Effects of large-spike type maize on interspecific competition and intercropping advantage in maize ‖ peanut intercropping system
-
摘要: 玉米||花生具有明显间作产量优势, 但间作后期种间竞争是限制其进一步高产的瓶颈, 探明大穗型玉米对玉米||花生种间竞争的协调效应和间作优势的影响, 对其高产、高效生产意义重大。本试验于2020年和2021年在河南科技大学农场开展, 以中穗型玉米‘郑单958’与花生‘科大黑花001’间作(ZD||P)为对照, 研究了大穗型玉米‘MC4520’与花生间作(MC||P)对作物干物质积累与分配、叶面积指数、种间竞争力指数、光合特性、产量和间作产量优势的影响。结果表明: 与ZD||P相比, MC||P收获期玉米、花生单株干物质重分别显著提高7.55%~9.68%和16.07%~26.77% (P<0.05), 玉米籽粒和花生荚果干物质积累量分别显著提高9.74%~10.84%和34.56%~38.33% (P<0.05); 促进了干物质向玉米籽粒和花生荚果的分配, 尤其是花生荚果中的分配比例显著提高9.12%~15.93% (P<0.05)。与ZD||P相比, MC||P中花生叶面积指数提高5.78%~29.58%, 花生相对玉米的种间竞争力指数显著提高24.44%~65.12% (P<0.05), MC||P中玉米、花生净光合速率分别显著提高8.18%~15.74%和3.15%~18.05% (P<0.05), 且玉米和花生的气孔导度和蒸腾速率均提高, 花生的胞间CO2浓度降低。与ZD||P相比, MC||P中花生产量显著提高26.39%~51.61% (P<0.05), 间作优势和土地当量比显著提高22.21%~24.08%和13.26%~15.27% (P<0.05)。综上, 在玉米||花生体系中, 选用大穗型玉米与花生间作, 能够有效协调间作后期种间竞争, 增强花生的种间竞争能力, 提高花生产量, 从而提高间作体系产量和土地当量比, 进一步增加间作优势。Abstract: Maize/peanut intercropping (Maize||peanut) has a significant intercropping advantage of yield. However, the interspecific competition between maize and peanut at the later period of coexistence limits its further high yield. Investigating the coordination effects of large-spike type maize on interspecific competition and intercropping advantage in maize||peanut intercropping system, which can provide a theoretical basis for high yield and high efficiency in maize||peanut intercropping system. The experiment was carried out at the experimental farm of Henan University of Science and Technology from 2020 to 2021, with the medium-spik type maize of Zhengdan 958 intercropping with peanut (ZD||P) as the control. The effects of the large-spike type maize of MC4520 intercropping with peanut (MC||P) on crops dry matter accumulation and distribution, leaf area index, interspecific competitiveness index, photosynthetic characteristics, yield, and intercropping advantages of yield were studied in a two-year field experiment. The results showed that compared with ZD||P, MC||P significantly increased the dry matter weight per plant of maize and peanut by 7.55%−9.68% and 16.07%−26.77% (P<0.05), respectively. MC||P improved the dry matter accumulation in maize grain and peanut pod at the harvest stage, which were significantly increased by 9.74%−10.84% and 34.56%−38.33% (P<0.05), respectively. MC||P promoted the distribution of dry matter to maize grain and peanut pod, in particular for peanut, significantly increased by 9.12%−15.93%. MC||P increased the leaf area index of peanut by 5.78%−29.58%, and the interspecific competitiveness index of peanut relative to maize significantly increased by 24.44%−65.12% (P<0.05). MC||P significantly increased the net photosynthetic rate of maize and peanut by 8.18%−15.74% and 3.15%−18.05% (P<0.05), respectively. In addition, the stomatal conductance and transpiration rate of maize and peanut increased, the intercellular CO2 concentration of peanut decreased. The yield of peanut in MC||P significantly increased by 26.39%−51.61%, and the intercropping advantage and land equivalent ratio improved by 22.21%−24.08% and 13.26%−15.27% (P<0.05), respectively. In conclusion, in maize||peanut intercropping system, large-spike type maize intercropping with peanut can effectively coordinate the interspecific competition at the later period of coexistence, which enhances the interspecific competitiveness of peanut and improves the yield of peanut, thus improving the yield and land equivalent ratio of intercropping system, and further enhances the intercropping advantages.
-
图 2 大穗型玉米对玉米||花生叶面积指数的影响
SM-ZD: 单作玉米‘郑单958’; SM-MC: 单作玉米‘MC4520’; IM-ZD: 间作玉米‘郑单958’; IM-MC: 间作玉米‘MC4520’; SP: 单作花生; IP-ZD: 与‘郑单958’间作的花生; IP-MC: 与‘MC4520’间作的花生。不同小写字母表示同一苗后天数处理间P<0.05水平差异显著。SM-ZD: Sole-cropping maize of ‘Zhengdan 958’; SM-MC: Sole-cropping maize of ‘MC4520’; IM-ZD: Intercropping maize of ‘Zhengdan 958’; IM-MC: Intercropping maize of ‘MC4520’; SP: Sole-cropping peanut; IP-ZD: Intercropping peanut with ‘Zhengdan 958’; IP-MC: Intercropping peanut with ‘MC4520’. Different lowercase letters indicate significant difference among treatments at P<0.05 in the same days after seedlings.
Figure 2. Effects of large-spike type maize on leaf area index in maize||peanut
图 3 大穗型玉米对玉米||花生SPAD值的影响
处理具体说明见图2。不同小写字母表示同一苗后天数处理间P<0.05水平差异显著。The description of each treatment is shown in the Fig. 2. Different lowercase letters indicate significant difference among treatments at P<0.05 in the same days after seedlings.
Figure 3. Effects of large-spike type maize on SPAD value of maize||peanut
图 4 大穗型玉米对玉米||花生光合-光强响应曲线的影响
处理具体说明见图2。A和C表示2021年苗后69 d; B和D表示2021年苗后86 d。The description of each treatment is shown in the Fig. 2. A and C indicate 69 days after seedling in 2021. B and D indicate 86 days after seedling in 2021.
Figure 4. Effects of large-spike type maize on photosynthesis-light intensity response curve of maize||peanut
表 1 大穗型玉米对玉米‖花生气体交换参数的影响
Table 1. Effects of large-spike type maize on gas exchange parameter in maize ‖ peanut
作物
Crop苗后天数
Days after seedling (d)处理
Treatment净光合速率
Pn (μmol·m−2·s−1)气孔导度
Gs (mol·m−2·s−1)胞间CO2浓度
Ci (μmol·mol−1)蒸腾速率
Tr (mmol·m−2·s−1)玉米
Maize69 SM-ZD 27.52±0.42c 0.19±0.02c 104.86±4.12d 6.85±0.10c IM-ZD 29.26±0.74b 0.22±0.01b 124.00±1.96b 7.11±0.11b SM-MC 27.67±0.60c 0.19±0.01c 118.08±3.21c 5.26±0.25d IM-MC 33.87±0.54a 0.27±0.02a 129.03±1.88a 8.39±0.31a 86 SM-ZD 22.44±0.23d 0.12±0.00c 62.21±1.82d 1.85±0.14d IM-ZD 27.17±0.60b 0.16±0.02b 82.17±2.11c 2.30±0.09b SM-MC 22.97±0.27c 0.13±0.01c 95.32±4.30b 2.13±0.03c IM-MC 29.39±0.39a 0.21±0.02a 128.51±2.97a 2.79±0.18a 花生
Peanut69 SP 16.28±0.15a 0.27±0.01b 274.66±4.16b 2.70±0.20c IP-ZD 13.64±0.14c 0.25±0.01c 290.95±5.91a 3.28±0.08b IP-MC 16.10±0.09b 0.30±0.02a 289.76±3.95a 3.61±0.10a 86 SP 15.54±0.13a 0.18±0.01b 222.32±1.84b 6.84±0.18b IP-ZD 14.48±0.15c 0.18±0.01b 274.50±3.60a 6.45±0.14c IP-MC 14.94±0.06b 0.29±0.03a 224.28±2.03b 8.93±0.19a 处理具体说明见图2。Pn: 净光合速率; Gs: 气孔导度; Ci: 胞间CO2浓度; Tr: 蒸腾速率。同一苗后天数内同列不同小写字母表示P<0.05水平显著差异。The description of each treatment is shown in the Fig. 2. Pn: Net photosynthetic rate; Gs: Stomatal conductance; Ci: Intercellular CO2 concentration; Tr: Transpiration rate. Values followed by different small letters within a column are significantly different at P<0.05 probability level in the same days after seedlings. 表 2 大穗型玉米对玉米‖花生中玉米干物质分配的影响
Table 2. Effects of large-spike type maize on maize dry matter distribution in maize ‖ peanut
年份
Year处理
Treatment干物质
Dry matter (g·plant−1)干物质分配比例
Dry matter distribution (%)茎
Stem叶
Leaf苞叶
Bract穗轴
Rachis籽粒
Grain茎
Stem叶
Leaf苞叶
Bract穗轴
Rachis籽粒
Grain2020 SM-ZD 48.96±2.53b 27.65±4.29a 10.33±2.08b 13.28±0.41d 104.14±0.98c 23.96±0.74a 13.53±1.82a 5.05±1.10a 6.50±0.23c 50.96±1.45b IM-ZD 55.76±1.19a 30.32±1.15a 13.95±0.25a 19.08±1.06b 139.12±2.41b 21.59±0.21b 11.74±0.50ab 5.40±0.02a 7.39±0.31b 53.88±0.43a SM-MC 50.06±3.02b 28.48±0.81a 11.43±0.10b 16.05±0.28c 110.46±9.83c 23.13±0.08a 13.16±0.52a 5.28±0.30a 7.41±0.52b 51.03±1.39b IM-MC 57.26±4.22a 30.81±1.61a 15.43±1.06a 25.52±0.48a 154.20±3.10a 20.22±1.06c 10.88±0.67b 5.45±0.43a 9.01±0.21a 54.44±0.34a 2021 SM-ZD 42.67±1.18b 24.58±0.96c 12.40±0.41c 15.21±0.31c 106.25±2.65c 21.22±0.52a 12.22±0.61a 6.17±0.25a 7.56±0.13b 52.83±0.71b IM-ZD 49.55±1.58a 29.63±0.53ab 16.71±0.89ab 21.09±0.13b 147.25±0.60b 18.75±0.44c 11.21±0.20a 6.32±0.29a 7.98±0.02ab 55.73±0.66a SM-MC 42.48±0.55b 27.30±1.63bc 13.98±0.85bc 16.34±0.17c 116.15±2.35c 19.64±0.11b 12.62±0.78a 6.46±0.35a 7.56±0.14b 53.71±0.66b IM-MC 48.33±0.65a 32.22±3.78a 18.56±2.79a 23.48±1.49a 161.59±11.60a 17.01±0.57d 11.34±1.81a 6.53±0.74a 8.26±0.41a 56.86±1.92a 处理具体说明见图2。同一年份内同列不同小写字母表示P<0.05 水平显著差异。The description of each treatment is shown in the Fig. 2. Values followed by different small letters within a column are significantly different at P<0.05 probability level in the same year. 表 3 大穗型玉米对玉米‖花生中花生干物质分配的影响
Table 3. Effects of large-spike type maize on peanut dry matter distribution in maize ‖ peanut
年份
Year处理
Treatment干物质
Dry matter (g·plant−1)干物质分配比例
Dry matter distribution (%)茎
Stem叶
Leaf荚果
Pod茎
Stem叶
Leaf荚果
Pod2020 SP 15.48±0.40a 8.19±0.87a 19.07±0.83a 36.21±1.34b 19.17±1.58b 44.62±0.50a IP-ZD 12.93±0.54b 7.65±0.25a 11.63±0.23c 40.14±1.44a 23.76±0.73a 36.10±0.72c IP-MC 13.96±0.42b 7.77±0.19a 15.64±0.52b 37.36±0.98ab 20.78±0.08b 41.85±0.94b 2021 SP 17.35±0.40a 9.22±0.84a 24.55±0.41a 33.95±0.75a 18.04±1.15b 48.01±0.92a IP-ZD 11.43±0.37b 6.56±0.62b 12.89±0.66c 37.01±0.91a 21.24±0.90a 41.75±0.25b IP-MC 13.75±1.73b 7.56±0.33b 17.83±1.11b 35.13±3.31a 19.31±1.56ab 45.56±2.79a 处理具体说明见图2。同一年份内同列不同小写字母表示P<0.05 水平显著差异。The description of each treatment is shown in the Fig. 2. Values followed by different small letters within a column are significantly different at P<0.05 probability level in the same year. 表 4 大穗型玉米对玉米‖花生中玉米产量性状的影响
Table 4. Effects of large-spike type maize on maize yield traits in maize ‖ peanut
年份
Year处理
Treatment秃尖长
Bare top
length (cm)穗长
Ear length
(cm)穗行数
Ear row行粒数
Grain per row百粒重
100-grain weight
(g)产量
Yield
(kg·hm−2)2020 SM-ZD 0.44±0.17b 14.42±0.90c 14.67±0.12c 33.62±1.28ab 32.24±1.40b 10731.5±628.3a IM-ZD 0.35±0.24b 15.48±0.62bc 15.33±0.23b 34.45±1.78ab 33.45±0.99ab 8608.3±217.3b SM-MC 1.58±0.31a 16.10±0.40ab 17.08±0.58a 32.50±0.52b 33.14±0.81ab 10273.1±859.1a IM-MC 1.30±0.63a 16.76±0.30a 17.13±0.12a 36.12±1.06a 35.37±1.25a 8375.0±69.6b 2021 SM-ZD 0.30±0.26a 15.27±0.13b 14.47±0.42b 32.35±1.11bc 31.22±0.15c 9044.4±150.3a IM-ZD 0.21±0.08a 16.02±0.24ab 14.53±0.58b 36.24±0.43a 33.70±0.40a 6958.3±237.6c SM-MC 0.37±0.18a 15.39±0.73b 15.67±0.42a 30.28±1.02c 32.63±0.50b 7943.1±350.4b IM-MC 0.22±0.20a 16.76±0.30a 15.87±0.31a 34.24±1.53ab 33.69±0.61a 6541.7±112.7c 处理具体说明见图2。同一年份内同列不同小写字母表示P<0.05 水平显著差异。The description of each treatment is shown in the Fig. 2. Values followed by different small letters within a column are significantly different at P<0.05 probability level in the same year. 表 5 大穗型玉米对玉米‖花生中花生产量性状的影响
Table 5. Effects of large-spike type maize on peanut yield traits in maize ‖ peanut
年份
Year处理
Treatment果数
Pod number
(number·m−2)百果重
100-pod weight
(g)单株果重
Pod weight per plant
(g)产量
Yield
(kg·hm−2)2020 SP 393.33±16.91a 120.60±7.47c 21.31±0.40a 4735.2±88.4a IP-ZD 151.67±7.72c 150.40±4.47b 10.26±0.59c 1368.6±79.2c IP-MC 202.78±12.18b 170.61±2.60a 15.56±0.80b 2074.9±106.5b 2021 SP 379.26±18.90a 117.28±2.94b 20.00±0.50a 4444.4±111.1a IP-ZD 222.22±11.11c 119.95±4.51b 12.00±0.87c 1600.0±115.5c IP-MC 245.56±6.19b 137.17±6.53a 15.17±1.04b 2022.2±138.8b 处理具体说明见图2。同一年份内同列不同小写字母表示P<0.05 水平显著差异。The description of each treatment is shown in the Fig. 2. Values followed by different small letters within a column are significantly different at P<0.05 probability level in the same year. 表 6 大穗型玉米对玉米‖花生土地当量比的影响
Table 6. Effects of large-spike type maize on land equivalent ratio of maize ‖ peanut
年份
Year处理
Treatment间作体系产量
Yield of intercropping system (kg·hm−2)间作优势
Intercropping advantage (kg·hm−2)PLER-M PLER-P LER 2020 ZD‖P 9976.9±210.3a 2577.5±82.0b 0.80±0.03a 0.29±0.01b 1.09±0.03b MC‖P 10449.9±92.8a 3198.2±299.1a 0.82±0.07a 0.44±0.03a 1.26±0.04a 2021 ZD‖P 8558.3±261.0a 2070.1±214.7b 0.77±0.02a 0.36±0.03b 1.13±0.04b MC‖P 8563.9±236.3a 2529.8±145.6a 0.82±0.03a 0.45±0.02a 1.28±0.03a ZD‖P: ‘郑单958’与花生间作; MC‖P: ‘MC4520’与花生间作; PLER-M: 间作玉米偏土地当量比; PLER-P: 间作花生偏土地当量比; LER: 土地当量比。同一年份内同列不同小写字母表示P<0.05 水平显著差异。ZD‖P: ‘Zhengdan 958’ intercropped with peanut; MC‖P: ‘MC4520’ intercropped with peanut; PLER-M: Partial land equivalent ratio of intercropping maize; PLER-P: Partial land equivalent ratio of intercropping peanut; LER: Land equivalent ratio. Values followed by different small letters within a column are significantly different at P<0.05 probability level in the same year. -
[1] DU J B, HAN T F, GAI J Y, et al. Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability[J]. Journal of Integrative Agriculture, 2018, 17(4): 747−754 doi: 10.1016/S2095-3119(17)61789-1 [2] 党科, 宫香伟, 吕思明, 等. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175−1187DANG K, GONG X W, LYU S M, et al. Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping[J]. Acta Agronomica Sinica, 2021, 47(6): 1175−1187 [3] 王一帆, 殷文, 胡发龙, 等. 间作小麦光合性能对地上地下互作强度的响应[J]. 作物学报, 2021, 47(5): 929−941 doi: 10.3724/SP.J.1006.2021.01047WANG Y F, YIN W, HU F L, et al. Response of photosynthetic performance of intercropped wheat to interaction intensity between above-and below-ground[J]. Acta Agronomica Sinica, 2021, 47(5): 929−941 doi: 10.3724/SP.J.1006.2021.01047 [4] JIAO N Y, WANG J T, MA C, et al. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping[J]. The Crop Journal, 2021, 9(6): 1460−1469 doi: 10.1016/j.cj.2020.12.004 [5] FENG C, SUN Z X, ZHANG L Z, et al. Maize/peanut intercropping increases land productivity: a meta-analysis[J]. Field Crops Research, 2021, 270: 108208 doi: 10.1016/j.fcr.2021.108208 [6] ZHAO X H, DONG Q Q, HAN Y, et al. Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity[J]. BMC Microbiology, 2022, 22(1): 14 doi: 10.1186/s12866-021-02425-6 [7] 焦念元, 宁堂原, 赵春, 等. 玉米花生间作复合体系光合特性的研究[J]. 作物学报, 2006, 32(6): 917−923JIAO N Y, NING T Y, ZHAO C, et al. Characters of photosynthesis in intercropping system of maize and peanut[J]. Acta Agronomica Sinica, 2006, 32(6): 917−923 [8] YANG F, LIAO D P, WU X L, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems[J]. Field Crops Research, 2017, 203: 16−23 doi: 10.1016/j.fcr.2016.12.007 [9] JIAO N Y, WANG F, MA C, et al. Interspecific interactions of iron and nitrogen use in peanut (Arachis hypogaea L.)-maize (Zea mays L.) intercropping on a calcareous soil[J]. European Journal of Agronomy, 2021, 128: 126303 doi: 10.1016/j.eja.2021.126303 [10] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403−415LI L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403−415 [11] WANG Q, SUN Z X, BAI W, et al. Light interception and use efficiency differ with maize plant density in maize-peanut intercropping[J]. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 432−446 [12] MADDONNI G A, CHELLE M, DROUET J L, et al. Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: simulations and crop measurements[J]. Field Crops Research, 2001, 70(1): 1−13 doi: 10.1016/S0378-4290(00)00144-1 [13] MADDONNI G A, OTEGUI M E, CIRILO A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation[J]. Field Crops Research, 2001, 71(3): 183−193 doi: 10.1016/S0378-4290(01)00158-7 [14] SIJA P, SUGITO Y, SURYANTO A, et al. Radiation use efficiency of maize (Zea mays L.) on different varieties and intercropping with mungbean in the rainy season[J]. Agrivita:Journal of Agricultural Science, 2020, 42(3): 462−471 [15] 李美, 孙智明, 李朦朦, 等. 不同比例玉米花生间作对花生生长及产量品质的影响[J]. 核农学报, 2013, 27(3): 391−397 doi: 10.11869/hnxb.2013.03.0391LI M, SUN Z M, LI M M, et al. Effect of maize-peanut intercropping on peanut growth, yield and quality[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(3): 391−397 doi: 10.11869/hnxb.2013.03.0391 [16] 王钰云, 王宏富, 李智, 等. 间作遮阴对花生生长发育及产量的影响[J]. 山西农业科学, 2020, 48(2): 218−221WANG Y Y, WANG H F, LI Z, et al. Effect of intercropping shading on growth and yield of peanut[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(2): 218−221 [17] DHIMA K V, LITHOURGIDIS A S, VASILAKOGLOU I B, et al. Competition indices of common vetch and cereal intercrops in two seeding ratio[J]. Field Crops Research, 2007, 100(2/3): 249−256 [18] 焦念元, 陈明灿, 付国占, 等. 玉米花生间作复合群体的光合物质积累与叶面积指数变化[J]. 作物杂志, 2007(1): 34−35JIAO N Y, CHEN M C, FU G Z, et al. Photosynthetic matter accumulation and leaf area index change in compound population of maize intercropping peanut[J]. Crops, 2007(1): 34−35 [19] WILLEY. Intercropping - its importance and research needs. 2. Agronomy and research needs[J]. Field Crop Abstracts, 1979, 32(2): 73−85 [20] MEAD R, WILLEY R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping[J]. Experimental Agriculture, 1980, 16(3): 217−228 doi: 10.1017/S0014479700010978 [21] YAO X D, ZHOU H L, ZHU Q, et al. Photosynthetic response of soybean leaf to wide light-fluctuation in maize-soybean intercropping system[J]. Frontiers in Plant Science, 2017, 8: 1695 doi: 10.3389/fpls.2017.01695 [22] KIM J, SONG Y, KIM D W, et al. Evaluating different interrow distance between corn and soybean for optimum growth, production and nutritive value of intercropped forages[J]. Journal of Animal Science and Technology, 2018, 60(1): 1−6 doi: 10.1186/s40781-017-0158-0 [23] RAZA A, ASGHAR M A, AHMAD B, et al. Agro-techniques for lodging stress management in maize-soybean intercropping system-a review[J]. Plants (Basel, Switzerland), 2020, 9(11): 1592 [24] YANG G Z, LUO X J, NIE Y C, et al. Effects of plant density on yield and canopy micro environment in hybrid cotton[J]. Journal of Integrative Agriculture, 2014, 13(10): 2154−2163 doi: 10.1016/S2095-3119(13)60727-3 [25] 刘鑫. 玉豆带状间作系统光能分布、截获与利用研究[D]. 雅安: 四川农业大学, 2016LIU X. Study of the light distribution, interception and use efficiency in maize-soybean strip intercropping system[D]. Ya’an: Sichuan Agricultural University, 2016 [26] 王庆燕. 不同群体结构下玉米避阴反应的生理生化机制及其调控研究[D]. 北京: 中国农业大学, 2015WANG Q Y. Physiological and biochemical mechanisms of shade avoidance response and its regulation in maize plants under different group structures[D]. Beijing: China Agricultural University, 2015 [27] 范虹, 殷文, 柴强. 间作优势的光合生理机制及其冠层微环境特征[J]. 中国生态农业学报(中英文), 2022, 30(11): 1750−1761FAN H, YIN W, CHAI Q. Research progress on photo-physiological mechanisms and characteristics of canopy microenvironment in the formation of intercropping advantages[J]. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1750−1761 [28] 张昆, 万勇善, 刘风珍. 苗期弱光对花生光合特性的影响[J]. 中国农业科学, 2010, 43(1): 65−71ZHANG K, WAN Y S, LIU F Z. Effects of weak light on photosynthetic characteristics of peanut seedlings[J]. Scientia Agricultura Sinica, 2010, 43(1): 65−71 [29] HUANG C D, LIU Q Q, GOU F, et al. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition[J]. Field Crops Research, 2017, 201: 41−51 doi: 10.1016/j.fcr.2016.10.021 [30] MAO L L, ZHANG L Z, LI W Q, et al. Yield advantage and water saving in maize/pea intercrop[J]. Field Crops Research, 2012, 138: 11−20 doi: 10.1016/j.fcr.2012.09.019 [31] ZHANG R Z, MENG L B, LI Y, et al. Yield and nutrient uptake dissected through complementarity and selection effects in the maize/soybean intercropping[J]. Food and Energy Security, 2021, 10(2): 379−393 doi: 10.1002/fes3.282 [32] 肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究[J]. 中国农业科学, 2005, 38(5): 965−973XIAO Y B, LI L, ZHANG F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and fababean[J]. Scientia Agricultura Sinica, 2005, 38(5): 965−973 [33] 张妍, 王利立, 柴强, 等. 施氮水平对大麦间作豌豆种间竞争的调控效应[J]. 农业现代化研究, 2014, 35(3): 381−384ZHANG Y, WANG L L, CHAI Q, et al. Effects of nitrogen fertilization on inter-competitiveness in a barley-pea intercropping system[J]. Research of Agricultural Modernization, 2014, 35(3): 381−384 [34] PRASAD R B, BROOK R M. Effect of varying maize densities on intercropped maize and soybean in Nepal[J]. Experimental Agriculture, 2005, 41(3): 365−382 doi: 10.1017/S0014479705002693 [35] 刘颖, 王建国, 郭峰, 等. 玉米花生间作对作物干物质积累和氮素吸收利用的影响[J]. 中国油料作物学报, 2020, 42(6): 994−1001LIU Y, WANG J G, GUO F, et al. Effects of maize intercropping peanut on crop dry matter accumulation, nitrogen absorption and utilization[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 994−1001 [36] 冯晨, 黄波, 冯良山, 等. 不同配置对辽西玉米| | 花生间作系统氮素吸收利用的影响[J]. 中国农业科学, 2022, 55(1): 61−73FENG C, HUANG B, FENG L S, et al. Effects of different configurations on nitrogen uptake and utilization characteristics of maize-peanut intercropping system in west Liaoning[J]. Scientia Agricultura Sinica, 2022, 55(1): 61−73 [37] ZHOU T, WANG L, SUN X, et al. Improved post-silking light interception increases yield and P-use efficiency of maize in maize/soybean relay strip intercropping[J]. Field Crops Research, 2021, 262: 108054 doi: 10.1016/j.fcr.2020.108054 [38] 林松明, 孟维伟, 南镇武, 等. 玉米间作花生冠层微环境变化及其与荚果产量的相关性研究[J]. 中国生态农业学报(中英文), 2020, 28(1): 31−41LIN S M, MENG W W, NAN Z W, et al. Canopy microenvironment change of peanut intercropped with maize and its correlation with pod yield[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 31−41 -