留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大穗型玉米对玉米||花生种间竞争与间作优势的影响

刘涵 昝志曼 汪江涛 孙增光 陈俊南 姜文洋 尹飞 刘领 焦念元 付国占

刘涵, 昝志曼, 汪江涛, 孙增光, 陈俊南, 姜文洋, 尹飞, 刘领, 焦念元, 付国占. 大穗型玉米对玉米||花生种间竞争与间作优势的影响[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−11 doi: 10.12357/cjea.20220929
引用本文: 刘涵, 昝志曼, 汪江涛, 孙增光, 陈俊南, 姜文洋, 尹飞, 刘领, 焦念元, 付国占. 大穗型玉米对玉米||花生种间竞争与间作优势的影响[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−11 doi: 10.12357/cjea.20220929
LIU H, ZAN Z M, WANG J T, SUN Z G, CHEN J N, JIANG W Y, YIN F, LIU L, JIAO N Y, FU G Z. Effects of large-spike type maize on interspecific competition and intercropping advantage in maize ‖ peanut intercropping system[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−11 doi: 10.12357/cjea.20220929
Citation: LIU H, ZAN Z M, WANG J T, SUN Z G, CHEN J N, JIANG W Y, YIN F, LIU L, JIAO N Y, FU G Z. Effects of large-spike type maize on interspecific competition and intercropping advantage in maize ‖ peanut intercropping system[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−11 doi: 10.12357/cjea.20220929

大穗型玉米对玉米||花生种间竞争与间作优势的影响

doi: 10.12357/cjea.20220929
基金项目: 国家自然科学基金项目(32201922)和河南省科技攻关项目(212102110282, 222103810056)资助
详细信息
    作者简介:

    刘涵, 主要从事间套作资源高效利用及机理研究。E-mail: liuhan991220@163.com

    通讯作者:

    焦念元, 主要从事间套作资源高效利用及生理生态机理研究。E-mail: jiaony1@163.com

  • 中图分类号: S344.2

Effects of large-spike type maize on interspecific competition and intercropping advantage in maize ‖ peanut intercropping system

Funds: This work was supported by the National Natural Science Foundation of China (32201922) and the Science and Technology Project of Henan Province (212102110282, 222103810056).
More Information
  • 摘要: 玉米||花生具有明显间作产量优势, 但间作后期种间竞争是限制其进一步高产的瓶颈, 探明大穗型玉米对玉米||花生种间竞争的协调效应和间作优势的影响, 对其高产、高效生产意义重大。本试验于2020年和2021年在河南科技大学农场开展, 以中穗型玉米‘郑单958’与花生‘科大黑花001’间作(ZD||P)为对照, 研究了大穗型玉米‘MC4520’与花生间作(MC||P)对作物干物质积累与分配、叶面积指数、种间竞争力指数、光合特性、产量和间作产量优势的影响。结果表明: 与ZD||P相比, MC||P收获期玉米、花生单株干物质重分别显著提高7.55%~9.68%和16.07%~26.77% (P<0.05), 玉米籽粒和花生荚果干物质积累量分别显著提高9.74%~10.84%和34.56%~38.33% (P<0.05); 促进了干物质向玉米籽粒和花生荚果的分配, 尤其是花生荚果中的分配比例显著提高9.12%~15.93% (P<0.05)。与ZD||P相比, MC||P中花生叶面积指数提高5.78%~29.58%, 花生相对玉米的种间竞争力指数显著提高24.44%~65.12% (P<0.05), MC||P中玉米、花生净光合速率分别显著提高8.18%~15.74%和3.15%~18.05% (P<0.05), 且玉米和花生的气孔导度和蒸腾速率均提高, 花生的胞间CO2浓度降低。与ZD||P相比, MC||P中花生产量显著提高26.39%~51.61% (P<0.05), 间作优势和土地当量比显著提高22.21%~24.08%和13.26%~15.27% (P<0.05)。综上, 在玉米||花生体系中, 选用大穗型玉米与花生间作, 能够有效协调间作后期种间竞争, 增强花生的种间竞争能力, 提高花生产量, 从而提高间作体系产量和土地当量比, 进一步增加间作优势。
  • 图  1  玉米||花生田间种植示意图

    Figure  1.  Illustration of maize and peanut intercropping in field

    图  2  大穗型玉米对玉米||花生叶面积指数的影响

    SM-ZD: 单作玉米‘郑单958’; SM-MC: 单作玉米‘MC4520’; IM-ZD: 间作玉米‘郑单958’; IM-MC: 间作玉米‘MC4520’; SP: 单作花生; IP-ZD: 与‘郑单958’间作的花生; IP-MC: 与‘MC4520’间作的花生。不同小写字母表示同一苗后天数处理间P<0.05水平差异显著。SM-ZD: Sole-cropping maize of ‘Zhengdan 958’; SM-MC: Sole-cropping maize of ‘MC4520’; IM-ZD: Intercropping maize of ‘Zhengdan 958’; IM-MC: Intercropping maize of ‘MC4520’; SP: Sole-cropping peanut; IP-ZD: Intercropping peanut with ‘Zhengdan 958’; IP-MC: Intercropping peanut with ‘MC4520’. Different lowercase letters indicate significant difference among treatments at P<0.05 in the same days after seedlings.

    Figure  2.  Effects of large-spike type maize on leaf area index in maize||peanut

    图  3  大穗型玉米对玉米||花生SPAD值的影响

    处理具体说明见图2。不同小写字母表示同一苗后天数处理间P<0.05水平差异显著。The description of each treatment is shown in the Fig. 2. Different lowercase letters indicate significant difference among treatments at P<0.05 in the same days after seedlings.

    Figure  3.  Effects of large-spike type maize on SPAD value of maize||peanut

    图  4  大穗型玉米对玉米||花生光合-光强响应曲线的影响

    处理具体说明见图2。A和C表示2021年苗后69 d; B和D表示2021年苗后86 d。The description of each treatment is shown in the Fig. 2. A and C indicate 69 days after seedling in 2021. B and D indicate 86 days after seedling in 2021.

    Figure  4.  Effects of large-spike type maize on photosynthesis-light intensity response curve of maize||peanut

    图  5  大穗型玉米对玉米‖花生干物质的影响

    处理具体说明见图2。The description of each treatment is shown in the Fig. 2.

    Figure  5.  Effects of large-spike type maize on dry matter of maize ‖ peanut

    图  6  大穗型玉米对玉米‖花生种间竞争力指数的影响

    处理具体说明见图2。The description of each treatment is shown in the Fig. 2.

    Figure  6.  Effects of large-spike type maize on interspecific competitiveness index in maize ‖ peanut

    表  1  大穗型玉米对玉米‖花生气体交换参数的影响

    Table  1.   Effects of large-spike type maize on gas exchange parameter in maize ‖ peanut

    作物
    Crop
    苗后天数
    Days after seedling (d)
    处理
    Treatment
    净光合速率
    Pn (μmol·m−2·s−1)
    气孔导度
    Gs (mol·m−2·s−1)
    胞间CO2浓度
    Ci (μmol·mol−1)
    蒸腾速率
    Tr (mmol·m−2·s−1)
    玉米
    Maize
    69SM-ZD27.52±0.42c0.19±0.02c104.86±4.12d6.85±0.10c
    IM-ZD29.26±0.74b0.22±0.01b124.00±1.96b7.11±0.11b
    SM-MC27.67±0.60c0.19±0.01c118.08±3.21c5.26±0.25d
    IM-MC33.87±0.54a0.27±0.02a129.03±1.88a8.39±0.31a
    86SM-ZD22.44±0.23d0.12±0.00c62.21±1.82d1.85±0.14d
    IM-ZD27.17±0.60b0.16±0.02b82.17±2.11c2.30±0.09b
    SM-MC22.97±0.27c0.13±0.01c95.32±4.30b2.13±0.03c
    IM-MC29.39±0.39a0.21±0.02a128.51±2.97a2.79±0.18a
    花生
    Peanut
    69SP16.28±0.15a0.27±0.01b274.66±4.16b2.70±0.20c
    IP-ZD13.64±0.14c0.25±0.01c290.95±5.91a3.28±0.08b
    IP-MC16.10±0.09b0.30±0.02a289.76±3.95a3.61±0.10a
    86SP15.54±0.13a0.18±0.01b222.32±1.84b6.84±0.18b
    IP-ZD14.48±0.15c0.18±0.01b274.50±3.60a6.45±0.14c
    IP-MC14.94±0.06b0.29±0.03a224.28±2.03b8.93±0.19a
      处理具体说明见图2Pn: 净光合速率; Gs: 气孔导度; Ci: 胞间CO2浓度; Tr: 蒸腾速率。同一苗后天数内同列不同小写字母表示P<0.05水平显著差异。The description of each treatment is shown in the Fig. 2. Pn: Net photosynthetic rate; Gs: Stomatal conductance; Ci: Intercellular CO2 concentration; Tr: Transpiration rate. Values followed by different small letters within a column are significantly different at P<0.05 probability level in the same days after seedlings.
    下载: 导出CSV

    表  2  大穗型玉米对玉米‖花生中玉米干物质分配的影响

    Table  2.   Effects of large-spike type maize on maize dry matter distribution in maize ‖ peanut

    年份
    Year
    处理
    Treatment
    干物质
    Dry matter (g·plant−1)
    干物质分配比例
    Dry matter distribution (%)

    Stem

    Leaf
    苞叶
    Bract
    穗轴
    Rachis
    籽粒
    Grain

    Stem

    Leaf
    苞叶
    Bract
    穗轴
    Rachis
    籽粒
    Grain
    2020SM-ZD48.96±2.53b27.65±4.29a10.33±2.08b13.28±0.41d104.14±0.98c23.96±0.74a13.53±1.82a5.05±1.10a6.50±0.23c50.96±1.45b
    IM-ZD55.76±1.19a30.32±1.15a13.95±0.25a19.08±1.06b139.12±2.41b21.59±0.21b11.74±0.50ab5.40±0.02a7.39±0.31b53.88±0.43a
    SM-MC50.06±3.02b28.48±0.81a11.43±0.10b16.05±0.28c110.46±9.83c23.13±0.08a13.16±0.52a5.28±0.30a7.41±0.52b51.03±1.39b
    IM-MC57.26±4.22a30.81±1.61a15.43±1.06a25.52±0.48a154.20±3.10a20.22±1.06c10.88±0.67b5.45±0.43a9.01±0.21a54.44±0.34a
    2021SM-ZD42.67±1.18b24.58±0.96c12.40±0.41c15.21±0.31c106.25±2.65c21.22±0.52a12.22±0.61a6.17±0.25a7.56±0.13b52.83±0.71b
    IM-ZD49.55±1.58a29.63±0.53ab16.71±0.89ab21.09±0.13b147.25±0.60b18.75±0.44c11.21±0.20a6.32±0.29a7.98±0.02ab55.73±0.66a
    SM-MC42.48±0.55b27.30±1.63bc13.98±0.85bc16.34±0.17c116.15±2.35c19.64±0.11b12.62±0.78a6.46±0.35a7.56±0.14b53.71±0.66b
    IM-MC48.33±0.65a32.22±3.78a18.56±2.79a23.48±1.49a161.59±11.60a17.01±0.57d11.34±1.81a6.53±0.74a8.26±0.41a56.86±1.92a
      处理具体说明见图2。同一年份内同列不同小写字母表示P<0.05 水平显著差异。The description of each treatment is shown in the Fig. 2. Values followed by different small letters within a column are significantly different at P<0.05 probability level in the same year.
    下载: 导出CSV

    表  3  大穗型玉米对玉米‖花生中花生干物质分配的影响

    Table  3.   Effects of large-spike type maize on peanut dry matter distribution in maize ‖ peanut

    年份
    Year
    处理
    Treatment
    干物质
    Dry matter (g·plant−1)
    干物质分配比例
    Dry matter distribution (%)

    Stem

    Leaf
    荚果
    Pod

    Stem

    Leaf
    荚果
    Pod
    2020SP15.48±0.40a8.19±0.87a19.07±0.83a36.21±1.34b19.17±1.58b44.62±0.50a
    IP-ZD12.93±0.54b7.65±0.25a11.63±0.23c40.14±1.44a23.76±0.73a36.10±0.72c
    IP-MC13.96±0.42b7.77±0.19a15.64±0.52b37.36±0.98ab20.78±0.08b41.85±0.94b
    2021SP17.35±0.40a9.22±0.84a24.55±0.41a33.95±0.75a18.04±1.15b48.01±0.92a
    IP-ZD11.43±0.37b6.56±0.62b12.89±0.66c37.01±0.91a21.24±0.90a41.75±0.25b
    IP-MC13.75±1.73b7.56±0.33b17.83±1.11b35.13±3.31a19.31±1.56ab45.56±2.79a
      处理具体说明见图2。同一年份内同列不同小写字母表示P<0.05 水平显著差异。The description of each treatment is shown in the Fig. 2. Values followed by different small letters within a column are significantly different at P<0.05 probability level in the same year.
    下载: 导出CSV

    表  4  大穗型玉米对玉米‖花生中玉米产量性状的影响

    Table  4.   Effects of large-spike type maize on maize yield traits in maize ‖ peanut

    年份
    Year
    处理
    Treatment
    秃尖长
    Bare top
    length (cm)
    穗长
    Ear length
    (cm)
    穗行数
    Ear row
    行粒数
    Grain per row
    百粒重
    100-grain weight
    (g)
    产量
    Yield
    (kg·hm−2)
    2020SM-ZD0.44±0.17b14.42±0.90c14.67±0.12c33.62±1.28ab32.24±1.40b10731.5±628.3a
    IM-ZD0.35±0.24b15.48±0.62bc15.33±0.23b34.45±1.78ab33.45±0.99ab8608.3±217.3b
    SM-MC1.58±0.31a16.10±0.40ab17.08±0.58a32.50±0.52b33.14±0.81ab10273.1±859.1a
    IM-MC1.30±0.63a16.76±0.30a17.13±0.12a36.12±1.06a35.37±1.25a8375.0±69.6b
    2021SM-ZD0.30±0.26a15.27±0.13b14.47±0.42b32.35±1.11bc31.22±0.15c9044.4±150.3a
    IM-ZD0.21±0.08a16.02±0.24ab14.53±0.58b36.24±0.43a33.70±0.40a6958.3±237.6c
    SM-MC0.37±0.18a15.39±0.73b15.67±0.42a30.28±1.02c32.63±0.50b7943.1±350.4b
    IM-MC0.22±0.20a16.76±0.30a15.87±0.31a34.24±1.53ab33.69±0.61a6541.7±112.7c
      处理具体说明见图2。同一年份内同列不同小写字母表示P<0.05 水平显著差异。The description of each treatment is shown in the Fig. 2. Values followed by different small letters within a column are significantly different at P<0.05 probability level in the same year.
    下载: 导出CSV

    表  5  大穗型玉米对玉米‖花生中花生产量性状的影响

    Table  5.   Effects of large-spike type maize on peanut yield traits in maize ‖ peanut

    年份
    Year
    处理
    Treatment
    果数
    Pod number
    (number·m−2)
    百果重
    100-pod weight
    (g)
    单株果重
    Pod weight per plant
    (g)
    产量
    Yield
    (kg·hm−2)
    2020SP393.33±16.91a120.60±7.47c21.31±0.40a4735.2±88.4a
    IP-ZD151.67±7.72c150.40±4.47b10.26±0.59c1368.6±79.2c
    IP-MC202.78±12.18b170.61±2.60a15.56±0.80b2074.9±106.5b
    2021SP379.26±18.90a117.28±2.94b20.00±0.50a4444.4±111.1a
    IP-ZD222.22±11.11c119.95±4.51b12.00±0.87c1600.0±115.5c
    IP-MC245.56±6.19b137.17±6.53a15.17±1.04b2022.2±138.8b
      处理具体说明见图2。同一年份内同列不同小写字母表示P<0.05 水平显著差异。The description of each treatment is shown in the Fig. 2. Values followed by different small letters within a column are significantly different at P<0.05 probability level in the same year.
    下载: 导出CSV

    表  6  大穗型玉米对玉米‖花生土地当量比的影响

    Table  6.   Effects of large-spike type maize on land equivalent ratio of maize ‖ peanut

    年份
    Year
    处理
    Treatment
    间作体系产量
    Yield of intercropping system (kg·hm−2)
    间作优势
    Intercropping advantage (kg·hm−2)
    PLER-MPLER-PLER
    2020ZD‖P9976.9±210.3a2577.5±82.0b0.80±0.03a0.29±0.01b1.09±0.03b
    MC‖P10449.9±92.8a3198.2±299.1a0.82±0.07a0.44±0.03a1.26±0.04a
    2021ZD‖P8558.3±261.0a2070.1±214.7b0.77±0.02a0.36±0.03b1.13±0.04b
    MC‖P8563.9±236.3a2529.8±145.6a0.82±0.03a0.45±0.02a1.28±0.03a
      ZD‖P: ‘郑单958’与花生间作; MC‖P: ‘MC4520’与花生间作; PLER-M: 间作玉米偏土地当量比; PLER-P: 间作花生偏土地当量比; LER: 土地当量比。同一年份内同列不同小写字母表示P<0.05 水平显著差异。ZD‖P: ‘Zhengdan 958’ intercropped with peanut; MC‖P: ‘MC4520’ intercropped with peanut; PLER-M: Partial land equivalent ratio of intercropping maize; PLER-P: Partial land equivalent ratio of intercropping peanut; LER: Land equivalent ratio. Values followed by different small letters within a column are significantly different at P<0.05 probability level in the same year.
    下载: 导出CSV
  • [1] DU J B, HAN T F, GAI J Y, et al. Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability[J]. Journal of Integrative Agriculture, 2018, 17(4): 747−754 doi: 10.1016/S2095-3119(17)61789-1
    [2] 党科, 宫香伟, 吕思明, 等. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175−1187

    DANG K, GONG X W, LYU S M, et al. Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping[J]. Acta Agronomica Sinica, 2021, 47(6): 1175−1187
    [3] 王一帆, 殷文, 胡发龙, 等. 间作小麦光合性能对地上地下互作强度的响应[J]. 作物学报, 2021, 47(5): 929−941 doi: 10.3724/SP.J.1006.2021.01047

    WANG Y F, YIN W, HU F L, et al. Response of photosynthetic performance of intercropped wheat to interaction intensity between above-and below-ground[J]. Acta Agronomica Sinica, 2021, 47(5): 929−941 doi: 10.3724/SP.J.1006.2021.01047
    [4] JIAO N Y, WANG J T, MA C, et al. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping[J]. The Crop Journal, 2021, 9(6): 1460−1469 doi: 10.1016/j.cj.2020.12.004
    [5] FENG C, SUN Z X, ZHANG L Z, et al. Maize/peanut intercropping increases land productivity: a meta-analysis[J]. Field Crops Research, 2021, 270: 108208 doi: 10.1016/j.fcr.2021.108208
    [6] ZHAO X H, DONG Q Q, HAN Y, et al. Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity[J]. BMC Microbiology, 2022, 22(1): 14 doi: 10.1186/s12866-021-02425-6
    [7] 焦念元, 宁堂原, 赵春, 等. 玉米花生间作复合体系光合特性的研究[J]. 作物学报, 2006, 32(6): 917−923

    JIAO N Y, NING T Y, ZHAO C, et al. Characters of photosynthesis in intercropping system of maize and peanut[J]. Acta Agronomica Sinica, 2006, 32(6): 917−923
    [8] YANG F, LIAO D P, WU X L, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems[J]. Field Crops Research, 2017, 203: 16−23 doi: 10.1016/j.fcr.2016.12.007
    [9] JIAO N Y, WANG F, MA C, et al. Interspecific interactions of iron and nitrogen use in peanut (Arachis hypogaea L.)-maize (Zea mays L.) intercropping on a calcareous soil[J]. European Journal of Agronomy, 2021, 128: 126303 doi: 10.1016/j.eja.2021.126303
    [10] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403−415

    LI L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403−415
    [11] WANG Q, SUN Z X, BAI W, et al. Light interception and use efficiency differ with maize plant density in maize-peanut intercropping[J]. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 432−446
    [12] MADDONNI G A, CHELLE M, DROUET J L, et al. Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: simulations and crop measurements[J]. Field Crops Research, 2001, 70(1): 1−13 doi: 10.1016/S0378-4290(00)00144-1
    [13] MADDONNI G A, OTEGUI M E, CIRILO A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation[J]. Field Crops Research, 2001, 71(3): 183−193 doi: 10.1016/S0378-4290(01)00158-7
    [14] SIJA P, SUGITO Y, SURYANTO A, et al. Radiation use efficiency of maize (Zea mays L.) on different varieties and intercropping with mungbean in the rainy season[J]. Agrivita:Journal of Agricultural Science, 2020, 42(3): 462−471
    [15] 李美, 孙智明, 李朦朦, 等. 不同比例玉米花生间作对花生生长及产量品质的影响[J]. 核农学报, 2013, 27(3): 391−397 doi: 10.11869/hnxb.2013.03.0391

    LI M, SUN Z M, LI M M, et al. Effect of maize-peanut intercropping on peanut growth, yield and quality[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(3): 391−397 doi: 10.11869/hnxb.2013.03.0391
    [16] 王钰云, 王宏富, 李智, 等. 间作遮阴对花生生长发育及产量的影响[J]. 山西农业科学, 2020, 48(2): 218−221

    WANG Y Y, WANG H F, LI Z, et al. Effect of intercropping shading on growth and yield of peanut[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(2): 218−221
    [17] DHIMA K V, LITHOURGIDIS A S, VASILAKOGLOU I B, et al. Competition indices of common vetch and cereal intercrops in two seeding ratio[J]. Field Crops Research, 2007, 100(2/3): 249−256
    [18] 焦念元, 陈明灿, 付国占, 等. 玉米花生间作复合群体的光合物质积累与叶面积指数变化[J]. 作物杂志, 2007(1): 34−35

    JIAO N Y, CHEN M C, FU G Z, et al. Photosynthetic matter accumulation and leaf area index change in compound population of maize intercropping peanut[J]. Crops, 2007(1): 34−35
    [19] WILLEY. Intercropping - its importance and research needs. 2. Agronomy and research needs[J]. Field Crop Abstracts, 1979, 32(2): 73−85
    [20] MEAD R, WILLEY R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping[J]. Experimental Agriculture, 1980, 16(3): 217−228 doi: 10.1017/S0014479700010978
    [21] YAO X D, ZHOU H L, ZHU Q, et al. Photosynthetic response of soybean leaf to wide light-fluctuation in maize-soybean intercropping system[J]. Frontiers in Plant Science, 2017, 8: 1695 doi: 10.3389/fpls.2017.01695
    [22] KIM J, SONG Y, KIM D W, et al. Evaluating different interrow distance between corn and soybean for optimum growth, production and nutritive value of intercropped forages[J]. Journal of Animal Science and Technology, 2018, 60(1): 1−6 doi: 10.1186/s40781-017-0158-0
    [23] RAZA A, ASGHAR M A, AHMAD B, et al. Agro-techniques for lodging stress management in maize-soybean intercropping system-a review[J]. Plants (Basel, Switzerland), 2020, 9(11): 1592
    [24] YANG G Z, LUO X J, NIE Y C, et al. Effects of plant density on yield and canopy micro environment in hybrid cotton[J]. Journal of Integrative Agriculture, 2014, 13(10): 2154−2163 doi: 10.1016/S2095-3119(13)60727-3
    [25] 刘鑫. 玉豆带状间作系统光能分布、截获与利用研究[D]. 雅安: 四川农业大学, 2016

    LIU X. Study of the light distribution, interception and use efficiency in maize-soybean strip intercropping system[D]. Ya’an: Sichuan Agricultural University, 2016
    [26] 王庆燕. 不同群体结构下玉米避阴反应的生理生化机制及其调控研究[D]. 北京: 中国农业大学, 2015

    WANG Q Y. Physiological and biochemical mechanisms of shade avoidance response and its regulation in maize plants under different group structures[D]. Beijing: China Agricultural University, 2015
    [27] 范虹, 殷文, 柴强. 间作优势的光合生理机制及其冠层微环境特征[J]. 中国生态农业学报(中英文), 2022, 30(11): 1750−1761

    FAN H, YIN W, CHAI Q. Research progress on photo-physiological mechanisms and characteristics of canopy microenvironment in the formation of intercropping advantages[J]. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1750−1761
    [28] 张昆, 万勇善, 刘风珍. 苗期弱光对花生光合特性的影响[J]. 中国农业科学, 2010, 43(1): 65−71

    ZHANG K, WAN Y S, LIU F Z. Effects of weak light on photosynthetic characteristics of peanut seedlings[J]. Scientia Agricultura Sinica, 2010, 43(1): 65−71
    [29] HUANG C D, LIU Q Q, GOU F, et al. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition[J]. Field Crops Research, 2017, 201: 41−51 doi: 10.1016/j.fcr.2016.10.021
    [30] MAO L L, ZHANG L Z, LI W Q, et al. Yield advantage and water saving in maize/pea intercrop[J]. Field Crops Research, 2012, 138: 11−20 doi: 10.1016/j.fcr.2012.09.019
    [31] ZHANG R Z, MENG L B, LI Y, et al. Yield and nutrient uptake dissected through complementarity and selection effects in the maize/soybean intercropping[J]. Food and Energy Security, 2021, 10(2): 379−393 doi: 10.1002/fes3.282
    [32] 肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究[J]. 中国农业科学, 2005, 38(5): 965−973

    XIAO Y B, LI L, ZHANG F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and fababean[J]. Scientia Agricultura Sinica, 2005, 38(5): 965−973
    [33] 张妍, 王利立, 柴强, 等. 施氮水平对大麦间作豌豆种间竞争的调控效应[J]. 农业现代化研究, 2014, 35(3): 381−384

    ZHANG Y, WANG L L, CHAI Q, et al. Effects of nitrogen fertilization on inter-competitiveness in a barley-pea intercropping system[J]. Research of Agricultural Modernization, 2014, 35(3): 381−384
    [34] PRASAD R B, BROOK R M. Effect of varying maize densities on intercropped maize and soybean in Nepal[J]. Experimental Agriculture, 2005, 41(3): 365−382 doi: 10.1017/S0014479705002693
    [35] 刘颖, 王建国, 郭峰, 等. 玉米花生间作对作物干物质积累和氮素吸收利用的影响[J]. 中国油料作物学报, 2020, 42(6): 994−1001

    LIU Y, WANG J G, GUO F, et al. Effects of maize intercropping peanut on crop dry matter accumulation, nitrogen absorption and utilization[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 994−1001
    [36] 冯晨, 黄波, 冯良山, 等. 不同配置对辽西玉米| | 花生间作系统氮素吸收利用的影响[J]. 中国农业科学, 2022, 55(1): 61−73

    FENG C, HUANG B, FENG L S, et al. Effects of different configurations on nitrogen uptake and utilization characteristics of maize-peanut intercropping system in west Liaoning[J]. Scientia Agricultura Sinica, 2022, 55(1): 61−73
    [37] ZHOU T, WANG L, SUN X, et al. Improved post-silking light interception increases yield and P-use efficiency of maize in maize/soybean relay strip intercropping[J]. Field Crops Research, 2021, 262: 108054 doi: 10.1016/j.fcr.2020.108054
    [38] 林松明, 孟维伟, 南镇武, 等. 玉米间作花生冠层微环境变化及其与荚果产量的相关性研究[J]. 中国生态农业学报(中英文), 2020, 28(1): 31−41

    LIN S M, MENG W W, NAN Z W, et al. Canopy microenvironment change of peanut intercropped with maize and its correlation with pod yield[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 31−41
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  15
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 录用日期:  2023-03-09
  • 修回日期:  2023-04-05
  • 网络出版日期:  2023-05-09

目录

    /

    返回文章
    返回