Effects of carbon, nitrogen and phosphorus stoichiometry on the priming of soil carbon mineralization
-
摘要: 土壤有机碳矿化激发效应(priming effects)是指由外源有机物料添加所引起的短期内土壤有机质周转剧烈改变的现象, 是影响土壤生态系统碳动态的关键过程之一。尽管激发效应的诱发机制已广为人知, 但目前的大多数研究仅考虑了外源有机碳输入对其的影响。碳氮磷是土壤生态系统中的基本营养元素, 碳氮磷化学计量比通过影响微生物可获得的营养元素的均衡进而调控激发效应的方向与强度。本文总结了碳氮磷化学计量比调控土壤激发效应的相关研究进展, 分析了土壤碳周转相关微生物群落结构及活性对不同碳氮磷输入配比的响应机制, 总结出“共代谢” “微生物营养挖掘”和“化学计量分解” 3种有关碳氮磷化学计量比调控激发效应的机制。未来急需将碳氮磷化学计量比调控土壤激发效应的理论运用于农田固碳减排的生产实践, 服务于我国“碳达峰碳中和”双碳战略的实施。Abstract: Priming effects of soil organic carbon decomposition refer to the phenomenon of drastic changes in soil organic matter turnover in a short term caused by the addition of exogenous organic materials. Priming effects is one of the key processes affecting the carbon dynamics in soil ecosystem. Al though the mechanisms responsible for the occurrence and maintenance of priming effects are well-understood, most previous studies only considered the impact of input of exogenous available organic carbon on priming effects. Carbon, nitrogen and phosphorus are the basic nutrients in soil ecosystems, and their stoichiometry ratios regulate the direction and intensity of priming effects via affecting the balance of nutrients availability to microorganisms. In this paper, the research progress on the regulation of stoichiometric ratio of carbon, nitrogen and phosphorus on soil priming effects is summarized, the responses of microbial community structure and activity relevant to soil carbon turnover to different carbon, nitrogen and phosphorus input ratios is analyzed, and three mechanisms on the regulation of carbon, nitrogen and phosphorus stoichiometric ratio on priming effects are summarized, i. e., “co-metabolism”, “microbial nutrition mining” and “stoichiometric decomposition”. It is urgent to apply the theory on the regulation of stoichiometry ratio on soil priming effects for carbon sequestration and emission mitigation in farmland, which benefits China’s “carbon peak and carbon neutrality” dual carbon strategy.
-
表 1 外源碳氮磷输入对土壤碳矿化激发效应的影响
Table 1. Effect of carbon, nitrogen and phosphorus input on the priming effects (PE) of soil carbon mineralization
外源
添加
Addition研究
地点
Site生态
系统
Ecosystem土壤有机碳
Soil organic C
(mg∙g−1)土壤碳/
氮磷比
Soil C∶N/C∶P外源碳
添加量
C added amount
(mg∙g−1)外源
添加碳
C addition type外源养分
添加量
Nutrient addition培养时间
Incubation
time
(d)激发效应
方向1)
PE direction1)激发效应
方向2)
PE
direction2)激发效应
变化3)
PE change3)参考
文献
ReferenceCN 中国内蒙古
Inner Mongolia, China草原
Grassland16.9 10.3 0.04 葡萄糖
Glucose0~64 g(N)∙m−2∙a−1 203 + + − [16] 中国山东
Shandong, China农田
Cropland9.1 10.5 1.73 玉米秸秆
Maize residue44.66 mg(N)∙kg−1 250 + + − [17] 美国加州
California, USA农田
Cropland9.6 12.2 0.24 黑麦草
Ryegrass24 mg(N)∙kg−1 42 + + − [18] 草地
Grassland19.4 7.5 1.60 黑麦草
Ryegrass160 mg(N)∙kg−1 42 + + − 中国湖南
Hunan, China森林
Forest131.7 16.7 2.10 葡萄糖
Glucose206.18 mg(N)∙kg−1 20 + + − [19] 中国福建
Fujian, China森林
Forest773.0 15.9 1.69 凋落物
Litter5400 mg(N)∙kg−1 100 + + + [20] 澳大利亚
Australia森林
Forest27.9 14.7 2.50 葡萄糖
Glucose0~160 mg(N)∙kg−1 7 + + + [21] CP 中国甘肃
Gansu, China
澳大利亚
Australia草地
Grassland
草地
Grassland33.8
56.09.1
14.00.09
0.05葡萄糖
Glucose
葡萄糖
Glucose10 g(P)∙m−2∙a−1
5 mg(P)∙kg−132
6-
++
++
+[22]
[23]中国福建
Fujian, China森林
Forest80.0 15.3 20 凋落物
Litter30 mg(P)∙kg−1 35 + + − [24] CNP 澳大利亚
Australia农田
Cropland11.9 13.1 20 小麦秸秆
Wheat residue225 mg(N)∙kg−1
54 mg(P)∙kg−1126 + + − [25] 中国陕西
Shanxi, China农田
Cropland11.3 12.7 1.45 小麦秸秆
Wheat residue4.84 mg(N)∙kg−1
1.16 mg(P)∙kg−184 + + + [26] 中国湖南
Hunan, China农田
Cropland13.1 9.4 2.50 水稻秸秆
Rice straw90 mg(N)∙kg−1
30 mg(P)∙kg−1100 + + + [27] 1)单独外源碳输入下的激发效应方向; 2)外源碳与养分共同输入下激发效应的方向; 3)外源碳、养分共同输入与单独外源碳输入相比激发效应的变化, “+”为促进, “−”为抑制。1) direction of priming effects under exogenous carbon input alone; 2) direction of priming effects under the joint input of exogenous carbon and nutrients; 3) changes in priming effects of exogenous carbon and nutrient co-input compared with exogenous carbon input alone. “+” for promotion and “−” for inhibition. -
[1] PIERRE F, MICHAEL O, JONES MATTHEW W, et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4): 3269−3340 doi: 10.5194/essd-12-3269-2020 [2] SCHLESINGER W H, ANDREWS J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 2000, 48(1): 7−20 doi: 10.1023/A:1006247623877 [3] DIGNAC M F, DERRIEN D, BARRÉ P, et al. Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review[J]. Agronomy for Sustainable Development, 2017, 37(2): 14 doi: 10.1007/s13593-017-0421-2 [4] BINGEMAN C W, VARNER J E, MARTIN W P. The effect of the addition of organic materials on the decomposition of an organic soil[J]. Soil Science Society of America Journal, 1953, 17(1): 34−38 doi: 10.2136/sssaj1953.03615995001700010008x [5] FONTAINE S, BAROT S, BARRÉ P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007, 450(7167): 277−280 doi: 10.1038/nature06275 [6] GUENET B, CAMINO-SERRANO M, CIAIS P, et al. Impact of priming on global soil carbon stocks[J]. Global Change Biology, 2018, 24(5): 1873−1883 doi: 10.1111/gcb.14069 [7] BLAGODATSKAYA Е, KUZYAKOV Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review[J]. Biology and Fertility of Soils, 2008, 45(2): 115−131 doi: 10.1007/s00374-008-0334-y [8] CHEN L Y, LIU L, QIN S Q, et al. Regulation of priming effect by soil organic matter stability over a broad geographic scale[J]. Nature Communications, 2019, 10(1): 1−10 doi: 10.1038/s41467-018-07882-8 [9] LYU M K, XIE J S, VADEBONCOEUR M A, et al. Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils[J]. Biology and Fertility of Soils, 2018, 54(8): 925−934 doi: 10.1007/s00374-018-1314-5 [10] SILES J A, DÍAZ-LÓPEZ M, VERA A, et al. Priming effects in soils across Europe[J]. Global Change Biology, 2022, 28(6): 2146−2157 doi: 10.1111/gcb.16062 [11] REICH P B, TJOELKER M G, MACHADO J L, et al. Universal scaling of respiratory metabolism, size and nitrogen in plants[J]. Nature, 2006, 439(7075): 457−461 doi: 10.1038/nature04282 [12] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937−3947 doi: 10.3321/j.issn:1000-0933.2008.08.054WANG S Q, YU G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937−3947 doi: 10.3321/j.issn:1000-0933.2008.08.054 [13] MEYER N, WELP G, RODIONOV A, et al. Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil[J]. Soil Biology and Biochemistry, 2018, 119: 152−161 doi: 10.1016/j.soilbio.2018.01.024 [14] SU L, DU H, ZENG F P, et al. Soil and fine roots ecological stoichiometry in different vegetation restoration stages in a Karst area, southwest China[J]. Journal of Environmental Management, 2019, 252: 109694 doi: 10.1016/j.jenvman.2019.109694 [15] LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2(8): 1−6 [16] LIU W X, QIAO C L, YANG S, et al. Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition[J]. Geoderma, 2018, 332: 37−44 doi: 10.1016/j.geoderma.2018.07.008 [17] QIU Q Y, WU L F, OUYANG Z, et al. Priming effect of maize residue and urea N on soil organic matter changes with time[J]. Applied Soil Ecology, 2016, 100: 65−74 doi: 10.1016/j.apsoil.2015.11.016 [18] LI L J, ZHU-BARKER X, YE R Z, et al. Soil microbial biomass size and soil carbon influence the priming effect from carbon inputs depending on nitrogen availability[J]. Soil Biology and Biochemistry, 2018, 119: 41−49 doi: 10.1016/j.soilbio.2018.01.003 [19] LIAO C, LI D, HUANG L, et al. Higher carbon sequestration potential and stability for deep soil compared to surface soil regardless of nitrogen addition in a subtropical forest[J]. PeerJ, 2020, 8: e9128 doi: 10.7717/peerj.9128 [20] ZHANG Q F, CHENG L, FENG J G, et al. Nitrogen addition stimulates priming effect in a subtropical forest soil[J]. Soil Biology and Biochemistry, 2021, 160: 108339 doi: 10.1016/j.soilbio.2021.108339 [21] ZHENG Y Y, JIN J, WANG X J, et al. Increasing nitrogen availability does not decrease the priming effect on soil organic matter under pulse glucose and single nitrogen addition in woodland topsoil[J]. Soil Biology and Biochemistry, 2022, 172: 108767 doi: 10.1016/j.soilbio.2022.108767 [22] LI J H, ZHANG R, CHENG B H, et al. Effects of nitrogen and phosphorus additions on decomposition and accumulation of soil organic carbon in alpine meadows on the Tibetan Plateau[J]. Land Degradation and Development, 2021, 32(3): 1467−1477 doi: 10.1002/ldr.3792 [23] MEHNAZ K R, CORNEO P E, KEITEL C, et al. Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil[J]. Soil Biology and Biochemistry, 2019, 134: 175−186 doi: 10.1016/j.soilbio.2019.04.003 [24] 梅孔灿, 陈岳民, 范跃新, 等. 凋落叶和磷添加对马尾松林土壤碳激发效应的影响[J]. 土壤学报, 2022, 59(4): 1089−1099MEI K C, CHEN Y M, FAN Y X, et al. Effects of litters and phosphorus addition on soil carbon priming effect in Pinus massoniana forest[J]. Acta Pedologica Sinica, 2022, 59(4): 1089−1099 [25] FANG Y Y, NAZARIES L, SINGH B K, et al. Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils[J]. Global Change Biology, 2018, 24(7): 2775−2790 doi: 10.1111/gcb.14154 [26] MO F, ZHANG Y Y, LIU Y, et al. Microbial carbon-use efficiency and straw-induced priming effect within soil aggregates are regulated by tillage history and balanced nutrient supply[J]. Biology and Fertility of Soils, 2021, 57(3): 409−420 doi: 10.1007/s00374-021-01540-w [27] ZHU Z K, GE T D, LUO Y, et al. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil[J]. Soil Biology and Biochemistry, 2018, 121: 67−76 doi: 10.1016/j.soilbio.2018.03.003 [28] CHEN R R, SENBAYRAM M, BLAGODATSKY S, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 2014, 20(7): 2356−2367 doi: 10.1111/gcb.12475 [29] DIJKSTRA F A, CARRILLO Y, PENDALL E, et al. Rhizosphere priming: a nutrient perspective[J]. Frontiers in Microbiology, 2013, 4: 216 [30] FONTAINE S, HENAULT C, AAMOR A, et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect[J]. Soil Biology and Biochemistry, 2011, 43(1): 86−96 doi: 10.1016/j.soilbio.2010.09.017 [31] CRAINE J M, MORROW C, FIERER N. Microbial nitrogen limitation increases decomposition[J]. Ecology, 2007, 88(8): 2105−2113 doi: 10.1890/06-1847.1 [32] FENG J G, ZHU B. Global patterns and associated drivers of priming effect in response to nutrient addition[J]. Soil Biology and Biochemistry, 2021, 153: 108118 doi: 10.1016/j.soilbio.2020.108118 [33] HOU E Q, LUO Y Q, KUANG Y W, et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems[J]. Nature Communications, 2020, 11(1): 1−9 doi: 10.1038/s41467-019-13993-7 [34] HARTMAN W H, RICHARDSON C J. Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): is there a biological stoichiometry of soil microbes?[J]. PLoS One, 2018, 8(3): e57127 [35] MOOSHAMMER M, WANEK W, ZECHMEISTER-BOLTENSTERN S, et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources[J]. Frontiers in Microbiology, 2014, 5: 22 [36] LEI L, GUNDERSEN P, ZHANG T, et al. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China[J]. Soil Biology and Biochemistry, 2012, 44(1): 31−38 doi: 10.1016/j.soilbio.2011.08.017 [37] LUO R Y, KUZYAKOV Y, LIU D Y, et al. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls[J]. Soil Biology and Biochemistry, 2020, 144: 107764 doi: 10.1016/j.soilbio.2020.107764 [38] BRADFORD M A, FIERER N, REYNOLDS J F. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils[J]. Functional Ecology, 2008, 22(6): 964−974 doi: 10.1111/j.1365-2435.2008.01404.x [39] LYU M K, NIE Y Y, GIARDINA C P, et al. Litter quality and site characteristics interact to affect the response of priming effect to temperature in subtropical forests[J]. Functional Ecology, 2019, 33(11): 2226−2238 doi: 10.1111/1365-2435.13428 [40] NEMERGUT D R, CLEVELAND C C, WIEDER W R, et al. Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest[J]. Soil Biology and Biochemistry, 2010, 42(12): 2153−2160 doi: 10.1016/j.soilbio.2010.08.011 [41] BERGKEMPER F, SCHÖLER A, ENGEL M, et al. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems[J]. Environmental Microbiology, 2016, 18(8): 2767 doi: 10.1111/1462-2920.13442 [42] LIN C F, LIN W S, CHEN S L, et al. Phosphorus addition accelerates fine root decomposition by stimulating extracellular enzyme activity in a subtropical natural evergreen broad-leaved forest[J]. European Journal of Forest Research, 2019, 138(6): 917−928 doi: 10.1007/s10342-019-01211-4 [43] LUO R Y, FAN J L, WANG W J, et al. Nitrogen and phosphorus enrichment accelerates soil organic carbon loss in alpine grassland on the Qinghai-Tibetan Plateau[J]. Science of the Total Environment, 2019, 650: 303−312 doi: 10.1016/j.scitotenv.2018.09.038 [44] CHEN H, YIN C, FAN X P, et al. Effect of P availability on straw-induced priming effect was mainly regulated by fungi in croplands[J]. Applied Microbiology and Biotechnology, 2021, 105(24): 9403−9418 doi: 10.1007/s00253-021-11691-3 [45] GROSS A, ANGERT A. Use of 13C- and phosphate 18O-labeled substrate for studying phosphorus and carbon cycling in soils: a proof of concept[J]. Rapid Communications in Mass Spectrometry, 2017, 31(11): 969−977 doi: 10.1002/rcm.7863 [46] JÍLKOVÁ V, JANDOVÁ K, KUKLA J. Responses of microbial activity to carbon, nitrogen, and phosphorus additions in forest mineral soils differing in organic carbon content[J]. Biology and Fertility of Soils, 2021, 57(4): 513−521 doi: 10.1007/s00374-021-01545-5 [47] MGANGA K Z, KUZYAKOV Y. Land use and fertilisation affect priming in tropical andosols[J]. European Journal of Soil Biology, 2018, 87: 9−16 doi: 10.1016/j.ejsobi.2018.04.001 [48] FENG J G, TANG M, ZHU B. Soil priming effect and its responses to nutrient addition along a tropical forest elevation gradient[J]. Global Change Biology, 2021, 27(12): 2793−2806 doi: 10.1111/gcb.15587 [49] KUZYAKOV Y. Priming effects: interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9): 1363−1371 doi: 10.1016/j.soilbio.2010.04.003 [50] VESTERDAL L, SCHMIDT I K, CALLESEN I, et al. Carbon and nitrogen in forest floor and mineral soil under six common European tree species[J]. Forest Ecology and Management, 2008, 255(1): 35−48 doi: 10.1016/j.foreco.2007.08.015 [51] FONTAINE S, MARIOTTI A, ABBADIE L. The priming effect of organic matter: a question of microbial competition?[J]. Soil Biology and Biochemistry, 2003, 35(6): 837−843 doi: 10.1016/S0038-0717(03)00123-8 [52] FERRAZ-ALMEIDA R. Understanding the priming effect and the routes and stocks of C in incubated soil with residue inputs[J]. Horticulturae, 2022, 8(2): 154 doi: 10.3390/horticulturae8020154 [53] FANIN N, ALAVOINE G, BERTRAND I. Temporal dynamics of litter quality, soil properties and microbial strategies as main drivers of the priming effect[J]. Geoderma, 2020, 377: 114576 doi: 10.1016/j.geoderma.2020.114576 [54] KALLENBACH C M, GRANDY A S, FREY S D, et al. Microbial physiology and necromass regulate agricultural soil carbon accumulation[J]. Soil Biology and Biochemistry, 2015, 91: 279−290 doi: 10.1016/j.soilbio.2015.09.005 [55] WEI X M, RAZAVI B S, HU Y J, et al. C/P stoichiometry of dying rice root defines the spatial distribution and dynamics of enzyme activities in root-detritusphere[J]. Biology and Fertility of Soils, 2019, 55(3): 251−263 doi: 10.1007/s00374-019-01345-y [56] CUI J, ZHU Z K, XU X L, et al. Carbon and nitrogen recycling from microbial necromass to cope with C: N stoichiometric imbalance by priming[J]. Soil Biology and Biochemistry, 2020, 142: 107720 doi: 10.1016/j.soilbio.2020.107720 [57] HUANG Y P, WANG Q Q, ZHANG W J, et al. Stoichiometric imbalance of soil carbon and nutrients drives microbial community structure under long-term fertilization[J]. Applied Soil Ecology, 2021, 168: 104119 doi: 10.1016/j.apsoil.2021.104119 [58] TURNER B L, WRIGHT S J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest[J]. Biogeochemistry, 2014, 117(1): 115−130 doi: 10.1007/s10533-013-9848-y [59] FAN Y X, LIN F, YANG L M, et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem[J]. Biology and Fertility of Soils, 2018, 54(1): 149−161 doi: 10.1007/s00374-017-1251-8 [60] YANG K, ZHU J J. The effects of N and P additions on soil microbial properties in paired stands of temperate secondary forests and adjacent larch plantations in Northeast China[J]. Soil Biology and Biochemistry, 2015, 90: 80−86 doi: 10.1016/j.soilbio.2015.08.002 [61] ZHOU Z H, WANG C K, JIN Y. Stoichiometric responses of soil microflora to nutrient additions for two temperate forest soils[J]. Biology and Fertility of Soils, 2017, 53(4): 397−406 doi: 10.1007/s00374-017-1188-y [62] ALLEN A S, SCHLESINGER W H. Nutrient limitations to soil microbial biomass and activity in loblolly pine forests[J]. Soil Biology and Biochemistry, 2004, 36(4): 581−589 doi: 10.1016/j.soilbio.2003.12.002 [63] DEMOLING F, FIGUEROA D, BÅÅTH E. Comparison of factors limiting bacterial growth in different soils[J]. Soil Biology and Biochemistry, 2007, 39(10): 2485−2495 doi: 10.1016/j.soilbio.2007.05.002 [64] DU L S, ZHU Z K, QI Y T, et al. Effects of different stoichiometric ratios on mineralisation of root exudates and its priming effect in paddy soil[J]. Science of the Total Environment, 2020, 743: 140808 doi: 10.1016/j.scitotenv.2020.140808 [65] CLEVELAND C C, LIPTZIN D. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235−252 doi: 10.1007/s10533-007-9132-0 [66] XU X F, THORNTON P E, POST W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Global Ecology and Biogeography, 2013, 22(6): 737−749 doi: 10.1111/geb.12029 [67] CAMENZIND T, PHILIPP GRENZ K, LEHMANN J, et al. Soil fungal mycelia have unexpectedly flexible stoichiometric C: N and C: P ratios[J]. Ecology Letters, 2021, 24(2): 208−218 doi: 10.1111/ele.13632 [68] ZHANG J, ELSER J J. Carbon: nitrogen: phosphorus stoichiometry in fungi: a Meta-analysis[J]. Frontiers in Microbiology, 2017, 8: 1281 doi: 10.3389/fmicb.2017.01281 [69] TESSIER J T, RAYNAL D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology, 2003, 40(3): 523−534 doi: 10.1046/j.1365-2664.2003.00820.x [70] SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252−1264 doi: 10.1111/j.1461-0248.2008.01245.x [71] MOORHEAD D L, SINSABAUGH R L, HILL B H, et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics[J]. Soil Biology and Biochemistry, 2016, 93: 1−7 doi: 10.1016/j.soilbio.2015.10.019 [72] LIU Y, TAN X P, WANG Y Y, et al. Responses of litter, organic and mineral soil enzyme kinetics to 6 years of canopy and understory nitrogen additions in a temperate forest[J]. Science of the Total Environment, 2020, 712: 136383 doi: 10.1016/j.scitotenv.2019.136383 [73] MA S H, CHEN G P, TANG W G, et al. Inconsistent responses of soil microbial community structure and enzyme activity to nitrogen and phosphorus additions in two tropical forests[J]. Plant and Soil, 2021, 460(1): 453−468 [74] LI Z Y, QIU X R, SUN Y, et al. C: N: P stoichiometry responses to 10 years of nitrogen addition differ across soil components and plant organs in a subtropical Pleioblastus amarus forest[J]. Science of the Total Environment, 2021, 796: 148925 doi: 10.1016/j.scitotenv.2021.148925 [75] XU M, XU L J, FANG H J, et al. Alteration in enzymatic stoichiometry controls the response of soil organic carbon dynamic to nitrogen and water addition in temperate cultivated grassland[J]. European Journal of Soil Biology, 2020, 101: 103248 doi: 10.1016/j.ejsobi.2020.103248 [76] XU H W, QU Q, LI G W, et al. Impact of nitrogen addition on plant-soil-enzyme C–N–P stoichiometry and microbial nutrient limitation[J]. Soil Biology and Biochemistry, 2022, 170: 108714 doi: 10.1016/j.soilbio.2022.108714 [77] MA X M, ZHOU Z, CHEN J, et al. Long-term nitrogen and phosphorus fertilization reveals that phosphorus limitation shapes the microbial community composition and functions in tropical montane forest soil[J]. Science of the Total Environment, 2023, 854: 158709 doi: 10.1016/j.scitotenv.2022.158709 [78] LIU M H, GAN B P, LI Q, et al. Effects of nitrogen and phosphorus addition on soil extracellular enzyme activity and stoichiometry in Chinese fir (Cunninghamia lanceolata) forests[J]. Frontiers in Plant Science, 2022, 13: 834184 doi: 10.3389/fpls.2022.834184 [79] ALLISON S D, CHACON S S, GERMAN D P. Substrate concentration constraints on microbial decomposition[J]. Soil Biology and Biochemistry, 2014, 79: 43−49 doi: 10.1016/j.soilbio.2014.08.021 [80] KEIBLINGER K M, HALL E K, WANEK W, et al. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency[J]. FEMS Microbiology Ecology, 2010, 73(3): 430−440 [81] MANZONI S, JACKSON R B, TROFYMOW J A, et al. The global stoichiometry of litter nitrogen mineralization[J]. Science, 2008, 321(5889): 684−686 doi: 10.1126/science.1159792 [82] JONES D L, COOLEDGE E C, HOYLE F C, et al. pH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities[J]. Soil Biology and Biochemistry, 2019, 138: 107584 doi: 10.1016/j.soilbio.2019.107584 [83] QIAO Y, WANG J, LIANG G P, et al. Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply[J]. Scientific Reports, 2019, 9(1): 1−8 doi: 10.1038/s41598-018-37186-2 [84] SONG X J, LIU X T, LIANG G P, et al. Positive priming effect explained by microbial nitrogen mining and stoichiometric decomposition at different stages[J]. Soil Biology and Biochemistry, 2022, 175: 108852 doi: 10.1016/j.soilbio.2022.108852 [85] SIMONIN M, NUNAN N, BLOOR J M G, et al. Short-term responses and resistance of soil microbial community structure to elevated CO2 and N addition in grassland mesocosms[J]. FEMS Microbiology Letters, 2017, 364(9): fnx077 [86] SUN Y, WANG C T, YANG J Y, et al. Elevated CO2 shifts soil microbial communities from K- to r-strategists[J]. Global Ecology and Biogeography, 2021, 30(5): 961−972 doi: 10.1111/geb.13281 [87] THIESSEN S, GLEIXNER G, WUTZLER T, et al. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass — An incubation study[J]. Soil Biology and Biochemistry, 2013, 57: 739−748 doi: 10.1016/j.soilbio.2012.10.029 [88] GRIEPENTROG M, BODÉ S, BOECKX P, et al. Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions[J]. Global Change Biology, 2014, 20(1): 327−340 doi: 10.1111/gcb.12374 [89] BEI S K, LI X, KUYPER T W, et al. Nitrogen availability mediates the priming effect of soil organic matter by preferentially altering the straw carbon-assimilating microbial community[J]. Science of the Total Environment, 2022, 815: 152882 doi: 10.1016/j.scitotenv.2021.152882 [90] SCHNEIDER T, KEIBLINGER K M, SCHMID E, et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions[J]. The ISME Journal, 2012, 6(9): 1749−1762 doi: 10.1038/ismej.2012.11 [91] LI J, LI Z A, WANG F M, et al. Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China[J]. Biology and Fertility of Soils, 2015, 51(2): 207−215 doi: 10.1007/s00374-014-0964-1 [92] STRICKLAND M S, ROUSK J. Considering fungal: bacterial dominance in soils — Methods, controls, and ecosystem implications[J]. Soil Biology and Biochemistry, 2010, 42(9): 1385−1395 doi: 10.1016/j.soilbio.2010.05.007 [93] SU Y, LV J L, YU M, et al. Long-term decomposed straw return positively affects the soil microbial community[J]. Journal of Applied Microbiology, 2020, 128(1): 138−150 doi: 10.1111/jam.14435 [94] WU M N, QIN H L, CHEN Z, et al. Effect of long-term fertilization on bacterial composition in rice paddy soil[J]. Biology and Fertility of Soils, 2011, 47(4): 397−405 doi: 10.1007/s00374-010-0535-z [95] BANERJEE S, KIRKBY C A, SCHMUTTER D, et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil[J]. Soil Biology and Biochemistry, 2016, 97: 188−198 doi: 10.1016/j.soilbio.2016.03.017 [96] CONG P, WANG J, LI Y Y, et al. Changes in soil organic carbon and microbial community under varying straw incorporation strategies[J]. Soil and Tillage Research, 2020, 204: 104735 doi: 10.1016/j.still.2020.104735 [97] DENG S H, ZHENG X D, CHEN X B, et al. Divergent mineralization of hydrophilic and hydrophobic organic substrates and their priming effect in soils depending on their preferential utilization by bacteria and fungi[J]. Biology and Fertility of Soils, 2021, 57(1): 65−76 doi: 10.1007/s00374-020-01503-7 [98] KUZYAKOV Y, FRIEDEL J K, STAHR K. Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry, 2000, 32(11/12): 1485−1498 [99] WU L, ZHANG W J, WEI W J, et al. Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization[J]. Soil Biology and Biochemistry, 2019, 135: 383−391 doi: 10.1016/j.soilbio.2019.06.003 [100] BÖRGER M, BUBLITZ T, DYCKMANS J, et al. Microbial carbon use efficiency of litter with distinct C/N ratios in soil at different temperatures, including microbial necromass as growth component[J]. Biology and Fertility of Soils, 2022, 58(7): 761−770 doi: 10.1007/s00374-022-01656-7 [101] SHAHBAZ M, KUZYAKOV Y, SANAULLAH M, et al. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds[J]. Biology and Fertility of Soils, 2017, 53(3): 287−301 doi: 10.1007/s00374-016-1174-9 [102] MEIER I C, FINZI A C, PHILLIPS R P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools[J]. Soil Biology and Biochemistry, 2017, 106: 119−128 doi: 10.1016/j.soilbio.2016.12.004 [103] NEUPANE A, REED S C, CUSACK D F. Warming and microbial uptake influence the fate of added soil carbon across a Hawai'ian weathering gradient[J]. Soil Biology and Biochemistry, 2021, 153: 108080 doi: 10.1016/j.soilbio.2020.108080 -