留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流域尺度种养系统养分管理研究的意义与重点

赵善丽 张楠楠 陈轩敬 石孝均 陈新平 柏兆海 马林

赵善丽, 张楠楠, 陈轩敬, 石孝均, 陈新平, 柏兆海, 马林. 流域尺度种养系统养分管理研究的意义与重点−以长江流域为例[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−10 doi: 10.12357/cjea.20230131
引用本文: 赵善丽, 张楠楠, 陈轩敬, 石孝均, 陈新平, 柏兆海, 马林. 流域尺度种养系统养分管理研究的意义与重点−以长江流域为例[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−10 doi: 10.12357/cjea.20230131
ZHAO S L, ZHANG N N, CHEN X J, SHI X J, CHEN X P, BAI Z H, MA L. Research priority and main point of integrated nutrient management in crop-livestock system at the basin scale[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−10 doi: 10.12357/cjea.20230131
Citation: ZHAO S L, ZHANG N N, CHEN X J, SHI X J, CHEN X P, BAI Z H, MA L. Research priority and main point of integrated nutrient management in crop-livestock system at the basin scale[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−10 doi: 10.12357/cjea.20230131

流域尺度种养系统养分管理研究的意义与重点以长江流域为例

doi: 10.12357/cjea.20230131
基金项目: 国家自然科学区域创新发展联合基金(U20A2047)、国家重点研发计划-政府间国际科技创新合作项目(2021YFE0101900)、国家重点研发计划项目(2021YFD1700904)、国家自然科学基金青年科学基金项目(42001254)、河北省自然科学基金优秀青年科学基金项目(D2021503015)和河北省重点研发计划项目(21327507D)资助、石家庄市管拔尖人才项目
详细信息
    作者简介:

    赵善丽, 主要研究方向农牧系统养分资源管理。E-mail: zhaoshanli1998@163.com

    通讯作者:

    马林, 主要研究方向为养分资源管理。E-mail: malin1979@sjziam.ac.cn

  • 中图分类号: S1; S8

Research priority and main point of integrated nutrient management in crop-livestock system at the basin scale

Funds: This study was supported by the National Joint Fund for Regional Innovation and Development of Natural Science of China (U20A2047), the National Key R&D Program of China (2021YFE0101900, 2021YFD1700904), the National Natural Science Foundation of China (42001254), the Outstanding Young Scientists Project of Natural Science Foundation of Hebei Province (D2021503015), the Key R&D Program of Hebei Province (21327507D), and Shijiazhuang Top talent Project.
More Information
  • 摘要: “农牧分离”加剧了种养系统的养分资源浪费和环境污染风险, 而种养一体化是促进养分循环和减少养分损失的重要途径。开展流域尺度种养系统养分管理研究可以将田块尺度的农牧业生产技术上升到流域尺度, 提高种养系统养分利用效率; 在生产优化的基础上, 还可以以流域环境阈值为卡口, 进一步实现养分环境减排; 在流域实行养分管理研究是种养系统大面积协同实现养分高效和环境减排的关键, 也可为农业绿色发展提供支撑。本文以长江流域为例, 综述了流域尺度种养一体化养分管理研究对农业绿色发展的重要意义、种养一体化养分管理的技术和模式以及基于种养系统资源环境代价的空间优化, 并提出未来流域尺度种养一体化养分管理和研究的重点。研究表明: 1)长江流域已有一系列种养一体化养分管理技术, “自下而上”地大面积推广应用, 可以实现增产增效, 减少养分环境排放。但部分地区种养系统养分承载力与环境排放量过高, 仅通过技术改进仍无法将养分损失控制在环境阈值以内, 还需“自上而下”地对流域种养产业进行优化布局。未来, 流域尺度种养系统养分管理研究应包括: 1)流域尺度种养系统养分流动与环境排放特征及其影响因素, 2)流域尺度养分环境排放脆弱区划分, 3)基于脆弱区的流域种养系统养分分区调控策略与评价研究。
  • 表  1  长江流域主要粮食作物养分管理技术列单

    Table  1.   List of nutrient management technologies of main food crops in the Yangtze River Basin

    技术Technology增加产量Increase of yield(%)减少化肥用量Reduction of fertilizer(%)减少氨挥发Reduction of ammonia volatilization (%)减少N2O排放Reduction of N2O emission (%)减少NO3损失Reduction ofNO3 loss(%)具体措施Specific measure参考文献Reference
    科学施肥Scientific fertilization2~506~8818~812724施用绿肥、缓释肥、控释肥及优化施肥等Application of green fertilizer, slow-release fertilizer, controlled-release fertilizer, and optimal fertilization, etc[36-42]
    优化耕作Optimized tillage29~5010 ~3612~2640~6440~59轮作、间作、高密度种植等Crop rotation, intercropping, high density planting, etc[38, 43-47]
    添加剂Additive5 ~1143+11~2617 ~547~90添加秸秆、生物炭、脲酶抑制剂、硝化抑制剂等Addition of straw, biochar, urease inhibitor, nitrification inhibitor, etc[36, 47-52]
    优化灌溉Optimizedirrigation2~15786~158046 ~90滴灌、间歇灌溉、增加灌水量等Drip irrigation, intermittent irrigation, increase of irrigation water, etc[47, 53-56]
      “+”表示增加环境排放。 “+” means increased environmental pollution.
    下载: 导出CSV

    表  2  长江流域畜牧业养分管理与环境减排相关技术列单

    Table  2.   List of related technologies of nutrient management and environmental emission reduction in animal husbandry in the Yangtze River Basin

    技术Technology减少氨挥发Reduction of ammonia volatilization (%)减少NO3损失Reduction of NO3 loss (%)具体措施Specific measure参考文献Reference
    饲喂阶段减排技术Abatement technology during feeding stage20~30>50低蛋白饲喂、分阶段饲喂、使用饲料添加剂Low protein feeding, phase feeding, use of feed additives[60-61]
    圈舍阶段减排技术Emission reduction technology during housing stage10~7918快速清粪、粪尿分离、酸化Rapid removal of excretion, separation of feces and urine, acidification[62-68]
    储藏阶段减排技术Emission reduction technology during storage stage10~9650固液分离、酸化、覆盖、粪便干燥Solid-liquid separation, acidification, mulching, feces drying[69-74]
    处理阶段减排技术Emission reduction technology during treatment stage8~920堆肥添加剂、电厂辅助堆肥、尾气处理、黑水虻堆肥处理Compost additive, power plant auxiliary compost, tail gas treatment, black fly compost treatment[75-78]
    下载: 导出CSV

    表  3  长江流域种养一体化养分循环相关技术列单

    Table  3.   List of related technologies of integrated nutrient cycling of crop-livestock system in the Yangtze River Basin

    技术Technology产量增加Increase of production (%)减少氨挥发Reduction of ammonia volatilization (%)具体措施Specific measure参考文献Reference
    新型饲料New type of feed−1~921~50黑兵蝇幼虫、微藻、微生物蛋白等替代饲料Black soldier fly larvae, microalgae, microbial protein and other alternative feed[83-85]
    有机肥替代Organic fertilizer replacement6~835猪粪、鸡粪、牛粪等有机肥替代Pig manure, chicken manure, cow manure and other organic manure replacement[36,86-87]
    粪尿施用优化技术Optimization of manure and urine application00~91粪尿条施、注射施用、粪尿快速下渗技术、粪尿覆盖施用Fecal urine strip application, injection application, fecal urine rapid infiltration technology, fecal urine cover application[66,88-91]
    下载: 导出CSV
  • [1] JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041−3046 doi: 10.1073/pnas.0813417106
    [2] GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008−1010 doi: 10.1126/science.1182570
    [3] UWIZEYE A, DE BOER I J M, OPIO C I, et al. Nitrogen emissions along global livestock supply chains[J]. Nature Food, 2020, 1(7): 437−446 doi: 10.1038/s43016-020-0113-y
    [4] ZHANG X, ZHANG Y, SHI P, et al. The deep challenge of nitrate pollution in river water of China[J]. Science of the Total Environment, 2021, 770: 144674 doi: 10.1016/j.scitotenv.2020.144674
    [5] 刘亮, 沈珺, 张静, 等. 基于污水处理成本核算谈长江经济带城镇污水处理费调整[J]. 城镇供水, 2021(6): 62−65,91 doi: 10.3969/j.issn.1002-8420.2021.06.018

    LIU L, SHEN J, ZHANG J, et al. Adjustment of urban sewage treatment fee in Yangtze River Economic Belt based on sewage treatment cost accounting[J]. City and Town Water Supply, 2021(6): 62−65,91 doi: 10.3969/j.issn.1002-8420.2021.06.018
    [6] 于法稳. 新时代农业绿色发展动因、核心及对策研究[J]. 中国农村经济, 2018(5): 19−34

    YU F W. An analysis of the reasons, core and countermeasures of agricultural green development in the new era[J]. Chinese Rural Economy, 2018(5): 19−34
    [7] CHEN X J, STROKAL M, KROEZE C, et al. Modeling the contribution of crops to nitrogen pollution in the Yangtze River[J]. Environmental Science & Technology, 2020, 54(19): 11929−11939、
    [8] GUO C Y, BAI Z H, SHI X J, et al. Challenges and strategies for agricultural green development in the Yangtze River Basin[J]. Journal of Integrative Environmental Sciences, 2021, 18(1): 37−54 doi: 10.1080/1943815X.2021.1883674
    [9] 赖敏, 王伟力, 郭灵辉. 长江中下游城市群农业面源污染氮排放评价及调控[J]. 中国农业资源与区划, 2016, 37(8): 1−11 doi: 10.7621/cjarrp.1005-9121.20160801

    LAI M, WANG W L, GUO L H. Assessment and control of nitrogen emission from agricultural non-point source in the urban agglomeration in the middle-Lower Yangtze River belt[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(8): 1−11 doi: 10.7621/cjarrp.1005-9121.20160801
    [10] DONG L, LIN L, TANG X Q, et al. Distribution characteristics and spatial differences of phosphorus in the main stream of the urban river stretches of the middle and lower reaches of the Yangtze River[J]. Water, 2020, 12(3): 910 doi: 10.3390/w12030910
    [11] CHEN X J, STROKAL M, KROEZE C, et al. Seasonality in river export of nitrogen: a modelling approach for the Yangtze River[J]. Science of the Total Environment, 2019, 671: 1282−1292 doi: 10.1016/j.scitotenv.2019.03.323
    [12] 续衍雪, 吴熙, 路瑞, 等. 长江经济带总磷污染状况与对策建议[J]. 中国环境管理, 2018, 10(1): 70−74 doi: 10.16868/j.cnki.1674-6252.2018.01.070

    XU Y X, WU X, LU R, et al. Total phosphorus pollution, countermeasures and suggestions of the Yangtze River economic belt[J]. Chinese Journal of Environmental Management, 2018, 10(1): 70−74 doi: 10.16868/j.cnki.1674-6252.2018.01.070
    [13] 张传真. 基于耕地分布的畜禽养殖管理研究[D]. 杭州: 浙江大学, 2019

    ZHANG C Z. Livestock Management on the Basis of Cropland Distribution[D]. Hangzhou: Zhejiang University, 2019
    [14] BAI Z H, MA W Q, MA L, et al. China’s livestock transition: driving forces, impacts, and consequences[J]. Science Advances, 2018, 4(7): eaar8534 doi: 10.1126/sciadv.aar8534
    [15] JIN S Q, ZHANG B, WU B, et al. Decoupling livestock and crop production at the household level in China[J]. Nature Sustainability, 2021, 4(1): 48−55
    [16] JIN X P, BAI Z H, OENEMA O, et al. Spatial planning needed to drastically reduce nitrogen and phosphorus surpluses in China’s agriculture[J]. Environmental Science & Technology, 2020, 54(19): 11894−11904
    [17] GAO B, WANG L, CAI Z C, et al. Spatio-temporal dynamics of nitrogen use efficiencies in the Chinese food system, 1990-2017[J]. The Science of the Total Environment, 2020, 717: 134861 doi: 10.1016/j.scitotenv.2019.134861
    [18] ZHANG C Z, LIU S, WU S X, et al. Rebuilding the linkage between livestock and cropland to mitigate agricultural pollution in China[J]. Resources, Conservation and Recycling, 2019, 144: 65−73 doi: 10.1016/j.resconrec.2019.01.011
    [19] YAN B J, SHI W J, YAN J J, et al. Spatial distribution of livestock and poultry farm based on livestock manure nitrogen load on farmland and suitability evaluation[J]. Computers and Electronics in Agriculture, 2017, 139: 180−186 doi: 10.1016/j.compag.2017.05.013
    [20] STROKAL M, MA L, BAI Z H, et al. Alarming nutrient pollution of Chinese Rivers as a result of agricultural transitions[J]. Environmental Research Letters, 2016, 11(2): 024014 doi: 10.1088/1748-9326/11/2/024014
    [21] MA L, MA W Q, VELTHOF G L, et al. Modeling nutrient flows in the food chain of China[J]. Journal of Environmental Quality, 2010, 39(4): 1279−1289 doi: 10.2134/jeq2009.0403
    [22] 胡敏鹏. 流域非点源氮污染的滞后效应定量研究[D]. 杭州: 浙江大学, 2019

    HU M P. Quantitative Study on Lag Effect of Watershed Non-Point Source Nitrogen Pollution[D]. Hangzhou: Zhejiang University, 2019
    [23] GURUNG D P, GITHINJI L J M, ANKUMAH R O. Assessing the nitrogen and phosphorus loading in the Alabama (USA) river basin using PLOAD model[J]. Air, Soil and Water Research, 2013, 6: ASWR.S10548 doi: 10.4137/ASWR.S10548
    [24] RIXON S, LEVISON J, BINNS A, et al. Spatiotemporal variations of nitrogen and phosphorus in a clay plain hydrological system in the Great Lakes Basin[J]. The Science of the Total Environment, 2020, 714: 136328 doi: 10.1016/j.scitotenv.2019.136328
    [25] GOYETTE J O, BENNETT E M, HOWARTH R W, et al. Changes in anthropogenic nitrogen and phosphorus inputs to the St. Lawrence sub-basin over 110 years and impacts on riverine export[J]. Global Biogeochemical Cycles, 2016, 30(7): 1000−1014 doi: 10.1002/2016GB005384
    [26] ZOU L L, WANG Y S, LIU Y S. Spatial-temporal evolution of agricultural ecological risks in China in recent 40 years[J]. Environmental Science and Pollution Research, 2022, 29(3): 3686−3701 doi: 10.1007/s11356-021-15927-7
    [27] DENG C N, LIU L S, PENG D Z, et al. Net anthropogenic nitrogen and phosphorus inputs in the Yangtze River economic belt: spatiotemporal dynamics, attribution analysis, and diversity management[J]. Journal of Hydrology, 2021, 597: 126221 doi: 10.1016/j.jhydrol.2021.126221
    [28] WANG A, TANG L H, YANG D W, et al. Spatio-temporal variation of net anthropogenic nitrogen inputs in the Upper Yangtze River Basin from 1990 to 2012[J]. Science China Earth Sciences, 2016, 59(11): 2189−2201 doi: 10.1007/s11430-016-0014-6
    [29] ZHAO Z Q, QIN W, BAI Z H, et al. Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China[J]. Agricultural Water Management, 2019, 212: 262−272 doi: 10.1016/j.agwat.2018.09.002
    [30] GAO Y, JIA J J, LU Y, et al. Progress in watershed geography in the Yangtze River Basin and the affiliated ecological security perspective in the past 20 years, China[J]. Journal of Geographical Sciences, 2020, 30(6): 867−880 doi: 10.1007/s11442-020-1759-y
    [31] 长江经济带发展统计监测协调领导小组办公室. 长江经济带发展统计年鉴-2020[M]. 北京: 中国统计出版社, 2020

    Office of Leading Group for Statistics, Monitoring and Coordination of Yangtze River Economic Belt Development. Statistical Yearbook of Yangtze River Economic Belt[M]. Beijing: China Statistics Press, 2020
    [32] CHEN F, HOU L J, LIU M, et al. Net anthropogenic nitrogen inputs (NANI) into the Yangtze River Basin and the relationship with riverine nitrogen export[J]. Journal of Geophysical Research:Biogeosciences, 2016, 121(2): 451−465 doi: 10.1002/2015JG003186
    [33] ZHU Z P, ZHANG X M, DONG H M, et al. Integrated livestock sector nitrogen pollution abatement measures could generate net benefits for human and ecosystem health in China[J]. Nature Food, 2022, 3(2): 161−168 doi: 10.1038/s43016-022-00462-6
    [34] ZHENG L, ZHANG Q W, ZHANG A P, et al. Spatiotemporal characteristics of the bearing capacity of cropland based on manure nitrogen and phosphorus load in mainland China[J]. Journal of Cleaner Production, 2019, 233: 601−610 doi: 10.1016/j.jclepro.2019.06.049
    [35] LIU D D, BAI L, LI X Y, et al. Spatial characteristics and driving forces of anthropogenic phosphorus emissions in the Yangtze River Economic Belt, China[J]. Resources, Conservation and Recycling, 2022, 176: 105937 doi: 10.1016/j.resconrec.2021.105937
    [36] DING W C, XU X P, HE P, et al. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: a meta-analysis[J]. Field Crops Research, 2018, 227: 11−18 doi: 10.1016/j.fcr.2018.08.001
    [37] YAO Z, ZHANG W S, WANG X B, et al. Agronomic, environmental, and ecosystem economic benefits of controlled-release nitrogen fertilizers for maize production in Southwest China[J]. Journal of Cleaner Production, 2021, 312: 127611 doi: 10.1016/j.jclepro.2021.127611
    [38] 李小坤, 任涛, 鲁剑巍. 长江流域水稻-油菜轮作体系氮肥增产增效综合调控[J]. 华中农业大学学报, 2021, 40(3): 13−20 doi: 10.13300/j.cnki.hnlkxb.2021.03.003

    LI X K, REN T, LU J W. Integrated regulation of nitrogen fertilizer for increasing yield and efficiency of rice-oilseed rape rotation system in the Yangtze River Basin[J]. Journal of Huazhong Agricultural University, 2021, 40(3): 13−20 doi: 10.13300/j.cnki.hnlkxb.2021.03.003
    [39] GUO J X, HU X Y, GAO L M, et al. The rice production practices of high yield and high nitrogen use efficiency in Jiangsu, China[J]. Scientific Reports, 2017, 7(1): 1−10 doi: 10.1038/s41598-016-0028-x
    [40] 郭九信, 孔亚丽, 谢凯柳, 等. 养分管理对直播稻产量和氮肥利用率的影响[J]. 作物学报, 2016, 42(7): 1016−1025 doi: 10.3724/SP.J.1006.2016.01016

    GUO J X, KONG Y L, XIE K L, et al. Effects of nutrient management on yield and nitrogen use efficiency of direct seeding rice[J]. Acta Agronomica Sinica, 2016, 42(7): 1016−1025 doi: 10.3724/SP.J.1006.2016.01016
    [41] YANG M, LONG Q A, LI W L, et al. Mapping the environmental cost of a typical Citrus-producing County in China: hotspot and optimization[J]. Sustainability, 2020, 12(5): 1827 doi: 10.3390/su12051827
    [42] 马立锋, 杨向德, 方丽, 等. “沼液肥+茶树专用肥”高效施肥技术模式[J]. 中国茶叶, 2020, 42(5): 48−49 doi: 10.3969/j.issn.1000-3150.2020.05.011

    MA L F, YANG X D, FANG L, et al. A high-efficiency fertilization technology model’Biogas liquid Fertilizer+Special fertilizer for tea tree’[J]. China Tea, 2020, 42(5): 48−49 doi: 10.3969/j.issn.1000-3150.2020.05.011
    [43] CHAI Q, NEMECEK T, LIANG C, et al. Integrated farming with intercropping increases food production while reducing environmental footprint[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(38): e2106382118 doi: 10.1073/pnas.2106382118
    [44] LI C J, HOFFLAND E, KUYPER T W, et al. Syndromes of production in intercropping impact yield gains[J]. Nature Plants, 2020, 6(6): 653−660 doi: 10.1038/s41477-020-0680-9
    [45] AGNEESSENS L, DE WAELE J, DE NEVE S. Review of alternative management options of vegetable crop residues to reduce nitrate leaching in intensive vegetable rotations[J]. Agronomy, 2014, 4(4): 529−555 doi: 10.3390/agronomy4040529
    [46] CAI S Y, PITTELKOW C M, ZHAO X, et al. Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits[J]. Journal of Cleaner Production, 2018, 195: 289−300 doi: 10.1016/j.jclepro.2018.05.115
    [47] SHA Z P, LIU H J, WANG J X, et al. Improved soil-crop system management aids in NH3 emission mitigation in China[J]. Environmental Pollution (Barking, Essex:1987), 2021, 289: 117844 doi: 10.1016/j.envpol.2021.117844
    [48] XIA L L, LAM S K, WOLF B, et al. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems[J]. Global Change Biology, 2018, 24(12): 5919−5932 doi: 10.1111/gcb.14466
    [49] LI T Y, ZHANG W F, YIN J, et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem[J]. Global Change Biology, 2018, 24(2): e511−e521 doi: 10.1111/gcb.13918
    [50] CUI M, ZENG L H, QIN W, et al. Measures for reducing nitrate leaching in orchards: a review[J]. Environmental Pollution, 2020, 263: 114553 doi: 10.1016/j.envpol.2020.114553
    [51] SANZ-COBENA A, SÁNCHEZ-MARTÍN L, GARCÍA-TORRES L, et al. Gaseous emissions of N2O and NO and NO3 leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop[J]. Agriculture, Ecosystems & Environment, 2012, 149: 64−73
    [52] YUAN L, CHEN X, JIA J C, et al. Stover mulching and inhibitor application maintain crop yield and decrease fertilizer N input and losses in no-till cropping systems in Northeast China[J]. Agriculture, Ecosystems & Environment, 2021, 312: 107360
    [53] CAI D Y, YAN H J, LI L H. Effects of water application uniformity using a center pivot on winter wheat yield, water and nitrogen use efficiency in the North China Plain[J]. Journal of Integrative Agriculture, 2020, 19(9): 2326−2339 doi: 10.1016/S2095-3119(19)62877-7
    [54] FAN Z B, LIN S, ZHANG X M, et al. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production[J]. Agricultural Water Management, 2014, 144: 11−19 doi: 10.1016/j.agwat.2014.05.010
    [55] ZHAO Y M, LV H F, QASIM W, et al. Drip fertigation with straw incorporation significantly reduces N2O emission and N leaching while maintaining high vegetable yields in solar greenhouse production[J]. Environmental Pollution (Barking, Essex:1987), 2021, 273: 116521 doi: 10.1016/j.envpol.2021.116521
    [56] PHOGAT V, SKEWES M A, COX J W, et al. Seasonal simulation of water, salinity and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching[J]. Journal of Hydrology, 2014, 513: 504−516 doi: 10.1016/j.jhydrol.2014.04.008
    [57] 陈昭旭, 高聚林, 于晓芳, 等. 不同耕作及秸秆还田方式对土壤物理特性及产量的影响[J]. 内蒙古农业大学学报(自然科学版), 2022, 43(06): 21−27

    Chen Z X, Gao J L, Yu X F, et al. Effects of different tillage and straw returning methods on soil physical properties and yield[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2022, 43(06): 21−27
    [58] 李雪梅, 李桂林. 浅谈农作物的间作、轮作和套作[J]. 生物学教学, 2009, 34(4): 68−69 doi: 10.3969/j.issn.1004-7549.2009.04.040

    LI X M, LI G L. On intercropping, rotation and intercropping of crops[J]. Biology Teaching, 2009, 34(4): 68−69 doi: 10.3969/j.issn.1004-7549.2009.04.040
    [59] 陈新平, 陈轩敬, 张福锁, 等. 长江经济带农业绿色发展: 挑战与行动[M]. 北京: 科学出版社, 2021

    CHEN X P, CHEN X J, ZHANG F S, et al. Green Agricultural Development in the Yangtze River Economic Belt: Challenges and Actions[M]. Beijing: Science Press, 2021
    [60] 曹玉博, 邢晓旭, 柏兆海, 等. 农牧系统氨挥发减排技术研究进展[J]. 中国农业科学, 2018, 51(3): 566−580 doi: 10.3864/j.issn.0578-1752.2018.03.014

    CAO Y B, XING X X, BAI Z H, et al. Review on ammonia emission mitigation techniques of crop-livestock production system[J]. Scientia Agricultura Sinica, 2018, 51(3): 566−580 doi: 10.3864/j.issn.0578-1752.2018.03.014
    [61] LEE C, FEYEREISEN G W, HRISTOV A N, et al. Effects of dietary protein concentration on ammonia volatilization, nitrate leaching, and plant nitrogen uptake from dairy manure applied to lysimeters[J]. Journal of Environmental Quality, 2014, 43(1): 398−408 doi: 10.2134/jeq2013.03.0083
    [62] PARK S H, LEE B R, JUNG K H, et al. Acidification of pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and perennial ryegrass regrowth as estimated by 15N-urea flux[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(3): 457−466 doi: 10.5713/ajas.17.0556
    [63] SHAH S B, WORKMAN D J, YATES J, et al. Coupled biofilter-heat exchanger prototype for a broiler house[J]. Applied Engineering in Agriculture, 2011, 27(6): 1039−1048 doi: 10.13031/2013.40617
    [64] 刘娟, 柏兆海, 曹玉博, 等. 家畜圈舍粪尿表层酸化对氨气排放的影响[J]. 中国生态农业学报(中英文), 2019, 27(5): 677−685

    LIU J, BAI Z H, CAO Y B, et al. Impact of surface acidification of manure on ammonia emission in animal housing[J]. Chinese Journal of Eco-Agriculture, 2019, 27(5): 677−685
    [65] MELSE R W, OGINK N W M. Air scrubbing techniques for ammonia and odor reduction at livestock operations: review of on-farm research in the Netherlands[J]. Transactions of the ASAE, 2005, 48(6): 2303−2313 doi: 10.13031/2013.20094
    [66] NDEGWA P M, HRISTOV A N, AROGO J, et al. A review of ammonia emission mitigation techniques for concentrated animal feeding operations[J]. Biosystems Engineering, 2008, 100(4): 453−469 doi: 10.1016/j.biosystemseng.2008.05.010
    [67] \KROODSMA W, HUIS IN 'T VELD J W H, SCHOLTENS R. Ammonia emission and its reduction from cubicle houses by flushing[J]. Livestock Production Science, 1993, 35(3/4): 293−302
    [68] \OGINK N W M, KROODSMA W. Reduction of ammonia emission from a cow cubicle house by flushing with water or a formalin solution[J]. Journal of Agricultural Engineering Research, 1996, 63(3): 197−204 doi: 10.1006/jaer.1996.0021
    [69] BUCKLEY C, KROL D, LANIGAN G J, et al. An Analysis of the Cost of the Abatement of Ammonia Emissions in Irish Agriculture to 2030[R]. Teagasc, 2020
    [70] BICUDO J R, SCHMIDT D R, JACOBSON L D. Using covers to minimize odor and gas emissions from manure storages[J]. 2004.
    [71] HUSTED S, JENSEN L S, JØRGENSEN S S. Reducing ammonia loss from cattle slurry by the use of acidifying additives: the role of the buffer system[J]. Journal of the Science of Food and Agriculture, 1991, 57(3): 335−349 doi: 10.1002/jsfa.2740570305
    [72] NAKAUE H S, KOELLIKER J K, PIERSON M L. Studies with clinoptilolite in poultry. II. effect of feeding broilers and the direct application of clinoptilolite (zeolite) on clean and reused broiler litter on broiler performance and house Environment1[J]. Poultry Science, 1981, 60(6): 1221−1228 doi: 10.3382/ps.0601221
    [73] SUBAIR S, FYLES J W, O'HALLORAN I P. Ammonia volatilization from liquid hog manure amended with paper products in the laboratory[J]. Journal of Environmental Quality, 1999, 28(1): 202−207
    [74] WEBB J, BROOMFIELD M, JONES S, et al. Ammonia and odour emissions from UK pig farms and nitrogen leaching from outdoor pig production. A review[J]. Science of the Total Environment, 2014, 470/471: 865−875 doi: 10.1016/j.scitotenv.2013.09.091
    [75] CAO Y B, WANG X, ZHANG X Y, et al. The effects of electric field assisted composting on ammonia and nitrous oxide emissions varied with different electrolytes[J]. Bioresource Technology, 2022, 344: 126194 doi: 10.1016/j.biortech.2021.126194
    [76] BAUTISTA J M, KIM H, AHN D H, et al. Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite[J]. Korean Journal of Chemical Engineering, 2011, 28: 189−194 doi: 10.1007/s11814-010-0312-6
    [77] CAO Y B, WANG X, BAI Z H, et al. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: a meta-analysis[J]. Journal of Cleaner Production, 2019, 235: 626−635 doi: 10.1016/j.jclepro.2019.06.288
    [78] ZHU F X, HONG C L, WANG W P, et al. A microbial agent effectively reduces ammonia volatilization and ensures good maggot yield from pig manure composted via housefly larvae cultivation[J]. Journal of Cleaner Production, 2020, 270: 122373 doi: 10.1016/j.jclepro.2020.122373
    [79] LU L, LIAO X D, LUO X G. Nutritional strategies for reducing nitrogen, phosphorus and trace mineral excretions of livestock and poultry[J]. Journal of Integrative Agriculture, 2017, 16(12): 2815−2833 doi: 10.1016/S2095-3119(17)61701-5
    [80] DIAZ-SANCHEZ S, D'SOUZA D, BISWAS D, et al. Botanical alternatives to antibiotics for use in organic poultry production[J]. Poultry Science, 2015, 94(6): 1419−1430 doi: 10.3382/ps/pev014
    [81] GADDE U, KIM W H, OH S T, et al. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review[J]. Animal Health Research Reviews, 2017, 18(1): 26−45 doi: 10.1017/S1466252316000207
    [82] ZHANG N N, BAI Z H, WINIWARTER W, et al. Reducing ammonia emissions from dairy cattle production via cost-effective manure management techniques in China[J]. Environmental Science & Technology, 2019, 53(20): 11840−11848
    [83] ALTMANN B A, WIGGER R, CIULU M, et al. The effect of insect or microalga alternative protein feeds on broiler meat quality[J]. Journal of the Science of Food and Agriculture, 2020, 100(11): 4292−4302 doi: 10.1002/jsfa.10473
    [84] NAHM K H. Influences of fermentable carbohydrates on shifting nitrogen excretion and reducing ammonia emission of pigs[J]. Critical Reviews in Environmental Science and Technology, 2003, 33(2): 165−186 doi: 10.1080/10643380390814523
    [85] REZAEI J, ROUZBEHAN Y, FAZAELI H, et al. Effects of substituting amaranth silage for corn silage on intake, growth performance, diet digestibility, microbial protein, nitrogen retention and ruminal fermentation in fattening lambs[J]. Animal Feed Science and Technology, 2014, 192: 29−38 doi: 10.1016/j.anifeedsci.2014.03.005
    [86] LIU B, WANG X Z, MA L, et al. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: a meta-analysis[J]. Environmental Pollution, 2021, 269: 116143 doi: 10.1016/j.envpol.2020.116143
    [87] HUANG S, LV W S, BLOSZIES S, et al. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: a meta-analysis[J]. Field Crops Research, 2016, 192: 118−125 doi: 10.1016/j.fcr.2016.04.023
    [88] WEBB J, PAIN B, BITTMAN S, et al. The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—a review[J]. Agriculture, Ecosystems & Environment, 2010, 137(1/2): 39−46
    [89] FROST J P. Effect of spreading method, application rate and dilution on ammonia volatilization from cattle slurry[J]. Grass and Forage Science, 1994, 49(4): 391−400 doi: 10.1111/j.1365-2494.1994.tb02015.x
    [90] MORKEN J, SAKSHAUG S. Direct Ground Injection of livestock waste slurry to avoid ammonia emission[J]. Nutrient Cycling in Agroecosystems, 1998, 51(1): 59−63 doi: 10.1023/A:1009756927750
    [91] SOMMER S G, OLESEN J E. Effects of dry matter content and temperature on ammonia loss from surface-applied cattle slurry[J]. Journal of Environmental Quality, 1991, 20(3): 679−683
    [92] DAVIS K F, RULLI M C, SEVESO A, et al. Increased food production and reduced water use through optimized crop distribution[J]. Nature Geoscience, 2017, 10(12): 919−924 doi: 10.1038/s41561-017-0004-5
    [93] JOHNSON J A, RUNGE C F, SENAUER B, et al. Global agriculture and carbon trade-offs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34): 12342−12347 doi: 10.1073/pnas.1412835111
    [94] VAN GRINSVEN H J M, VAN DAM J D, LESSCHEN J P, et al. Reducing external costs of nitrogen pollution by relocation of pig production between regions in the European Union[J]. Regional Environmental Change, 2018, 18(8): 2403−2415 doi: 10.1007/s10113-018-1335-5
    [95] LIU Q, NIU J, WOOD J D, et al. Spatial optimization of cropping pattern in the upper-middle reaches of the Heihe River Basin, Northwest China[J]. Agricultural Water Management, 2022, 264: 107479 doi: 10.1016/j.agwat.2022.107479
    [96] BAI Z H, JIN S Q, WU Y, et al. China’s pig relocation in balance[J]. Nature Sustainability, 2019, 2(10): 888 doi: 10.1038/s41893-019-0391-2
    [97] BAI Z H, FAN X W, JIN X P, et al. Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China’s population[J]. Nature Food, 2022, 3(2): 152−160 doi: 10.1038/s43016-021-00453-z
  • 加载中
表(3)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  9
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-12
  • 录用日期:  2023-05-08
  • 网络出版日期:  2023-05-09

目录

    /

    返回文章
    返回