Nutrient flow characteristics analysis of typical county in crop-livestock systems in Black Soil Region in Northeast China
-
摘要: 在保障粮食安全的前提下, 东北黑土区作物和畜牧生产的耦合促进农业绿色发展。本研究选择位于东北黑土区的吉林省农安县为研究边界, 通过实地调研、统计数据和文献, 结合食物链养分流动模型(NUFER: NUtrient flows in Food chains, Environment and Resources use)定量1990—2020年农牧系统氮磷养分流动、利用率和环境损失, 探究气候和社会经济因素对氮磷排放的驱动作用, 并设置平衡施肥(减少化肥施用)和有机替代(提升有机物料替代)两种情景评估该县减排潜力。结果表明, 相对于1990年, 2020年农安县农牧体系氮磷输入量分别下降41%和20%, 其中化肥施用是最大的输入项。作物和农牧系统养分利用率波动增加, 而畜禽系统养分利用率下降并趋于稳定。农牧体系氮磷损失量较1990年分别减少41%和增加29%。农田氨挥发、径流侵蚀和畜禽粪便直排为主要排放途径。通过平衡施肥和有机替代, 土壤氮磷积累处于较低水平时, 至2030年农安县化学氮肥有70%~80%的减施潜力, 化学磷肥有80%~85%的减施潜力, 且环境排放降低67%, 作物和农牧系统养分利用率均增长50%以上。综上, 农安县农牧体系化肥施用量大, 有机物料浪费严重使养分利用率处于较低水平, 环境排放强度高。未来可通过增加秸秆和粪便还田量提升化肥减施潜力。东北黑土区应继续深化化肥零增长政策, 推行有机废弃物资源化利用, 实现农牧系统协同优化发展。Abstract: The integration of crop and livestock production promotes agricultural green development under the guarantee of food security in Black Soil Region in Northeast China. In this study, Nong’an County, Jilin Province, located in Black Soil Region in Northeast China, was selected as the study boundary. Quantitative studies for nitrogen and phosphorus flows, utilization efficiency as well as environmental losses in crop-livestock systems from 1990 to 2020 were conducted through field research, statistical data and literature, combined with the NUFER model (NUtrient flows in Food chains, Environment and Resources use). Explore the driving role of climate and socio-economic factors on nitrogen and phosphorus emissions. Furthermore, two scenarios of balanced fertilization (reduce fertilizer application) and organic substitution (increase organic material substitution) were set up to assess the county’s emission reduction potential. The results showed that, compared to 1990, nitrogen and phosphorus inputs to crop-livestock systems for Nong’an County in 2020 decreased by 41% and 20%, respectively, with chemical fertilizer application as the largest input. The nutrient utilization efficiency of crop system and crop-livestock systems increased fluctuatingly, while nutrient utilization efficiency of livestock system decreased and tended to remain stable. The nitrogen and phosphorus losses of crop-livestock systems decreased by 41% and increased by 29% compared to 1990, respectively. Ammonia volatilization from farmland, runoff and erosion, and livestock manure discharge as the major emission routes. Through balanced fertilization and organic substitution, it is predicted that by 2030, Nong’an County will have the potential to reduce the application of chemical nitrogen fertilizer by 70% to 80% and chemical phosphorus fertilizer by 80% to 85%, based on the low levels of soil nitrogen and phosphorus accumulation, and the environmental emissions will be reduced by 67%, the nutrient utilization efficiency of crop system and crop-livestock systems will increase by more than 50%. In conclusion, Nong’an County has a high application of chemical fertilizer and a significant waste of organic materials in crop-livestock systems, which resulted in a low level of nutrient utilization and high environmental emissions. In the future, increasing the potential of fertilizer application reduction is considerable by increasing the amount of crop straw and manure returned to the field. The Black Soil Region in Northeast China should continue to deepen the policy of zero grow in fertilizer, and promote the resource utilization of organic waste to guarantee a synergistically optimized crop-livestock systems.
-
图 2 1990—2020年农安县种植业(a)和畜牧业(b)结构变化
LU为livestock unit, 表示标准牛当量(折合500 kg奶牛), 不同动物的折换LU的比例分别为: 奶牛 1∶1; 肉牛 0.8∶1; 猪 0.3∶1; 羊 0.1∶1; 蛋鸡 0.014∶1[21]。LU is livestock unit, which indicates the standard cattle equivalent (equivalent to 500 kg of dairy cattle). and the conversion ratios for different animals are 1∶1 for dairy cattle, 0.8∶1 for beef cattle, 0.3∶1 for pig, 0.1∶1 for sheep and 0.014∶1 for layer[21].
Figure 2. Changes of crop (a) and livestock (b) production structures from 1990 to 2020 in Nong’an County
图 3 农安县农牧生产系统边界和养分流动图
A表示种植业系统; B表示养殖业系统; C表示大气环境; D表示土壤; E表示水体; a表示化肥投入; b表示饲料进口; c表示农作物收获; d表示农作物秸秆; e表示食品加工。A: indicates crop system; B: indicates livestock system; C: indicates atmospheric environment; D: indicates soil; E: indicates water body; a: indicates fertilizer input; b: indicates feed import; c: indicates crop harvest; d: indicates crop straw; e: indicates food processing.
Figure 3. Research boundary and nutrient flow of crop-livestock systems in Nong’an County
图 5 1990—2020年农安县农牧系统氮(a)和磷(b)利用效率
NUEc: 作物氮利用率; NUEa: 畜禽氮利用率; NUEc+a: 农牧系统氮利用率; PUEc: 作物磷利用率; PUEa: 畜禽磷利用率; PUEc+a: 农牧系统磷利用率; 实线表示线性回归, 阴影区域表示95%置信区间(每组线性回归n=31)。NUEc: nitrogen use efficiency of crop; NUEa: nitrogen use efficiency of animal; NUEc+a: nitrogen use efficiency of crop-livestock system; PUEc: phosphorus use efficiency of crop; PUEa: phosphorus use efficiency of animal; PUEc+a: phosphorus use efficiency of crop-livestock system. The solid line denotes the linear regression and the shaded region denotes the 95% confidence intervals (linear regression for each group n=31).
Figure 5. Use efficiency of nitrogen (a) and phosphorus (b) of crop-livestock systems from 1990 to 2020 in Nong’an County
图 6 1990—2020年农安县农牧系统氮(a)和磷(b)养分环境损失
NPLc: 每生产1 kg作物产品的氮损失; NPLa: 每生产1 kg动物产品的氮损失; NPLc+a: 每生产1 kg农牧产品(作物产品+畜禽产品)的氮损失; PPLc: 每生产1 kg作物产品的磷损失; PPLa: 每生产1 kg动物产品的磷损失; PPLc+a: 每生产1 kg农牧产品(作物产品+畜禽产品)的磷损失; 实线表示线性回归, 阴影区域表示95%置信区间(每组线性回归n=31)。NPLc: nitrogen loss for 1 kg crop products; NPLa: nitrogen loss for 1 kg animal products; NPLc+a: nitrogen loss for 1 kg crop and livestock products; PPLc: phosphorus loss for 1 kg crop products; PPLa: phosphorus loss for 1 kg animal products; PPLc+a: phosphorus loss for 1 kg crop and livestock products. The solid line denotes the linear regression and the shaded region denotes the 95% confidence intervals (linear regression for each group n=31).
Figure 6. Environmental losses of nitrogen (a) and phosphorus (b) of crop-livestock systems from 1990 to 2020 in Nong’an County
图 7 农安县农牧体系氮磷排放强度与气候和社会经济因素的关系
NPL: 每生产1 kg农产品的总氮排放强度; PPL: 每生产1 kg农产品的总磷排放强度; NPLc: 每生产1 kg作物产品的氮损失; NPLa: 每生产1 kg动物产品的氮损失; NPLc+a: 每生产1 kg农牧产品(作物产品+畜禽产品)的氮损失; PPLc: 每生产1 kg作物产品的磷损失; PPLa: 每生产1 kg动物产品的磷损失; PPLc+a: 每生产1 kg农牧产品(作物产品+畜禽产品)的磷损失; 实线表示线性回归, 阴影区域表示95%置信区间(每组线性回归n=31)。NPL: total nitrogen emission intensity for 1 kg agricultural products; PPL: total phosphorus emission intensity for 1 kg agricultural products. NPLc: nitrogen loss for 1 kg crop products; NPLa: nitrogen loss for 1 kg animal products; NPLc+a: nitrogen loss for 1 kg crop and livestock products; PPLc: phosphorus loss for 1 kg crop products; PPLa: phosphorus loss for 1 kg animal products; PPLc+a: phosphorus loss for 1 kg crop and livestock products. The solid line denotes the linear regression and the shaded region denotes the 95% confidence intervals (linear regression for each group n=31).
Figure 7. Nitrogen and phosphorus emission intensity of crop-livestock systems in relation to climate and socioeconomic factors in Nong’an County
图 8 2020年和2030年不同情景下农安县农牧体系养分平衡、环境损失及利用效率
2020和2030为基准年份; S1-N60、S2-N70、S3-N80为2020年情景中化肥氮减施60%、70%、80%; S4-N70、S5-N80、S6-N90为2030年情景中化肥氮减施70%、80%、90%; S1-P75、S2-P80、S3-P85为2020年情景中化肥磷减施75%、80%、85%; S4-P80、S5-P85、S6-P90为2030年情景中化肥磷减施80%、85%、90%。2020 and 2030 are base years; S1-N60, S2-N70, S3-N80 are scenarios of chemical fertilizer nitrogen reduction of 60%, 70%, 80% in 2020; S4-N70, S5-N80, S6-N90 are scenarios of chemical fertilizer nitrogen reduction of 70%, 80%, 90% in 2030; S1-P75, S2-P80, S3-P85 are scenarios of chemical fertilizer phosphorus reduction of 75%, 80%, 85% in 2020; S4-P80, S5-P85, S6-P90 are scenarios of chemical fertilizer phosphorus reduction of 80%, 85%, 90% in 2030.
Figure 8. Nutrient balance, environmental losses and use efficiency of crop-livestock systems in Nong’an County in different scenarios in 2020 and 2030
图 9 1990—2020年农安县单位面积农业源温室气体排放量变化
单位面积农业源温室气体排放量由NUFER模型计算得出, 排放因子系数采用NUFER模型参数。Agricultural source GHG emissions per unit area are calculated by NUFER model, and emission factor coefficients are adopted by NUFER model parameters.
Figure 9. Changes in agricultural source GHG emissions per unit area from 1990 to 2020 in Nong’an County
表 1 不同农作物种植户调研数据
Table 1. Field research data of different crop farmers
种类
Species粮食作物种植户
Cereal crop farmers经济作物种植户
Cash crop farmers其他作物种植户
Other crop farmers样本数 Sample 187 69 53 耕地面积 Cultivated area (hm2) 377 319 23 180 8281 播种面积 Sown area (hm2) 373 329 22 935 8193 单位面积产量 Yield per unit area (kg·hm−2) 8458 2928 36 866 籽粒利用方式
Grain utilization mode (%)饲喂 Feed 68 44 0 废弃 Waste 8 8 8 食品 Food 18 42 86 其他 Others 6 6 6 秸秆利用方式
Straw utilization mode (%)饲喂 Feed 38 42 0 还田 Return to field 44 36 0 焚烧 Burn 0 0 0 其他 Others 18 22 0 施肥用量
Fertilization amount (kg·mu−1)基肥 Base fertilizer 35~40 40~50 33~46 追肥 Top application 15~20 5~8 13~18 施肥类型
Fertilization type基肥 Base fertilizer 复合肥
Compound有机肥+尿素
Organic & Urea有机肥
Organic追肥 Top application 复合肥+尿素
Compound & Urea复合肥
Compound复合肥
Compound施用方式
Application method基肥 Base fertilizer 深施
Deep application表施
Broadcast表施
Broadcast追肥 Top application 表施+灌水
Broadcast & Irrigation深施
Deep application表施+灌水
Broadcast & Irrigation表 2 不同畜禽养殖户调研数据
Table 2. Field research data of different livestock farmers
种类
Species生猪养殖户
Pig farmer肉牛养殖户
Beef cattle farmer奶牛养殖户
Dairy cattle farmer羊养殖户
Sheep farmer蛋鸡养殖户
Layer farmer样本数 Sample 54 10 1 14 14 养殖规模 Size (head) ≥500 ≥100 ≥100 ≥500 ≥10 000 饲料摄入量
Feed intake (kg∙head−1∙a−1)254 3454 7793 756 30 清粪方式
Cleaning method干清粪
Dry manure干清粪
Dry manure干清粪
Dry manure干清粪
Dry manure干清粪
Dry manure粪尿处理方式
Manure treatment厌氧+处理中心、厌氧+有机肥厂、沼气池+厌氧池
Anaerobic & Treatment center; Anaerobic & Organic; Biogas & Anaerobic厌氧+处理中心
Anaerobic & Treatment center厌氧+处理中心
Anaerobic & Treatment center厌氧+处理中心
Anaerobic & Treatment center厌氧+处理中心
Anaerobic & Treatment center粪尿还田后氨挥发系数[26]
NH3 after manure to field (%)[26]25 25 25 25 25 粪尿储藏阶段氨挥发系数[26]
NH3 during storage (%)[26]29 19 19 24 12 粪尿年产生量
Manure production
(kg∙head−1∙a−1)氮 Nitrogen 4.9 30.0 70.0 7.1 0.55 磷 Phosphorus 1.7 4.8 12.9 1.0 0.25 粪尿利用情况
Manure utilization
(%)还田 Applied 49 58 58 49 52 直排 Discharged 31 28 28 36 41 表 3 农安县农牧体系养分环境排放与气候和社会经济因素模型
Table 3. Models of nutrient environmental emissions of crop-livestock systems with climate and socioeconomic factors in Nong’an County
参数
Parameter项目
Itemln (单位农产品总氮排放强度)
ln (total nitrogen emission intensity per unit agricultural product)ln (单位作物产品氮损失)
lnNPLcln (单位畜禽产品氮损失)
lnNPLaln (单位农牧产品氮损失)
lnNPLc+aModel 1 Model 2 Model 1 Model 2 Model 1 Model 2 r ln(人均GDP) ln(GDP per capita) −0.27*** −0.06*** −0.28*** ln(城市化率) ln(urbanization rate) −1.32*** −0.24* −1.59*** 年均温度 Annual average temperature −0.07 −0.13 <0.01 −0.01 −0.05 −0.12* 累积降雨量 Accumulated rainfall >−0.01*** >−0.01*** >−0.01* >−0.01** >−0.01** >−0.01** n 31 31 31 31 31 31 调整后的R2
Adj. R-squared0.85 0.55 0.66 0.30 0.86 0.61 参数
Parameter项目
Itemln (单位农产品总磷排放强度)
ln (total phosphorus emission intensity per unit agricultural product)ln (单位作物产品磷损失)
lnPPLcln (单位畜禽产品磷损失)
lnPPLaln (单位农牧产品磷损失)
lnPPLc+aModel 1 Model 2 Model 1 Model 2 Model 1 Model 2 r ln (人均GDP) ln (GDP per capita) −0.17*** −0.15*** −0.05 ln (城市化率) ln (urbanization rate) −0.82** −0.73*** 0.38 年均温度 Annual average temperature −0.02 −0.06 −0.01 −0.04 −0.02 −0.03 累积降雨量 Accumulated rainfall >−0.01*** >−0.01*** <0.01* >−0.01* >−0.01** >−0.01*** n 31 31 31 31 31 31 调整后的R2
Adj. R-squared0.79 0.56 0.92 0.46 0.28 0.29 *P<0.05, **P<0.01, ***P<0.001。Model 1不考虑城市化率, Model 2中不考虑人均GDP。In Model 1, urbanization rate is removed; in Model 2, GDP per capita is removed. -
[1] STROKAL M, JANSSEN A B G, CHEN X P, et al. Green agriculture and blue water in China: reintegrating crop and livestock production for clean water[J]. Frontiers of Agricultural Science and Engineering, 2021, 8(1): 72 doi: 10.15302/J-FASE-2020366 [2] 傅伯杰. 新时代自然地理学发展的思考[J]. 地理科学进展, 2018, 37(1): 1−7 doi: 10.18306/dlkxjz.2018.01.001FU B J. Thoughts on the recent development of physical geography[J]. Progress in Geography, 2018, 37(1): 1−7 doi: 10.18306/dlkxjz.2018.01.001 [3] 农业农村部办公厅. 农业部关于实施农业绿色发展五大行动的通知[EB/OL]. [2022-10-25]. http://www.moa.gov.cn/ztzl/nylsfz/xwbd_lsfz/201709/t20170913_5814708.htmGeneral Office of the Ministry of Agriculture and Rural Affairs. Circular of the Ministry of Agriculture on the five actions for the implementation of Agriculture Green Development[EB/OL]. [2022-10-25]. http://www.moa.gov.cn/ztzl/nylsfz/xwbd_lsfz/201709/t20170913_5814708.htm [4] WANG M R, MA L, STROKAL M, et al. Hotspots for nitrogen and phosphorus losses from food production in China: a County-scale analysis[J]. Environmental Science & Technology, 2018, 52(10): 5782−5791 [5] WANG M R, MA L, STROKAL M, et al. Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China[J]. Agricultural Systems, 2018, 163: 58−72 doi: 10.1016/j.agsy.2017.01.001 [6] WIEDEMANN S, MCGAHAN E, MURPHY C, et al. Resource use and environmental impacts from beef production in eastern Australia investigated using life cycle assessment[J]. Animal Production Science, 2016, 56(5): 882 doi: 10.1071/AN14687 [7] CHADWICK D, JIA W, TONG Y A, et al. Improving manure nutrient management towards sustainable agricultural intensification in China[J]. Agriculture, Ecosystems & Environment, 2015, 209: 34−46 [8] BAI Z H, FAN X W, JIN X P, et al. Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China’s population[J]. Nature Food, 2022, 3(2): 152−160 doi: 10.1038/s43016-021-00453-z [9] HOU Y, MA L, GAO Z L, et al. The driving forces for nitrogen and phosphorus flows in the food chain of China, 1980 to 2010[J]. Journal of Environmental Quality, 2013, 42(4): 962−971 doi: 10.2134/jeq2012.0489 [10] BAI Z H, MA L, QIN W, et al. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses[J]. Environmental Science & Technology, 2014, 48(21): 12742−12749 [11] LEIP A, MARCHI G, KOEBLE R, et al. Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe[J]. Biogeosciences, 2008, 5(1): 73−94 doi: 10.5194/bg-5-73-2008 [12] ISERMANN K, ISERMANN R. Food production and consumption in Germany: N flows and N emissions[J]. Nutrient Cycling in Agroecosystems, 1998, 52(2): 289−301 [13] MA L, MA W Q, VELTHOF G L, et al. Modeling nutrient flows in the food chain of China[J]. Journal of Environmental Quality, 2010, 39(4): 1279−1289 doi: 10.2134/jeq2009.0403 [14] 佟丙辛, 张华芳, 高肖贤, 等. 华北平原典型区域农牧系统氮素流动及其环境效应−以河北省为例[J]. 中国农业科学, 2018, 51(3): 442−455 doi: 10.3864/j.issn.0578-1752.2018.03.005TONG B X, ZHANG H F, GAO X X, et al. Nitrogen flow and environmental effects of crop-livestock system in typical area of North China plain — A case study in Hebei Province[J]. Scientia Agricultura Sinica, 2018, 51(3): 442−455 doi: 10.3864/j.issn.0578-1752.2018.03.005 [15] 张建杰, 郭彩霞, 李莲芬, 等. 农牧交错带农牧系统氮素流动与环境效应−以山西省为例[J]. 中国农业科学, 2018, 51(3): 456−467 doi: 10.3864/j.issn.0578-1752.2018.03.006ZHANG J J, GUO C X, LI L F, et al. Nutrient flow and environmental effects on crop-livestock system in farming-pastoral transition zone — A case study in Shanxi Province[J]. Scientia Agricultura Sinica, 2018, 51(3): 456−467 doi: 10.3864/j.issn.0578-1752.2018.03.006 [16] ZHOU J C, JIAO X Q, MA L, et al. Model-based analysis of phosphorus flows in the food chain at County level in China and options for reducing the losses towards green development[J]. Environmental Pollution, 2021, 288: 117768 doi: 10.1016/j.envpol.2021.117768 [17] WU L Q, LIU D H, CHEN X H, et al. Nutrient flows in the crop-livestock system in an emerging County in China[J]. Nutrient Cycling in Agroecosystems, 2021, 120(2): 243−255 doi: 10.1007/s10705-021-10147-4 [18] JIN X P, MA L, ZHANG J J, et al. Systematic research and quantitative approach for assessing agricultural green development[J]. Chinese Journal of Eco-Agriculture, 2020, 28(8): 1127−1140 [19] 国家统计局. 第四次全国人口普查公报(第5号)[EB/OL]. [2022-10-27]. http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/200204/t20020404_30324.htmlNational Bureau of Statistics. The bulletin for the 4th national population census (No. 5)[EB/OL]. [2022-10-27]. http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/200204/t20020404_30324.html [20] 国家统计局. 第七次全国人口普查公报(第5号)[EB/OL]. [2022-10-27]. http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818824.htmlNational Bureau of Statistics. The bulletin for the 7th national population census (No. 5)[EB/OL]. [2022-10-27]. http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818824.html [21] BAI Z H, MA W Q, MA L, et al. China’s livestock transition: driving forces, impacts, and consequences[J]. Science Advances, 2018, 4(7): eaar8534 doi: 10.1126/sciadv.aar8534 [22] 吉林省统计局. 吉林社会经济统计年鉴-1991[M]. 北京: 中国统计出版社, 1991Jilin Provincial Bureau of Statistics. Jilin Social and Economic Statistics Yearbook-1991[M]. Beijing: China Statistics Press, 1991 [23] 长春市统计局. 长春经济统计年鉴-1992[M]. 北京: 中国统计出版社, 1992Changchun Statistics Bureau. Economic Statistical Yearbook of Changchun-1992[M]. Beijing: China Statistics Press, 1992 [24] MA L, GUO J H, VELTHOF G L, et al. Impacts of urban expansion on nitrogen and phosphorus flows in the food system of Beijing from 1978 to 2008[J]. Global Environmental Change, 2014, 28: 192−204 doi: 10.1016/j.gloenvcha.2014.06.015 [25] MA L, VELTHOF G L, WANG F H, et al. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005[J]. Science of the Total Environment, 2012, 434: 51−61 doi: 10.1016/j.scitotenv.2012.03.028 [26] 马怡斐, 柏兆海, 马林, 等. 栾城城郊型农牧系统养分流动与环境排放时空特征[J]. 中国农业科学, 2018, 51(3): 493−506MA Y F, BAI Z H, MA L, et al. Temporal and spatial changes of nutrient flows and losses in the peri-urban crop-livestock system in Luancheng[J]. Scientia Agricultura Sinica, 2018, 51(3): 493−506 [27] 国家气象信息中心. 中国气象数据网[EB/OL]. [2022-10-31]. http://data.cma.cn/National Meteorological Information Center. China Meteorological Data Network[EB/OL]. [2022-10-31]. http://data.cma.cn/ [28] 农业部. 农业部关于印发《到2020年化肥使用量零增长行动方案》和《到2020年农药使用量零增长行动方案》的通知[J]. 中华人民共和国农业部公报, 2015(3): 19−27Ministry of Agriculture. Notice of the Ministry of Agriculture on printing and distributing the action plan for zero growth of fertilizer use by 2020 and the action plan for zero growth of pesticide use by 2020[J]. Gazette of the Ministry of Agriculture of the People’s Republic of China, 2015(3): 19−27 [29] 黄少辉, 杨云马, 侯亮, 等. 基于Nufer模型的京津冀农牧系统氮素平衡状况及化学氮肥减施潜力分析[J]. 植物营养与肥料学报, 2021, 27(1): 12−23HUANG S H, YANG Y M, HOU L, et al. Nitrogen balance and potential reduction of nitrogen fertilizer input in Beijing-Tianjin-Hebei crop-livestock system based on Nufer model[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 12−23 [30] 巨晓棠. 理论施氮量的改进及验证−兼论确定作物氮肥推荐量的方法[J]. 土壤学报, 2015, 52(2): 249−261 doi: 10.11766/trxb201410250536JU X T. Improvement and validation of theoretical N rate (TNR) — Discussing the methods for N fertilizer recommendation[J]. Acta Pedologica Sinica, 2015, 52(2): 249−261 doi: 10.11766/trxb201410250536 [31] HAAS G, CASPARI B, KÖPKE U. Nutrient cycling in organic farms: stall balance of a suckler cow herd and beef bulls[J]. Nutrient Cycling in Agroecosystems, 2002, 64(3): 225−230 doi: 10.1023/A:1021442806311 [32] ALEXANDRATOS N, BRUINSMA J. World Agriculture Towards 2030/2050: the 2012 Revision[M]. Rome: Food and Agriculture Organization of the United Nations, 2012: 65–71 [33] 农业部办公厅. 农业部办公厅关于印发《畜禽粪污土地承载力测算技术指南》的通知[J]. 中华人民共和国农业部公报, 2018(2): 58General Office of the Ministry of Agriculture and Rural Affairs. Circular of the General Office of the Ministry of Agriculture on printing and distributing the Technical Guidelines on Calculating Soil Bearing Capacity for Livestock and Poultry Manure[J]. Gazette of the Ministry of Agriculture of the People’s Republic of China, 2018(2): 58 [34] 张福锁, 崔振岭, 王激清, 等. 中国土壤和植物养分管理现状与改进策略[J]. 植物学通报, 2007, 42(6): 687−694ZHANG F S, CUI Z L, WANG J Q, et al. Current status of soil and plant nutrient management in China and improvement strategies[J]. Chinese Bulletin of Botany, 2007, 42(6): 687−694 [35] 柴玲欢, 朱会义. 中国粮食生产区域集中化的演化趋势[J]. 自然资源学报, 2016, 31(6): 908−919CHAI L H, ZHU H Y. Evolution trend of regional centralization of grain production in China[J]. Journal of Natural Resources, 2016, 31(6): 908−919 [36] 徐志宇, 宋振伟, 邓艾兴, 等. 近30年我国主要粮食作物生产的驱动因素及空间格局变化研究[J]. 南京农业大学学报, 2013, 36(1): 79−86 doi: 10.7685/j.issn.1000-2030.2013.01.014XU Z Y, SONG Z W, DENG A X, et al. Regional changes of production layout of main grain crops and their actuation factors during 1981−2008 in China[J]. Journal of Nanjing Agricultural University, 2013, 36(1): 79−86 doi: 10.7685/j.issn.1000-2030.2013.01.014 [37] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021National Bureau of Statistic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2021 [38] 农业部, 国家发展改革委, 科技部, 等. 全国农业可持续发展规划(2015—2030年)[EB/OL]. [2022-10-25]. http://www.moa.gov.cn/ztzl/mywrfz/gzgh/201509/t20150914_4827900.htmMinistry of Agriculture, National Development and Reform Commission, Ministry of Science and Technology, et al. National agricultural sustainable development plan (2015—2030)[EB/OL]. [2022-10-25]. http://www.moa.gov.cn/ztzl/mywrfz/gzgh/201509/t20150914_4827900.htm [39] 张晓萌, 王寅, 焉莉, 等. 东北地区农牧系统氮、磷养分流动特征[J]. 中国农业科学, 2018, 51(3): 417−429 doi: 10.3864/j.issn.0578-1752.2018.03.003ZHANG X M, WANG Y, YAN L, et al. Characteristics of nitrogen and phosphorus nutrient flow in farming and animal husbandry system in northeast China[J]. Scientia Agricultura Sinica, 2018, 51(3): 417−429 doi: 10.3864/j.issn.0578-1752.2018.03.003 [40] CHEN B H, REN C C, WANG C, et al. Driving forces of nitrogen use efficiency in Chinese croplands on county scale[J]. Environmental Pollution, 2023, 316: 120610 doi: 10.1016/j.envpol.2022.120610 [41] Sustainable Development Solutions Network (SDSN) and Institute for European Environmental Policy (IEEP). The 2019 Europe Sustainable Development Report[R]. Paris and Brussels: SDSN and IEEP, 2019 [42] 马林, 柏兆海, 王选, 等. 中国农牧系统养分管理研究的意义与重点[J]. 中国农业科学, 2018, 51(3): 406−416MA L, BAI Z H, WANG X, et al. Significance and research priority of nutrient management in soil-crop-animal production system in China[J]. Scientia Agricultura Sinica, 2018, 51(3): 406−416 [43] 魏莎, 柏兆海, 吴迪梅, 等. 都市圈“土壤-饲料-动物”系统养分流动与环境效应−以北京市为例[J]. 中国农业科学, 2018, 51(3): 430−441WEI S, BAI Z H, WU D M, et al. Nutrient flow and environmental effects of “soil-feed-livestock” system in metropolis: a case study in Beijing[J]. Scientia Agricultura Sinica, 2018, 51(3): 430−441 [44] GAO B, HUANG W, WANG L, et al. Driving forces of nitrogen flows and nitrogen use efficiency of food systems in seven Chinese Cities, 1990 to 2015[J]. Science of the Total Environment, 2019, 676: 144−154 doi: 10.1016/j.scitotenv.2019.04.136 [45] JIN X P, ZHANG N N, ZHAO Z Q, et al. Nitrogen budgets of contrasting crop-livestock systems in China[J]. Environmental Pollution, 2021, 288: 117633 doi: 10.1016/j.envpol.2021.117633 [46] ZHAN X Y, ADALIBIEKE W, CUI X Q, et al. Improved estimates of ammonia emissions from global croplands[J]. Environmental Science & Technology, 2021, 55(2): 1329−1338 [47] 农业农村部, 国家发展改革委. 农业农村减排固碳实施方案[EB/OL]. [2022-10-20]. http://www.moa.gov.cn/govpublic/KJJYS/202206/P020220630331656855638.pdfMinistry of Agriculture and Rural Affairs, National Development and Reform Commission. Agricultural and rural emission reduction and carbon sequestration implementation program[EB/OL]. [2022-10-20]. http://www.moa.gov.cn/govpublic/KJJYS/202206/P020220630331656855638.pdf [48] 中国科学院. 东北黑土地白皮书(2020)[EB/OL]. [2022-10-25]. https://www.cas.cn/yw/202107/W020210714418584895253.pdfChinese Academy of Sciences. Northeast black land white paper (2020)[EB/OL]. [2022-10-25]. https://www.cas.cn/yw/202107/W020210714418584895253.pdf [49] CHEN X P, CUI Z L, FAN M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486−489 doi: 10.1038/nature13609 [50] MA L, BAI Z H, MA W Q, et al. Exploring future food provision scenarios for China[J]. Environmental Science & Technology, 2019, 53(3): 1385−1393 [51] 徐明岗, 李冬初, 李菊梅, 等. 化肥有机肥配施对水稻养分吸收和产量的影响[J]. 中国农业科学, 2008, 41(10): 3133−3139 doi: 10.3864/j.issn.0578-1752.2008.10.029XU M G, LI D C, LI J M, et al. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China[J]. Scientia Agricultura Sinica, 2008, 41(10): 3133−3139 doi: 10.3864/j.issn.0578-1752.2008.10.029 [52] 李燕青. 不同类型有机肥与化肥配施的农学和环境效应研究[D]. 北京: 中国农业科学院, 2016: 6–97LI Y Q. Study on agronomic and environmental effects of combined application of different organic manures with chemical fertilizer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016: 6–97 [53] EGHBALL B, GINTING D, GILLEY J E. Residual effects of manure and compost applications on corn production and soil properties[J]. Agronomy Journal, 2004, 96(2): 442−447 doi: 10.2134/agronj2004.4420 [54] 李书田, 刘荣乐, 陕红. 我国主要畜禽粪便养分含量及变化分析[J]. 农业环境科学学报, 2009, 28(1): 179−184LI S T, LIU R L, SHAN H. Nutrient contents in main animal manures in China[J]. Journal of Agro-Environment Science, 2009, 28(1): 179−184 -