Effects of content dynamics of NO3−-N and phenolic acids in soil on root growth of cotton seedlings under the return of wheat straw
-
摘要: 揭示前茬小麦长期秸秆还田后, 后茬棉田土壤硝态氮(NO3−-N)与酚酸含量的时空变化对棉苗根系生长影响的生理机制, 可为完善秸秆还田技术提供理论支撑。试验于2021年与2022年在小麦长期秸秆定位还田地块进行。以棉花品种‘中棉所425’为材料, 设置小麦秸秆不还田(CK)与小麦秸秆还田(S) 2个处理。结果表明, 秸秆还田增加了土壤NO3−-N与酚酸含量, 对0~20 cm土层的影响大于20~40 cm; 随秸秆还田后时间推移, 土壤NO3−-N与酚酸含量呈先增加后降低趋势, 且在秸秆还田后24~31 d达到峰值。秸秆还田后31 d前, 秸秆还田处理棉株根系活力、根系NO3−-N含量、硝酸还原酶活性、根系生物量和形态指标均显著低于CK处理, 31 d后则呈相反趋势。相关分析表明, 0~20 cm土壤酚酸含量与根系活力、根系NO3−-N含量、棉花根系长度、直径、表面积和地上部生物量呈显著负相关; 不同土层NO3−-N含量与棉苗形态、生理指标及生物量之间呈正相关但未达显著水平。秸秆还田对棉花幼苗生长影响呈“先抑后促”的趋势, 秸秆还田后31 d内, 酚酸含量的增加降低了棉苗根系活力和阻碍了根系生长、抑制了棉苗对NO3−-N的吸收利用, 表明秸秆还田前期对棉株生长的“抑制效应”大于秸秆的“肥料效应”, 秸秆还田31 d后, 秸秆的“肥料效应”大于酚酸的“抑制效应”, 促进棉株根系的生长。Abstract: Nitrate nitrogen (NO3−-N) is the main form of nitrogen released from crop straws under dry farming conditions, and is the main form of nitrogen absorption by the roots and the plant root growth regulatory signal of cotton. Straw return affects the availability of soil and fertilizer N, thus inhibiting the early growth of crops and even decreasing crop yields. The straw return also releases many phenolic acids, inhibiting crop seed germination and root growth. This study aimed to reveal the mechanisms by which the contents dynamics of NO3−-N and phenolic acid in the soil affect the growth of cotton seedlings under the return of wheat straw. Based on the 11-year return of wheat straw, field experiments were conducted in 2021 and 2022 at Jiangsu Academy of Agricultural Sciences Experimental Dtation in Nanjing, Jiangsu Province, China. Two treatments, wheat straw removal (CK) and wheat straw return (S), were applied. The contents of NO3−-N and phenolic acid in the soil of the subsequent cotton field, the NO3−-N content and nitrate reductase activity of cotton seedlings, the activity and morphology indices of cotton roots, and the biomass of cotton seedlings were investigated. The results demonstrated that straw return increased the contents of NO3−-N and phenolic acid in the soil, and the effect on the 0–20 cm soil layer was greater than that on the 20–40 cm soil layer. With a delay of days after the straw return, the contents of NO3−-N and phenolic acid in the soil increased and then decreased, reaching a peak at 24−31 d after the straw return. Within 31 days of straw return, the root activity, root NO3−-N content, nitrate reductase (NR) activity, root biomass, and morphological indices of cotton seedlings under the straw return treatment were significantly lower than those under the CK treatment but showed the opposite trend after 31 d of straw return. The correlation analysis showed that phenolic acid content in 0–20 cm soil were significantly and negatively correlated with the root activity, NO3−-N content, length, diameter, and surface area of the root, and the aboveground biomass of cotton seedlings. The NO3−-N content in different soil layers was positively correlated with the index of morphology and physiology and the biomass of cotton seedlings but did not reach a significant level. The effect of straw return on the growth of cotton seedlings showed a trend of “first inhibition and then promotion.” Within 31 d after straw return, the “inhibition effect” of phenolic acid in soil on the growth of cotton seedlings was greater than that of the “fertilization effect” of straw. Higher phenolic acid content reduced the root activity and root growth of cotton seedlings, inhibiting the absorption and utilization of NO3−-N in cotton seedlings. After 31 d of straw return, the “fertilization” effect of straw was greater than the “inhibition” effect of phenolic acid, promoting the root growth of cotton seedlings.
-
Key words:
- Whet straw return /
- NO3−-N /
- Phenolic acids /
- Root activity /
- Nitrate reductase /
- Subsequent cotton
-
图 2 小麦秸秆还田对后茬棉田土壤NO3−-N含量和酚酸含量动态变化的影响
CK: 秸秆不还田; S: 秸秆还田。*和**分别表示P<0.05与P<0.01水平差异显著。CK: no straw return; S: wheat straw return. * and ** indicate significant difference at P<0.05 and P<0.01 levels, respectively.
Figure 2. Effects of wheat straw return on the content dynamics of NO3−-N and phenolic acid in soil of subsequent cotton
图 4 小麦秸秆还田对后茬棉苗NO3−-N含量和硝酸还原酶(NR)活性动态变化的影响
CK: 秸秆不还田; S: 秸秆还田。*和**分别表示P<0.05与P<0.01水平差异显著。CK: no straw return; S: wheat straw return. * and ** indicate significant difference at P<0.05 and P<0.01 levels, respectively.
Figure 4. Effects of wheat straw return on the dynamics of NO3−-N content and nitrate reductase (NR) activity of cotton seedlings
图 5 小麦秸秆还田对后茬棉苗根系形态指标动态变化的影响
CK: 秸秆不还田; S: 秸秆还田。*和**分别表示P<0.05与P<0.01水平差异显著。CK: no straw return; S: wheat straw return. * and ** indicate significant difference at P<0.05 and P<0.01 levels, respectively.
Figure 5. Effects of wheat straw return on the dynamics of root morphological indexes of cotton seedlings
表 1 小麦秸秆还田棉苗生物量的动态变化
Table 1. Dynamics of biomass of cotton seedlings under the return of wheat straw
mg∙plant−1 年份
Year处理
Treatment部位
Part秸秆还田后天数 Days after straw return (d) 17 24 31 38 45 2021 CK 根系
Root9.0±0.4 26.0±2.7* 63.0±2.5* 202.4±15.2 533.2±20.4 S 8.0±0.4 16.0±1.3 50.0±2.0 256.5±10.5* 720.6±30.0* CK 地上部
Shoot100.1±4.5* 331.3±10.3* 851.3±9.0** 1875.4±66.5 5973.1±95.5 S 80.2±3.9 303.4±12.3 790.2±14.0 2161.5±124.1* 6370.0±262.3* 2022 CK 根系
Root10.9±0.5* 40.0±1.8 99.0±9.8** 295.4±18.8 457.2±28.6 S 7.7±0.1 38.1±0.6 77.9±5.8 350.3±33.3* 616.1±64.5** CK 地上部
Shoot96.5±11.1 172.6±9.9* 492.2±30.1** 1783.9±71.4 4300.5±218.5 S 90.0±7.4 141.8±7.6 343.7±28.0 2083.0±48.4 5175.0±167.4* CK: 秸秆不还田; S: 秸秆还田。*和**分别表示P<0.05与P<0.01水平差异显著。CK: no straw return; S: wheat straw return. * and ** indicate significant difference at P<0.05 and P<0.01 levels, respectively. 表 2 土壤酚酸、NO3−-N含量与棉苗根系生理、根系形态及生物量的相关性分析
Table 2. Correlation analysis of soil phenolic acid, NO3−-N contents with root physiology, morphology and plant biomass of cotton seedlings
土层深度
Soil depth
(cm)根系生理指标 Root physiology 根系形态指标 Root morphology 生物量 Biomass 根系活力
Root activityNO3−-N含量
NO3−-N contentNR活性
NR activity长度
Length直径
Diameter表面积
Surface area体积
Volume根系
Root地上部
Shoot酚酸含量
Phenolic acid content0~20 −0.678* −0.663* −0.425 −0.675* −0.700* −0.656* −0.621 −0.628 −0.658* 20~40 −0.706* −0.404 −0.315 −0.634* −0.446 −0.607 −0.578 −0.577 −0.613 NO3−-N含量
NO3−-N content0~20 0.348 0.610 0.433 0.154 0.182 0.157 0.176 0.209 0.163 20~40 0.529 0.625 0.069 0.443 0.542 0.523 0.581 0.607 0.533 N=10, * and ** indicate significant correlation at P<0.05 and P<0.01 levels, respectively. -
[1] KUMAR M, MITRA S, MAZUMDAR S P, et al. Improvement of soil health and system productivity through crop diversification and residue incorporation under jute-based different cropping systems[J]. Agronomy, 2021, 11(8): 1622 doi: 10.3390/agronomy11081622 [2] YANG C Q, LI J N, ZHANG G W, et al. Barley straw combined with urea and controlled-release nitrogen fertilizer improves lint yield and nitrogen utilization of field-seeded cotton[J]. Agronomy, 2022, 12(5): 1208 doi: 10.3390/agronomy12051208 [3] 刘瑞显, 周治国, 陈德华, 等. 长江流域棉区棉花“三集中”的轻简高效理论与栽培途径[J]. 中国棉花, 2018, 45(9): 11−12,17 doi: 10.11963/1000-632X.lrxzzg.20180920LIU R X, ZHOU Z G, CHEN D H, et al. Theory of “Sanjizhong” and technology on simple and efficient cotton cultivation in the Yangtze River valley[J]. China Cotton, 2018, 45(9): 11−12,17 doi: 10.11963/1000-632X.lrxzzg.20180920 [4] 杨长琴, 周治国, 陈德华, 等. 长江流域棉区麦(油)棉两熟种植的棉花增密减肥轻简高效技术[J]. 中国棉花, 2018, 45(10): 1−4YANG C Q, ZHOU Z G, CHEN D H, et al. Light-simplified and high efficient cultivation technologies of cotton with increased planting density and reduced fertilizer application for wheat/rape-cotton cropping system in the Yangtze valley[J]. China Cotton, 2018, 45(10): 1−4 [5] 孙磊, 陈兵林, 周治国. 麦棉套作Bt棉花根系分泌物对土壤速效养分及微生物的影响[J]. 棉花学报, 2007, 19(1): 18−22 doi: 10.3969/j.issn.1002-7807.2007.01.004SUN L, CHEN B L, ZHOU Z G. Effects of root exudates on available soil nutrition, micro-organism quantity of Bt cotton in wheat-cotton intercropping system[J]. Cotton Science, 2007, 19(1): 18−22 doi: 10.3969/j.issn.1002-7807.2007.01.004 [6] 徐国伟, 吴长付, 刘辉, 等. 秸秆还田与氮肥管理对水稻养分吸收的影响[J]. 农业工程学报, 2007, 23(7): 191−195 doi: 10.3321/j.issn:1002-6819.2007.07.037XU G W, WU C F, LIU H, et al. Effects of straw residue return and nitrogen management on nutrient absorption of rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(7): 191−195 doi: 10.3321/j.issn:1002-6819.2007.07.037 [7] 李逢雨, 孙锡发, 冯文强, 等. 麦秆、油菜秆还田腐解速率及养分释放规律研究[J]. 植物营养与肥料学报, 2009, 15(2): 374−380 doi: 10.3321/j.issn:1008-505X.2009.02.018LI F Y, SUN X F, FENG W Q, et al. Nutrient release patterns and decomposing rates of wheat and rapeseed straw[J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 374−380 doi: 10.3321/j.issn:1008-505X.2009.02.018 [8] 李晨阳, 孔祥强, 董合忠. 植物吸收转运硝态氮及其信号调控研究进展[J]. 核农学报, 2020, 34(5): 982−993 doi: 10.11869/j.issn.100-8551.2020.05.0982LI C Y, KONG X Q, DONG H Z. Nitrate uptake, transport and signaling regulation pathways[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(5): 982−993 doi: 10.11869/j.issn.100-8551.2020.05.0982 [9] VEGA A, OBRIEN J A, GUTIERREZ R A, et al. Nitrate and hormonal signaling crosstalk for plant growth and development[J]. Current Opinion in Plant Biology, 2019, 52: 155−163 doi: 10.1016/j.pbi.2019.10.001 [10] 张国娟, 濮晓珍, 张鹏鹏, 等. 干旱区棉花秸秆还田和施肥对土壤氮素有效性及根系生物量的影响[J]. 中国农业科学, 2017, 50(13): 2624−2634 doi: 10.3864/j.issn.0578-1752.2017.13.020ZHANG G J, PU X Z, ZHANG P P, et al. Effects of stubble returning to soil and fertilization on soil nitrogen availability and root biomass of cotton in arid region[J]. Scientia Agricultura Sinica, 2017, 50(13): 2624−2634 doi: 10.3864/j.issn.0578-1752.2017.13.020 [11] HODGE A, ROBINSON D, FITTER A. Are microorganisms more effective than plants at competing for nitrogen?[J]. Trends in Plant Science, 2000, 5(7): 304−308 doi: 10.1016/S1360-1385(00)01656-3 [12] 郑皓皓, 胡晓军, 贾敬业, 等. 麦秸还田耕层酚酸变化及其对夏玉米生长的影响[J]. 中国生态农业学报, 2001, 9(4): 79−81ZHENG H H, HU X J, JIA J Y, et al. Changes of the phenolic acid in plough layer and its effects on the growth and yield of summer corn with returning wheat straw[J]. Chinese Journal of Eco-Agriculture, 2001, 9(4): 79−81 [13] WU H W, HAIG T, PRATLEY J, et al. Biochemical basis for wheat seedling allelopathy on the suppression of annual ryegrass (Lolium rigidum)[J]. Journal of Agricultural and Food Chemistry, 50(16), 4567–4571 [14] 张国伟, 杨长琴, 刘瑞显, 等. 对羟基苯甲酸和间苯三酚对棉花幼苗根系线粒体功能和根系生长的影响[J]. 应用生态学报, 2018, 29(1): 231−237ZHANG G W, YANG C Q, LIU R X, et al. Effects of p-hydroxybenzoic acid and phloroglucinol on mitochondria function and root growth in cotton (Gossypium hirsutum L.) seedling roots[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 231−237 [15] BAZIRAMAKENGA R, LEROUX G D, SIMARD R R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots[J]. Journal of Chemical Ecology, 1995, 21(9): 1271−1285 doi: 10.1007/BF02027561 [16] INDERJIT, DUKE S O. Ecophysiological aspects of allelopathy[J]. Planta, 2003, 217(4): 529−539 doi: 10.1007/s00425-003-1054-z [17] YOUNG C C, ZHU THORNE L R, WALLER G R. Phytotoxic potential of soils and wheat straw in rice rotation cropping systems of subtropical Taiwan[J]. Plant and Soil, 1989, 120(1): 95−101 doi: 10.1007/BF02370295 [18] KONG C H, ZHANG S Z, LI Y H, et al. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals[J]. Nature Communications, 2018, 9: 3867 doi: 10.1038/s41467-018-06429-1 [19] 刘瑞显, 张国伟, 杨长琴, 等. 小麦秸秆浸提液和腐解液对棉花种子发芽及幼苗生长的化感效应[J]. 棉花学报, 2016, 28(4): 375−383 doi: 10.11963/issn.1002-7807.201604009LIU R X, ZHANG G W, YANG C Q, et al. Allelopathic effects of wheat straw extract and decomposition liquid on cotton seed germination and seedling growth[J]. Cotton Science, 2016, 28(4): 375−383 doi: 10.11963/issn.1002-7807.201604009 [20] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000LU R K. Methods of Soil Agrochemical Analysis[M]. Beijing: China Agriculture Scientech Press, 2000 [21] 尹承苗, 王功帅, 李园园, 等. 一种分析土壤中酚酸类物质含量的新方法−以连作苹果园土壤为试材[J]. 中国农业科学, 2013, 46(21): 4612−4619 doi: 10.3864/j.issn.0578-1752.2013.21.025YIN C M, WANG G S, LI Y Y, et al. A new method for analysis of phenolic acids in the soil — Soil from replanted apple orchards was investigated[J]. Scientia Agricultura Sinica, 2013, 46(21): 4612−4619 doi: 10.3864/j.issn.0578-1752.2013.21.025 [22] 王学奎. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006WANG X K. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2006 [23] 曹岩坡, 高志奎, 何俊萍, 等. 外源水杨酸对韭菜硝酸盐累积及还原同化的影响[J]. 园艺学报, 2009, 36(3): 415−420 doi: 10.3321/j.issn:0513-353X.2009.03.016CAO Y P, GAO Z K, HE J P, et al. Effects of exogenous salicylic acid on nitrate accumulation and reduction and assimilation in the leaves of Chinese chive[J]. Acta Horticulturae Sinica, 2009, 36(3): 415−420 doi: 10.3321/j.issn:0513-353X.2009.03.016 [24] ZHANG S L, WANG Y, SHEN Q S. Influence of straw amendment on soil physicochemical properties and crop yield on a consecutive mollisol slope in northeastern China[J]. Water, 2018, 10(5): 559 doi: 10.3390/w10050559 [25] ZHAO S C, LI K J, ZHOU W, et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China[J]. Agriculture, Ecosystems & Environment, 2016, 216: 82−88 [26] CHATTERJEE A. Annual crop residue production and nutrient replacement costs for bioenergy feedstock production in United States[J]. Agronomy Journal, 2013, 105(3): 685−692 doi: 10.2134/agronj2012.0350 [27] 杨延杰, 王晓伟, 赵康, 等. 邻苯二甲酸对萝卜种子萌发、幼苗叶片膜脂过氧化及渗透调节物质的影响[J]. 生态学报, 2013, 33(19): 6074−6080 doi: 10.5846/stxb201304260826YANG Y J, WANG X W, ZHAO K, et al. Effects of phthalic acid on seed germination, membrane lipid peroxidation and osmoregulation substance of radish seedlings[J]. Acta Ecologica Sinica, 2013, 33(19): 6074−6080 doi: 10.5846/stxb201304260826 [28] 李彦斌, 刘建国, 程相儒, 等. 秸秆还田对棉花生长的化感效应[J]. 生态学报, 2009, 29(9): 4942−4948 doi: 10.3321/j.issn:1000-0933.2009.09.042LI Y B, LIU J G, CHENG X R, et al. The allelopathic effects of returning cotton stalk to soil on the growth of succeeding cotton[J]. Acta Ecologica Sinica, 2009, 29(9): 4942−4948 doi: 10.3321/j.issn:1000-0933.2009.09.042 [29] SOON Y K, LUPWAYI N Z. Straw management in a cold semi-arid region: impact on soil quality and crop productivity[J]. Field Crops Research, 2012, 139: 39−46 doi: 10.1016/j.fcr.2012.10.010 [30] 张承胤, 代丽, 甄文超. 玉米秸秆还田对小麦根部病害化感作用的模拟研究[J]. 中国农学通报, 2007, 23(5): 298−301 doi: 10.3969/j.issn.1000-6850.2007.05.069ZHANG C Y, DAI L, ZHEN W C. Simulation of allelopathy in maize straw returning on root disease of wheat[J]. Chinese Agricultural Science Bulletin, 2007, 23(5): 298−301 doi: 10.3969/j.issn.1000-6850.2007.05.069 [31] 李晓韦, 韩上, 雷之萌, 等. 氮素形态对油菜秸秆腐解及养分释放规律的影响[J]. 中国生态农业学报(中英文), 2019, 27(5): 717−725LI X W, HAN S, LEI Z M, et al. Effects of nitrogen forms on decomposition and nutrient release of rapeseed straw[J]. Chinese Journal of Eco-Agriculture, 2019, 27(5): 717−725 [32] YU J Q, MATSUI Y. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings[J]. Journal of Chemical Ecology, 1997, 23(3): 817−827 doi: 10.1023/B:JOEC.0000006413.98507.55 [33] 王华田, 杨阳, 王延平, 等. 外源酚酸对欧美杨‘I-107’水培幼苗硝态氮吸收利用的影响[J]. 植物生态学报, 2011, 35(2): 214−222 doi: 10.3724/SP.J.1258.2011.00214WANG H T, YANG Y, WANG Y P, et al. Effects of exogenous phenolic acids on nitrate absorption and utilization of hydroponic cut-tings of Populus × euramericana ‘Neva’[J]. Chinese Journal of Plant Ecology, 2011, 35(2): 214−222 doi: 10.3724/SP.J.1258.2011.00214 [34] 张淑香, 高子勤. 连作障碍与根际微生态研究Ⅱ. 根系分泌物与酚酸物质[J]. 应用生态学报, 2000, 11(1): 152−156 doi: 10.3321/j.issn:1001-9332.2000.01.039ZHANG S X, GAO Z Q. Continuous cropping obstacle and rhizospheric microecology Ⅱ. Root exudates and phenolic acids[J]. Chinese Journal of Applied Ecology, 2000, 11(1): 152−156 doi: 10.3321/j.issn:1001-9332.2000.01.039 [35] BLUM U, GERIG T M. Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies[J]. Journal of Chemical Ecology, 2005, 31(8): 1907−1932 doi: 10.1007/s10886-005-5934-5 [36] 吕卫光, 张春兰, 袁飞, 等. 化感物质抑制连作黄瓜生长的作用机理[J]. 中国农业科学, 2002, 35(1): 106−109 doi: 10.3321/j.issn:0578-1752.2002.01.021LYU W G, ZHANG C L, YUAN F, et al. Mechanism of allelochemicals inhibiting continuous cropping cucumber growth[J]. Scientia Agricultura Sinica, 2002, 35(1): 106−109 doi: 10.3321/j.issn:0578-1752.2002.01.021 [37] CHON S U, CHOI S K, JUNG S Y, et al. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass[J]. Crop Protection, 2002, 21(10): 1077−1082 doi: 10.1016/S0261-2194(02)00092-3 [38] 张志忠, 孙志浩, 陈文辉, 等. 有机酸类化感物质对甜瓜的化感效应[J]. 生态学报, 2013, 33(15): 4591−4598 doi: 10.5846/stxb201204270609ZHANG Z Z, SUN Z H, CHEN W H, et al. Allelopathic effects of organic acid allelochemicals on melon[J]. Acta Ecologica Sinica, 2013, 33(15): 4591−4598 doi: 10.5846/stxb201204270609 [39] ASIMINA P, BILLY O, KAMERAN I. Allelopathic effect of some weeds on the germination of seeds of selected crops grown in Akwa Ibom State, Nigeria[J]. World Journal of Agricultural Research, 2013, 1(4): 59−64 [40] 刘艳慧, 王双磊, 李金埔, 等. 棉花秸秆还田对土壤速效养分及微生物特性的影响[J]. 作物学报, 2016, 42(7): 1037−1046 doi: 10.3724/SP.J.1006.2016.01037LIU Y H, WANG S L, LI J P, et al. Effects of cotton straw returning on soil available nutrients and microbial characteristics[J]. Acta Agronomica Sinica, 2016, 42(7): 1037−1046 doi: 10.3724/SP.J.1006.2016.01037 -