留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曹妃甸湿地自然保护区植物多样性研究

胡爱双 郭文静 邢春强 马旺 孙宇 丁冯洁 张薇

胡爱双, 郭文静, 邢春强, 马旺, 孙宇, 丁冯洁, 张薇. 曹妃甸湿地自然保护区植物多样性研究[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−12 doi: 10.12357/cjea.20220940
引用本文: 胡爱双, 郭文静, 邢春强, 马旺, 孙宇, 丁冯洁, 张薇. 曹妃甸湿地自然保护区植物多样性研究[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−12 doi: 10.12357/cjea.20220940
HU A S, GUO W J, XING C Q, MA W, SUN Y, DING F J, ZHANG W. Study on plant diversity in Caofeidian Wetland Nature Reserve[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−12 doi: 10.12357/cjea.20220940
Citation: HU A S, GUO W J, XING C Q, MA W, SUN Y, DING F J, ZHANG W. Study on plant diversity in Caofeidian Wetland Nature Reserve[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−12 doi: 10.12357/cjea.20220940

曹妃甸湿地自然保护区植物多样性研究

doi: 10.12357/cjea.20220940
基金项目: 河北省重点研发计划项目(22374202D)、唐山市科技计划项目(20150211C)和河北省自然资源厅科研项目(13000021ZAY71UHX56S9W)资助
详细信息
    作者简介:

    胡爱双, 主要研究方向为耐盐植物生理生态研究。E-mail: hash0207@163.com

    通讯作者:

    孙宇, 主要研究方向为盐碱地生态修复技术研究。E-mail: 13703381235@163.com

  • 中图分类号: Q948

Study on plant diversity in Caofeidian Wetland Nature Reserve

Funds: This research was supported by the Key Research and Development Program of Hebei Province (22374202D), the Science and Technology Program of Tangshan (20150211C) and Scientific Research Project of Natural Resources Department of Hebei Province (13000021ZAY71UHX56S9W).
More Information
  • 摘要: 为了探究曹妃甸湿地和鸟类省级自然保护区植物多样性以及土壤理化性质空间分布规律。采用生态学样地调查方法对研究区内植被群落结构及其相应土壤理化性质进行调查与测定, 通关相关性分析探讨植物多样性与土壤盐分和养分指标的关系。研究结果表明: 1)研究区种子植物共有23科, 47属, 54种, 被子植物占绝对优势, 植物种绝大部分是中生草本植物; 2)研究区植物区系数量结构分析显示研究区内优势科有4科, 分别是菊科、禾本科、藜科和豆科, 优势属有5种, 分别是藜属、莴苣属、碱蓬属、蒿属和补血草属, 数量结构特征表现出科级和属级水平上的多样性, 区系地理成分特征相对复杂, 以温带分布为主, 但也出现了热带分布; 3)研究区植物群落主要以草本为主, 可分为9种类型, 其中茵陈蒿、葎草群落更为稳定, 芦苇群落的多样性最差; 4)土壤盐分和速效钾高值区主要分布在研究区西南部地区, 土壤速效磷高值区主要分布在西北部地区, 速效氮和有机质含量高值区空间分布较为分散; 5)湿地植物多样性指数整体上与土壤盐分呈现负相关关系, 与土壤养分尤其速效氮呈现正相关的关系。该研究结果明确了该区植物的分布及多样性情况, 并对其影响因素进行了初步分析, 可为曹妃甸湿地植物多样性保护和管理提供一定科学依据。
  • 图  1  研究区位置及样方分布示意图

    Figure  1.  Location and quadrat distribution of the study area

    图  2  研究区0~20 cm和20~40 cm土层土壤盐分的空间分布

    Figure  2.  Spatial distribution of soil salt of 0−20 cm and 20−40 cm layers in the study area

    图  3  研究区0~20 cm和20~40 cm土层土壤养分空间分布

    Figure  3.  Spatial distribution of soil nutrients in of 0−20 cm and 20−40 cm layers in the study area

    表  1  研究区植物优势科和表征科

    Table  1.   The dominant species and representative species of vegetaion in the study area

    编号
    Number
    科名
    Family name
    所含种数
    Number of species included
    编号
    Number
    科名
    Family name
    所含种数
    Number of species included
    优势科
    Dominant species
    17蔷薇科 Rosaceae1
    1菊科 Asteraceae1218茄科 Solanaceae1
    2禾本科 Poaceae819桑科 Moraceae1
    3藜科 Chenopodiaceae720天南星科 Araceae1
    4豆科 Fabaceae521卫矛科 Celastraceae1
    5白花丹科 Plumbaginaceae222旋花科 Convolvulaceae1
    6蓼科 Polygonaceae223榆科 Ulmaceae1
    7杨柳科 Salicaceae2平均值 Average3
    8白刺科 Nitrariaceae1表征科
    Representative species
    9柏科 Cupressaceae11菊科 Asteraceae12
    10柽柳科 Tamaricaceae12禾本科 Poaceae8
    11大麻科 Cannabaceae13藜科 Chenopodiaceae7
    12锦葵科 Malvaceae14豆科 Fabaceae5
    13萝藦科 Asclepiadaceae15白花丹科 Plumbaginaceae2
    14马齿苋科 Portulacaceae16蓼科 Polygonaceae2
    15漆树科 Anacardiaceae17杨柳科 Salicaceae2
    16茜草科 Rubiaceae18平均值 Average5
    下载: 导出CSV

    表  2  研究区植物优势属及表征属

    Table  2.   The dominant genera and representative genera in the study area

    编号
    Number
    属名
    Genus name
    所含种数
    Number of species included
    编号
    Number
    属名
    Genus name
    所含种数
    Number of species included
    优势属
    Dominant genera
    29马齿苋属 Portulaca1
    1藜属 Chenopodium330马唐属 Digitaria1
    2莴苣属 Lactuca231穇属 Eleusine1
    3碱蓬属 Suaeda232鬼针草属 Bidens1
    4蒿属 Artemisia233虎掌藤属 Pharbitis1
    5补血草属 Limonium234茜草属 Rubia1
    6白刺属 Nitraria135半夏属 Pinellia1
    7白茅属 Imperata136桑属 Morus1
    8稗属 Echinochloa137稻属 Oryza1
    9萹蓄属 Polygonum138蓼属 Persicaria1
    10草木樨属 Melilotus139大豆属 Glycine1
    11侧柏属 Platycladus140槐属 Styphnolobium1
    12柽柳属 Tamarix141紫穗槐属 Amorpha1
    13蓟属 Cirsium242苘麻属 Abutilon1
    14刺槐属 Robinia143蓟属 Cirsium1
    15鬼针草属 Bidens144苦荬菜属 Ixeris1
    16地肤属 Kochia145榆属 Ulmus1
    17鹅绒藤属 Cynanchum146苹果属 Malus1
    18苋属 Amaranthus147杨属 Populus1
    19狗尾草属 Setaria148卫矛属 Euonymus1
    20虎尾草属 Chloris1平均值 Average1
    21盐麸木属 Rhus1表征属
    Representative genera
    22苦苣菜属 Sonchus11藜属 Chenopodium3
    23鳢肠属 Eclipta12莴苣属 Lactuca2
    24柳属 Salix13碱蓬属 Suaeda2
    25茄属 Solanum14蒿属 Artemisia2
    26芦苇属 Phragmites15补血草属 Limonium2
    27裸柱菊属 Soliva16蓟属 Cirsium2
    28葎草属 Humulus11平均值 Average2
    下载: 导出CSV

    表  3  研究区植物科一级区系的类型

    Table  3.   The types of family level flora in the study area

    分布区
    Distributive flora
    分布类型
    Distribution type
    科名
    Family name
    世界分布
    World distribution
    温带分布, 5科38.4%
    Temperate distribution, 5 families and accounts for 30%
    菊科、禾本科、藜科、蓼科、蔷薇科
    Asteraceae、Poaceae、Chenopodiaceae、Polygonaceae、Rosaceae
    热带分布, 4科30.7%
    Tropical distribution, 4 families and accounts for 30.7%
    萝藦科、茄科、天南星科、旋花科
    Asclepiadaceae、Solanaceae、Araceae、Convolvulaceae
    温带-热带分布, 4科30.7%
    Temperate tropical distribution, 4 families and accounts for 30.7%
    豆科、白花丹科、锦葵科、马齿苋科
    Fabaceae、Plumbaginaceae、Malvaceae、Portulacaceae
    温带分布
    Temperate distribution
    北温带-南温带间断, 3科13%
    Punctuated distribution of northern temperate southern temperate zone, 3 families and accounts for 13%
    杨柳科、柏科、柽柳科
    Salicaceae、Cupressaceae、Tamaricaceae
    热带分布
    Tropical distribution
    泛热带分布, 6科26%
    Pan tropical distribution, 6 families and accounts for 26%
    大麻科、漆树科、茜草科、桑科、卫矛科、榆科
    Cannabaceae、Anacardiaceae、Rubiaceae、Moraceae、Celastraceae、Ulmaceae
    古地中海分布
    Ancient Mediterranean distribution
    古地中海分布, 1科4.3%
    Ancient Mediterranean distribution, 1 families and accounts for 4.3%
    白刺科
    Nitrariaceae
    下载: 导出CSV

    表  4  研究区植物属一级区系的类型

    Table  4.   The types of genus level flora of in the study area

    分布区
    Distributive flora
    分布类型及变型
    Distribution types and variants
    属数
    The number of genus
    占非世界分布/%
    Percentage of non world distribution/%
    世界分布
    World distribution
    1 型世界分布
    World distribution
    11/
    热带分布
    Tropical distribution
    2 泛热带分布
    Pan tropical distribution
    616.7
    5 热带亚洲至热带澳大利亚分布
    Distribution from tropical Asia to tropical Australia
    12.8
    7 越南(或中南半岛)至华南(或西南)
    Vietnam (or Indochina Peninsula) to South China (or southwest)
    12.8
    温带分布
    Temperate distribution
    8 北温带广布
    Widely distributed in north temperate zone
    38.3
    8-4北温带南温带间断(泛温带)
    North temperate zone south temperate zone discontinuity
    925.0
    9 东亚—北美间断分布
    East Asia North America discontinuous distribution
    25.6
    10 欧亚温带分布或旧世界温带分布
    Eurasian temperate distribution or old world temperate distribution
    38.3
    10-3 欧亚和南部非洲(有时还有大洋洲)间断
    Eurasia and Southern Africa (and sometimes Oceania) discontinuities
    12.8
    亚洲分部
    Asian distribution
    12 中亚、西亚至地中海分布
    Distribution from Central Asia, West Asia to Mediterranean
    12.8
    12-3 地中海至温带-热带亚洲、大洋洲和南美洲间断
    Mediterranean to temperate tropical Asia, Oceania and South America
    12.8
    14 东亚分布
    Distribution in East Asia
    12.8
    14 (SH) 中国-喜马拉雅
    China- Himalayan distribution
    12.8
    14 (SJ) 中国-日本
    Distribution from China to Japan
    38.3
    其他分布
    Other distributions
    其他分布
    Other distributions
    38.3
    下载: 导出CSV

    表  5  研究区主要植物群落及其主要特征

    Table  5.   Main plant communities and their main characteristics in the study area

    群落
    Community
    盖度
    Cover degree
    植物种类
    Plant species
    多度和
    Abundance sum
    香农-维纳指数
    Shannon-Wiener index (H)
    辛普森指数
    Simpson index (D)
    均匀度指数
    Pielou index (E)
    丰富度指数
    Margalef index (R)
    碱蓬
    Suaeda glauca
    59.63590.770.670.761.78
    地肤
    Kochia scoparia
    79.78461.690.710.796.56
    黄花蒿
    Artemisia annua
    95.610861.530.840.834.23
    盐地碱蓬
    Suaeda salsa
    98.981991.290.630.615.52
    芦苇
    Phragmites australis
    91.251490.910.440.533.45
    葎草
    Humulus scandens
    99.913752.180.840.859.64
    三棱草
    Carex phacota
    72.672221.130.540.582.71
    婆婆刺
    Bidens pilosa
    97.892001.460.670.675.50
    茵陈蒿
    Artemisia capillaris
    96.39742.020.860.925.05
    下载: 导出CSV

    表  6  不同样带下土壤盐渍化程度及养分含量

    Table  6.   Salinization degree and nutrient content of soil in different zones

    区域
    Area
    土壤深度
    Soil depth
    盐分含量
    Salt content
    速效氮
    Available nitrogen
    速效磷
    Available phosphorus
    速效钾
    Available potassium
    有机质
    Soil organic matter
    H50~200.47±0.43ab23.84±23.57a21.42±8.85ab43.29±13.36a8.41±4.10ab
    20~400.60±0.54a17.50±9.17a18.92±3.09ab47.21±19.27a11.58±5.58ab
    H100~200.21±0.26b30.47±19.48a25.87±14.78a41.62±17.33a12.00±5.94a
    20~400.23±0.30b17.09±12.32a15.53±5.97b34.12±11.74a7.61±6.02ab
    H150~200.20±0.27b31.29±13.78a28.94±16.15a40.87±17.51a10.18±5.58ab
    20~400.30±0.52b18.27±10.75a22.06±10.41ab35.15±10.36a6.89±4.30b
    下载: 导出CSV

    表  7  曹妃甸湿地植物群落多样性与土壤环境因子的相关系数

    Table  7.   Correlation coefficient between plant community diversity and soil environmental factors in Caofeidian wetland

    生境地段
    Habitat area
    多样性指数
    Diversity index
    盐分含量
    Salt content
    速效氮
    Available nitrogen
    速效磷
    Available phosphorus
    速效钾
    Available potassium
    有机质
    Soil organic matter
    0~20 cm20~40 cm0~20 cm20~40 cm0~20 cm20~40 cm0~20 cm20~40 cm0~20 cm20~40 cm
    H5R−0.046−0.786*0.6240.5850.388−0.211−0.448−0.714*0.791*0.860*
    H−0.229−0.5550.830*0.842*−0.077−0.174−0.574−0.5040.2360.403
    D−0.258−0.3180.6720.739*−0.350−0.208−0.458−0.254−0.291−0.023
    E−0.2550.3230.3420.326−0.454−0.213−0.3800.107−0.731−0.659
    H10R−0.238−0.153−0.013−0.0770.0240.4200.3650.228−0.096−0.051
    H−0.2000.0510.0520.018−0.0270.3570.2550.383−0.0580.036
    D−0.2740.0200.0870.044−0.0220.2550.1530.264−0.0650.032
    E−0.2610.0250.0760.047−0.0290.2460.1900.3400.0030.030
    H15R−0.164−0.1040.2750.5040.567*0.638*0.2870.1630.4580.559*
    H−0.149−0.0960.3680.516*0.530*0.548*0.2300.1320.4670.543*
    D−0.242−0.1970.3890.3080.3660.2540.084−0.0600.3520.316
    E−0.209−0.1920.3980.2550.2110.1200.100−0.0620.2070.180
    下载: 导出CSV
  • [1] 刘芳, 叶思源, 汤岳琴, 等. 黄河三角洲湿地土壤微生物群落结构分析[J]. 应用与环境生物学报, 2007, 13(5): 691−696 doi: 10.3321/j.issn:1006-687x.2007.05.018

    LIU F, YE S Y, TANG Y Q, et al. Analysis of microbial community structure in coastal wetland soil of the Yellow River Delta[J]. Chinese Journal of Applied & Environmental Biology, 2007, 13(5): 691−696 doi: 10.3321/j.issn:1006-687x.2007.05.018
    [2] 周云轩, 田波, 黄颖, 等. 我国海岸带湿地生态系统退化成因及其对策[J]. 中国科学院院刊, 2016, 31(10): 1157−1166 doi: 10.16418/j.issn.1000-3045.2016.10.004

    ZHOU Y X, TIAN B, HUANG Y, et al. Degradation of coastal wetland ecosystem in China: drivers, impacts, and strategies[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1157−1166 doi: 10.16418/j.issn.1000-3045.2016.10.004
    [3] TURNER R K, DAILY G C. The ecosystem services framework and natural capital conservation[J]. Environmental and Resource Economics, 2008, 39(1): 25−35 doi: 10.1007/s10640-007-9176-6
    [4] 林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能[J]. 土壤学报, 2008, 45(5): 892−900 doi: 10.3321/j.issn:0564-3929.2008.05.016

    LIN X G, HU J L. Scientific connotation and ecological service function of soil microbial diversity[J]. Acta Pedologica Sinica, 2008, 45(5): 892−900 doi: 10.3321/j.issn:0564-3929.2008.05.016
    [5] LUKÁCS B A, SRAMKÓ G, MOLNÁR V A. Plant diversity and conservation value of continental temporary pools[J]. Biological Conservation, 2013, 158: 393−400 doi: 10.1016/j.biocon.2012.08.024
    [6] 徐洁, 谢高地, 肖玉, 等. 国家重点生态功能区生态环境质量变化动态分析[J]. 生态学报, 2019, 39(9): 3039−3050

    XU J, XIE G D, XIAO Y, et al. Dynamic analysis of ecological environmental quality changes in national key ecological function areas in China[J]. Acta Ecologica Sinica, 2019, 39(9): 3039−3050
    [7] SIEFERT A, RAVENSCROFT C, ALTHOFF D, et al. Scale dependence of vegetation-environment relationships: a meta-analysis of multivariate data[J]. Journal of Vegetation Science, 2012, 23(5): 942−951 doi: 10.1111/j.1654-1103.2012.01401.x
    [8] SILES G, VOIRIN Y, BÉNIÉ G B. Open-source based geo-platform to support management of wetlands and biodiversity in Quebec[J]. Ecological Informatics, 2018, 43: 84−95 doi: 10.1016/j.ecoinf.2017.11.005
    [9] LITE S J, BAGSTAD K J, STROMBERG J C. Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. Journal of Arid Environments, 2005, 63(4): 785–813
    [10] 赵敏, 赵锐锋, 张丽华, 等. 基于盐分梯度的黑河中游湿地植物多样性及其与土壤因子的关系[J]. 生态学报, 2019, 39(11): 4116−4126

    ZHAO M, ZHAO R F, ZHANG L H, et al. Plant diversity and its relationship with soil factors in the middle reaches of the Heihe River based on the soil salinity gradient[J]. Acta Ecologica Sinica, 2019, 39(11): 4116−4126
    [11] 宋香静, 李胜男, 郭嘉, 等. 环境变化对湿地植物根系的影响研究[J]. 水生态学杂志, 2017, 38(2): 1−9

    SONG X J, LI S N, GUO J, et al. Response of wetland plant roots to environmental factors: a review[J]. Journal of Hydroecology, 2017, 38(2): 1−9
    [12] 毛庆功, 鲁显楷, 陈浩, 等. 陆地生态系统植物多样性对矿质元素输入的响应[J]. 生态学报, 2015, 35(17): 5884−5897

    MAO Q G, LU X K, CHEN H, et al. Responses of terrestrial plant diversity to elevated mineral element inputs[J]. Acta Ecologica Sinica, 2015, 35(17): 5884−5897
    [13] 张永超, 牛得草, 韩潼, 等. 补播对高寒草甸生产力和植物多样性的影响[J]. 草业学报, 2012, 21(2): 305−309 doi: 10.11686/cyxb20120240

    ZHANG Y C, NIU D C, HAN T, et al. Effect of reseeding on productivity and plant diversity on alpine meadows[J]. Acta Prataculturae Sinica, 2012, 21(2): 305−309 doi: 10.11686/cyxb20120240
    [14] 王杰, 王计平, 张华新, 等. 滦河河口地区植物区系分析及多样性研究[J]. 山西农业大学学报:自然科学版, 2020, 40(4): 111−120

    WANG J, WANG J P, ZHANG H X, et al. Floristic and diversity study of indigenous plants in estuary area of Luanhe[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2020, 40(4): 111−120
    [15] 李艳红, 李发东, 马雯. 艾比湖湿地植物多样性特征及其影响因素研究[J]. 生态科学, 2016, 35(3): 78−84

    LI Y H, LI F D, MA W. Study on the features of plant diversity and its impact factors in the wetlands surrounding the Ebinur Lake[J]. Ecological Science, 2016, 35(3): 78−84
    [16] 彭琼, 刘宝元, 曹琦, 等. 作物覆盖度对土壤侵蚀的影响[J]. 水土保持学报, 2022, 36(5): 97−103 doi: 10.13870/j.cnki.stbcxb.2022.05.014

    PENG Q, LIU B Y, CAO Q, et al. Effect of crop coverage on soil erosion[J]. Journal of Soil and Water Conservation, 2022, 36(5): 97−103 doi: 10.13870/j.cnki.stbcxb.2022.05.014
    [17] 郑春雨, 王光华. 湿地生态系统中主要功能微生物研究进展[J]. 湿地科学, 2012, 10(2): 243−249 doi: 10.3969/j.issn.1672-5948.2012.02.018

    ZHENG C Y, WANG G H. Research progress on main functional microorganisms in wetland ecosystems[J]. Wetland Science, 2012, 10(2): 243−249 doi: 10.3969/j.issn.1672-5948.2012.02.018
    [18] 王丽娜, 于永强, 芦东旭, 等. 土壤pH调控固氮植物和非固氮植物间的氮转移[J]. 植物生态学报, 2022, 46(1): 1−17 doi: 10.17521/cjpe.2021.0283

    WANG L N, YU Y Q, LU D X, et al. Soil pH modulates nitrogen transfer from nitrogen-fixing plants to non-nitrogen-fixing plants[J]. Chinese Journal of Plant Ecology, 2022, 46(1): 1−17 doi: 10.17521/cjpe.2021.0283
    [19] WIEGAND T, MOLONEY K A. Rings, circles, and null-models for point pattern analysis in ecology[J]. Oikos, 2004, 104(2): 209−229 doi: 10.1111/j.0030-1299.2004.12497.x
    [20] 魏强, 席增雷, 苏寒云, 等. 曹妃甸滨海湿地生态系统支持服务价值空间分异研究[J]. 地理科学, 2021, 41(5): 890−899 doi: 10.13249/j.cnki.sgs.2021.05.017

    WEI Q, XI Z L, SU H Y, et al. Spatial differentiation of supporting service value of coastal wetland ecosystem in the Caofeidian district of Tangshan in Hebei Province[J]. Scientia Geographica Sinica, 2021, 41(5): 890−899 doi: 10.13249/j.cnki.sgs.2021.05.017
    [21] 李南, 梁洋洋. 大型临港经济区建设的生态安全演化与调控−以曹妃甸为例[J]. 中国发展, 2016, 16(3): 7−10 doi: 10.3969/j.issn.1671-2404.2016.03.004

    LI N, LIANG Y Y. Evolution and control of ecological security in large port-vicinity zone: Caofeidian as a case[J]. China Development, 2016, 16(3): 7−10 doi: 10.3969/j.issn.1671-2404.2016.03.004
    [22] 孟鑫磊. 曹妃甸湿地生态旅游开发研究[D]. 成都: 西南交通大学, 2017

    MENG X L. Caofeidian wetland eco-tourism development research[D]. Chengdu: Southwest Jiaotong University, 2017
    [23] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000
    [24] WANG L, ZHANG J, SHANGGUAN T, et al. Species diversity of mountain meadow of Lishan and the relation with the soil physicochemical properties[J]. Chinese Journal of Appplied Environmental Biology, 2004, 10: 18−22
    [25] 赵杏花, 蓝登明, 左合君, 等. 阴山山脉乌拉山段种子植物区系组成及特征研究[J]. 西北植物学报, 2012, 32(6): 1245−1253 doi: 10.3969/j.issn.1000-4025.2012.06.026

    ZHAO X H, LAN D M, ZUO H J, et al. Flora composition and characteristics of Wula mountain in Yin Mountains[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(6): 1245−1253 doi: 10.3969/j.issn.1000-4025.2012.06.026
    [26] 刘佳, 阎平, 翟伟, 等. 新疆玛纳斯河中上游低山荒漠种子植物区系特征[J]. 草业科学, 2019, 36(1): 83−92

    LIU J, YAN P, ZHAI W, et al. Floristic characteristics of seed plants in low mountain deserts in the upper and middle reaches of the Manas River in Xinjiang[J]. Pratacultural Science, 2019, 36(1): 83−92
    [27] 刘有军, 王继和, 马全林, 等. 甘肃省荒漠种子植物科的区系分析[J]. 草业科学, 2019, 36(1): 83−92

    LIU Y J, WANG J H, MA Q L, et al. Floristic analysis of desert spermatophyte families in Gansu Province[J]. Pratacultural Science, 2019, 36(1): 83−92
    [28] 张绪良, 叶思源, 印萍, 等. 黄河三角洲滨海湿地的维管束植物区系特征[J]. 生态环境学报, 2009, 18(2): 600−607

    ZHANG X L, YE S Y, YIN P, et al. Flora characteristics of vascular plants of coastal wetlands in Yellow River Delta[J]. Ecology and Environmental Sciences, 2009, 18(2): 600−607
    [29] 吴征镒, 孙航, 周浙昆, 等. 中国种子植物区系地理[M]. 北京: 科学出版社, 2010

    WU Z Y, SUN H, ZHOU Z K, et al. Floristic of Seed Plants from China[M]. Beijing, Science Press, 2010
    [30] 高金强, 王潜, 崔秀平. 天津北大港湿地植物调查及区系分析[C]//中国水利学会2021学术年会论文集第一分册. 北京, 2021: 431–438

    GAO J Q, WANG Q, CUI X P. Investigation and floristic analysis of wetland plants in Tianjin Beidagang[C]. //Volume 1 of the Proceedings of the 2021 Academic Annual Conference of the Chinese Water Conservancy Society. Beijing, 2021: 431–438
    [31] 郭舜, 黄启堂, 吕国梁. 福建武平中山河国家湿地公园种子植物区系研究[J]. 中南林业科技大学学报, 2021, 41(5): 12−20

    GUO S, HUANG Q T, LYU G L. Study on seed flora of Zhongshanhe national wetland park in Wuping, Fujian Province[J]. Journal of Central South University of Forestry & Technology, 2021, 41(5): 12−20
    [32] 朱莹, 孔磊, 张霄, 等. 江苏盐城滩涂湿地植物区系及植物资源研究[J]. 生物学杂志, 2014, 31(5): 71−75

    ZHU Y, KONG L, ZHANG X, et al. Research on flora and plant resources on beach wetland of Yancheng Jiangsu[J]. Journal of Biology, 2014, 31(5): 71−75
    [33] 马玉, 吕光辉, 何学敏, 等. 盐梯度下艾比湖湿地植物多样性响应及土壤因子驱动研究[J]. 广东农业科学, 2015, 42(11): 141−147 doi: 10.3969/j.issn.1004-874X.2015.11.026

    MA Y, LYU G H, HE X M, et al. Responses of plant diversity and soil factors driving to soil salinity in wetland of Ebinur Lake[J]. Guangdong Agricultural Sciences, 2015, 42(11): 141−147 doi: 10.3969/j.issn.1004-874X.2015.11.026
    [34] YOUCEF H, LAMINE B M, HOCINE B, et al. Diversity of halophyte desert vegetation of the different saline habitats in the valley of Oued Righ, Low Sahara Basin, Algeria[J]. Research Journal of Environmental and Earth Sciences, 2012, 4(3): 308−315
    [35] 张林静, 岳明, 赵桂仿, 等. 新疆阜康地区植物群落物种多样性及其测度指标的比较[J]. 西北植物学报, 2002, 22(2): 142−150 doi: 10.3321/j.issn:1000-4025.2002.02.022

    ZHANG L J, YUE M, ZHAO G F, et al. Plant community species diversity on oasis-desert ecotone in Fukang of Xinjiang and comparison of its measurement[J]. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(2): 142−150 doi: 10.3321/j.issn:1000-4025.2002.02.022
    [36] BASHARAT A D, ABDULAZIZ M A, SAUD L A, et al. Vegetation composition of the halophytic grass Aeluropus lagopoides communities within coastal and inland Sabkhas of Saudi Arabia[J]. Plants, 2022, 11(666): 1−16
    [37] 刘俊娟. 丹江湿地植物多样性特征及其环境影响因素[J]. 西南农业学报, 2017, 30(12): 2811−2819

    LIU J J. Study on features of plant diversity and environmental factors in Danjiang Wetland[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(12): 2811−2819
    [38] 郭舜, 黄启堂. 闽江河口湿地植物多样性与土壤养分和微生物因子关联分析[J]. 水土保持研究, 2021, 28(3): 30−37

    GUO S, HUANG Q T. Correlation analysis of plant diversity and soil microecological environmental factors in wetland of Minjiang Estuary[J]. Research of Soil and Water Conservation, 2021, 28(3): 30−37
    [39] 王琳, 张金屯, 欧阳华. 历山山地草甸的生态关系[J]. 山地学报, 2004, 22(6): 669−674

    WANG L, ZHANG J, OUYANG H. Ecological relationship in Lishan Mountain meadow[J]. Journal of Mountain Research, 2004, 22(6): 669−674
    [40] 罗琰, 苏德荣, 纪宝明, 等. 辉河湿地不同草甸植被群落特征及其与土壤因子的关系[J]. 草业学报, 2018, 27(3): 33–43

    LUO Y, SU D R, JI B M, et al. Vegetation community characteristics of different meadows and their relationship with soil factors in Huihe wetland. Acta Prataculturae Sinica, 2018, 27(3): 33–43
    [41] 黄燕, 庞兴宸, 陈景锋, 等. 广佛地区典型湿地类型植物多样性与土壤因子的关系[J]. 热带亚热带植物学报, 2022, 30(5): 697−707

    HUANG Y, PANG X C, CHEN J F, et al. Relationship between plant diversity and soil factors of typical wetland types in Guangfo area[J]. Journal of tropical and subtropical botany, 2022, 30(5): 697−707
    [42] 肖德荣, 田昆, 张利权. 滇西北高原纳帕海湿地植物多样性与土壤肥力的关系[J]. 生态学报, 2008, 28(7): 3116−3124

    XIAO D R, TIAN K, ZHANG L Q. Relationship between plant diversity and soil fertility in Napahai Wetland of Northwestern Yunnan Plateau[J]. Acta Ecologica Sinica, 2008, 28(7): 3116−3124
    [43] 张雨瑶, 李世友. 土壤磷与植物关系研究进展[J]. 世界林业研究, 2013, 26(5): 19−24

    ZHANG Y Y, LI S Y. Relationship between soil phosphorus and plant[J]. World Forestry Research, 2013, 26(5): 19−24
    [44] 杨丽霞, 陈少锋, 安娟娟, 等. 陕北黄土丘陵区不同植被类型群落多样性与土壤有机质、全氮关系研究[J]. 草地学报, 2014, 22(2): 291−298

    YANG L X, CHEN S F, AN J J, et al. Relationships among community diversity and soil organic matter, total nitrogen under different vegetation types in the gully region of loess region[J]. Acta Agrestia Sinica, 2014, 22(2): 291−298
    [45] 王冠锴. 不同有机肥对滨海粘质盐土有机质、含盐量和小麦产量的影响[D]. 泰安: 山东农业大学, 2022

    WANG G K. Effects of different organic fertilizers on organic matter, salt content and wheat yield in coastal clayey saline soil[D]. Taian: Shandong Agricultural University, 2022
    [46] 杨海波, 陈运, 侯宪文. 生物腐植酸对土壤碳组分的影响[J]. 中国农学通报, 2015, 31(20): 137−141 doi: 10.11924/j.issn.1000-6850.casb15030243

    YANG H B, CHEN Y, HOU X W. Effects of biology humic acid on the component of soil carbon[J]. Chinese Agricultural Science Bulletin, 2015, 31(20): 137−141 doi: 10.11924/j.issn.1000-6850.casb15030243
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  44
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-04
  • 录用日期:  2023-03-15
  • 修回日期:  2023-03-29
  • 网络出版日期:  2023-03-30

目录

    /

    返回文章
    返回