG Y Q, LI X, et al. Influence of seed soaking with uniconazole on growth and root physiological characteristics of adzuki bean under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(1): 144−153
    [28] 黄美杰, 朱炎辉, 孙慧生, 等. 干旱胁迫下马铃薯品种‘克新1号’的光响应曲线[J]. 中国马铃薯, 2012, 26(6): 325−328

    HUANG M J, ZHU Y H, SUN H S, et al. Light response curve of photosynthesis of potato variety ‘Kexin 1’ under drought stress[J]. Chinese Potato Journal, 2012, 26(6): 325−328
    [29] 赵媛媛, 石瑛, 张丽莉. 马铃薯抗旱种质资源的评价[J]. 分子植物育种, 2018, 16(2): 633−642

    ZHAO Y Y, SHI Y, ZHANG L L. Evaluation of drought resistant germplasm resources in potato[J]. Molecular Plant Breeding, 2018, 16(2): 633−642
    [30] HU W H, YAN X H, XIAO Y A, et al. 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum[J]. Scientia Horticulturae, 2013, 150: 232−237 doi: 10.1016/j.scienta.2012.11.012
    [31] 马爽, 刘喜才, 宋继玲, 等. 烯效唑和赤霉素对马铃薯产量的影响[J]. 黑龙江农业科学, 2019(4): 34−36

    MA S, LIU X C, SONG J L, et al. Effects of uniconazole and gibberellin on yield of potato[J]. Heilongjiang Agricultural Sciences, 2019(4): 34−36
    [32] CAO L, JIN X J, ZHANG Y X. Melatonin confers drought stress tolerance in soybean (Glycine max L.) by modulating photosynthesis, osmolytes, and reactive oxygen metabolism[J]. Photosynthetica, 2019, 57(3): 812−819 doi: 10.32615/ps.2019.100
    [33] WU Z C, JIANG Q, YAN T, et al. Ammonium nutrition mitigates cadmium toxicity in rice (Oryza sativa L.) through improving antioxidase system and the glutathione-ascorbate cycle efficiency[J]. Ecotoxicology and Environmental Safety, 2020, 189: 110010 doi: 10.1016/j.ecoenv.2019.110010
    [34] TIAN S F, GUO R Z, ZOU X X, et al. Priming with the green leaf volatile (Z)-3-hexeny-1-yl acetate enhances salinity stress tolerance in peanut (Arachis hypogaea L.) seedlings[J]. Frontiers in Plant Science, 2019, 10: 785 doi: 10.3389/fpls.2019.00785
    [35] WANG J, FANG R, YUAN L Y, et al. Response of photosynthetic capacity and antioxidative system of chloroplast in two wucai (Brassica campestris L.) genotypes against chilling stress[J]. Physiology and Molecular Biology of Plants, 2020, 26(2): 219−232 doi: 10.1007/s12298-019-00743-8
    [36] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 221–223

    GAO J F. Experimental Guidance for Plant Physiology[M]. Beijing: Higher Education Press, 2006: 221–223
    [37] 邵靖宜, 李小凡, 于维祯, 等. 高温干旱复合胁迫对夏玉米产量和茎秆显微结构的影响[J]. 中国农业科学, 2021, 54(17): 3623−3631 doi: 10.3864/j.issn.0578-1752.2021.17.006

    SHAO J Y, LI X F, YU W Z, et al. Combined effects of high temperature and drought on yield and stem microstructure of summer maize[J]. Scientia Agricultura Sinica, 2021, 54(17): 3623−3631 doi: 10.3864/j.issn.0578-1752.2021.17.006
    [38] 尹智宇, 韩德鹏, 封永生, 等. 干旱胁迫对冬播马铃薯现蕾期叶片叶绿素荧光参数的影响[J]. 云南农业大学学报(自然科学), 2018, 33(4): 605−610

    YIN Z Y, HAN D P, FENG Y S, et al. Effects of drought stress on the chlorophyll fluorescence parameters of winter sowing potato leaves at squaring stage[J]. Journal of Yunnan Agricultural University, 2018, 33(4): 605−610
    [39] HUSEYNOVA I M. Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2012, 1817(8): 1516−1523 doi: 10.1016/j.bbabio.2012.02.037
    [40] 李娟, 彭镇华, 高健, 等. 干旱胁迫下黄条金刚竹的光合和叶绿素荧光特性[J]. 应用生态学报, 2011, 22(6): 1395−1402

    LI J, PENG Z H, GAO J, et al. Photosynthetic parameters and chlorophyll fluorescence characteristics of Pleioblastus kongosanensis f. aureostriaus under drought stress[J]. Chinese Journal of Applied Ecology, 2011, 22(6): 1395−1402
    [41] JIANG Y, SUN Y F, ZHENG D F, et al. Physiological and transcriptome analyses for assessing the effects of exogenous uniconazole on drought tolerance in hemp (Cannabis sativa L.)[J]. Scientific Reports, 2021, 11: 14476 doi: 10.1038/s41598-021-93820-6
    [42] 王诗雅, 郑殿峰, 项洪涛, 等. 初花期淹水胁迫对大豆叶片AsA-GSH循环的损伤及烯效唑的缓解效应[J]. 中国农业科学, 2021, 54(2): 271−285 doi: 10.3864/j.issn.0578-1752.2021.02.004

    WANG S Y, ZHENG D F, XIANG H T, et al. Damage of AsA-GSH cycle of soybean leaves under waterlogging stress at initial flowing stage and the mitigation effect of uniconazole[J]. Scientia Agricultura Sinica, 2021, 54(2): 271−285 doi: 10.3864/j.issn.0578-1752.2021.02.004
    [43] 李青, 秦玉芝, 王万兴, 等. 马铃薯(Solanum tuberosum L.)干旱胁迫生理特性及耐旱性分析[J]. 分子植物育种, 2021, 19(1): 259−268

    LI Q, QIN Y Z, WANG W X, et al. Analysis of physiological characteristics and drought tolerance of potato (Solanum tuberosum L.) under drought stress[J]. Molecular Plant Breeding, 2021, 19(1): 259−268
    [44] 李鹏程, 毕真真, 梁文君, 等. DNA甲基化参与调控马铃薯干旱胁迫响应[J]. 作物学报, 2019, 45(10): 1595−1603

    LI P C, BI Z Z, LIANG W J, et al. DNA methylation involved in regulating drought stress response of potato[J]. Acta Agronomica Sinica, 2019, 45(10): 1595−1603
    [45] AHMED S, NAWATA E, HOSOKAWA M, et al. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging[J]. Plant Science, 2002, 163(1): 117−123 doi: 10.1016/S0168-9452(02)00080-8
    [46] 王诗雅, 郑殿峰, 冯乃杰, 等. 鼓粒期淹水胁迫对大豆叶片AsA-GSH循环的损伤及烯效唑的缓解效应[J]. 草业学报, 2021, 30(7): 157−166

    WANG S Y, ZHENG D F, FENG N J, et al. Damage to the AsA-GSH cycle of soybean leaves under waterlogging stress at in seed filling period growth stages and the mitigation effect of uniconazole[J]. Acta Prataculturae Sinica, 2021, 30(7): 157−166
    [47] JIANG L, YANG Y, ZHANG Y, et al. Accumulation and toxicological effects of nonylphenol in tomato (Solanum lycopersicum L) plants[J]. Scientific Reports, 2019, 9: 7022 doi: 10.1038/s41598-019-43550-7
    [48] ZHU D B, HU K D, GUO X K, et al. Sulfur dioxide enhances endogenous hydrogen sulfide accumulation and alleviates oxidative stress induced by aluminum stress in germinating wheat seeds[J]. Oxidative Medicine and Cellular Longevity, 2015, 2015: 1−11
    [49] ZHANG X Z, ERVIN E H, LIU Y M, et al. Differential responses of antioxidants, abscisic acid, and auxin to deficit irrigation in two perennial ryegrass cultivars contrasting in drought tolerance[J]. Journal of the American Society for Horticultural Science, 2015, 140(6): 562−572 doi: 10.21273/JASHS.140.6.562
    [50] AHMED S, NAWATA E, HOSOKAWA M, et al. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging[J]. Plant Science, 2002, 163(1): 117−123 doi: 10.1016/S0168-9452(02)00080-8
    [51] COSTA J H, ROQUE A L M, AZIZ S, et al. Genome-wide identification of ascorbate-glutathione cycle gene families in soybean (Glycine max) reveals gene duplication events and specificity of gene members linked to development and stress conditions[J]. International Journal of Biological Macromolecules, 2021, 187: 528−543 doi: 10.1016/j.ijbiomac.2021.07.103
    [52] ALHDAD G M, SEAL C E, AL-AZZAWI M J, et al. The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: the role of antioxidants[J]. Environmental and Experimental Botany, 2013, 87: 120−125 doi: 10.1016/j.envexpbot.2012.10.010
    [53] PUKACKA S, RATAJCZAK E. Antioxidative response of ascorbate–glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds[J]. Journal of Plant Physiology, 2006, 163(12): 1259−1266 doi: 10.1016/j.jplph.2005.10.003
    [54] KAYA C, UGURLAR F, ASHRAF M, et al. Methyl jasmonate and sodium nitroprusside jointly alleviate cadmium toxicity in wheat (Triticum aestivum L.) plants by modifying nitrogen metabolism, cadmium detoxification, and AsA–GSH cycle[J]. Frontiers in Plant Science, 2021, 12: 654780 doi: 10.3389/fpls.2021.654780
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 录用日期:  2023-05-06
  • 修回日期:  2023-05-06
  • 网络出版日期:  2023-05-23

目录

    /

    返回文章
    返回