-
摘要: 水资源是基础性自然资源和重要的战略资源。盐碱地多分布于干旱半干旱地区, 淡水资源短缺是盐碱区农业可持续发展的主要限制因素。同时盐碱区较为丰富的咸水微咸水资源、土地资源和光热资源等为盐碱区农业可持续发展提供了可能。本文针对咸水灌溉影响耕地质量、作物生长、产量和品质等问题, 综述了基于水质的咸水分类、咸水灌溉制度与灌溉方式和地下水埋深等影响咸水在农业生产中安全利用的因素, 阐述了不同矿化度咸水灌溉, 土壤水力特性、理化性质、温室气体排放等土壤质量变化情况和对作物生长发育、产量和品质的影响, 明确了有机物料、咸水灌溉制度、覆盖和耕作等农艺措施、水肥盐多因素调控和耐盐作物适盐种植等农业措施的作用。咸水灌溉下土壤质量呈下降趋势, 有机物料的施用、秸秆还田和合理的耕作等调控措施通过影响土壤质量保证咸水的安全利用。与旱作相比, 咸水灌溉可以起到明显的增产作用, 在合理的咸水范围内还能提升品质。在新形势下, 未来将面向国家粮食安全重大需求, 以协同提升土壤质量、作物产量和品质为多目标, 系统开展咸水非充分灌溉、水肥盐综合调控、咸水灌溉对土壤质量和作物咸水精准灌溉机理过程研究、技术研发和模式示范工作, 为缺水盐渍区农业可持续发展提供理论依据和技术支撑。Abstract: Fresh water is a basic natural and important strategic resource. Most salt-affected soils are distributed in arid and semi-arid areas, and a shortage of freshwater resources is the most important limiting factor for sustainable agricultural development. However, the relatively rich saline water, land, solar, and thermal resources in saline-alkali areas provide sustainable regional agriculture development potential. To address challenges of soil quality decline and crop yield reduction induced by saline water irrigation, this study summarizes the factors affecting the safe utilization of saline water and the impact mechanism of saline water irrigation on soil hydraulic characteristics, soil physicochemical properties, crop growth, grain yield, and quality. First, freshwater, brackish water, and saline water classifications were as previously described. Factors affecting the safe utilization of saline water include saline water quality, irrigation amount, irrigation methods, and the groundwater table. Second, saline water irrigation has negative effects on soil quality, which increases the salinity of the surface soil, destroys the soil structure, and further affects the soil hydraulic characteristics, water infiltration, and salt distribution, affecting greenhouse gas emissions. Third, crops grow slowly and die because of the lower photosynthetic rate after saline water irrigation. However, most of the treatments irrigated using saline water improved the grain yield compared with the rainfed treatment and improved the grain quality under optimal salinity water. Furthermore, based on field experiments, most crops have optimal saline water thresholds. Finally, we analyzed the regulatory effects of agricultural practices such as organic fertilizer application, straw mulching, tillage, saline water irrigation schedules, cropping systems, and salt-tolerant crop planting. In the future, to ensure food and water security, it is necessary to conduct the mechanism process and technology research, and develop model to demonstrate the effects of saline water deficit irrigation and water-fertilizer-salt comprehensive regulation on the change in soil quality after saline water irrigation, and the effects of saline water precision irrigation on crop production and the ecosystem, which will provide a theoretical basis and technical support for the sustainable development of agriculture in water-deficient and saline areas.
-
Key words:
- Saline water irrigation /
- Soil quality /
- Crop production /
- Regulation measures
-
表 1 不同阴离子水化学类型矿化度与电导率的关系[8]
Table 1. Relationship between the anionic type mineralization and electrical conductivity of saline water
阴离子水化学类型
Anionic type样品组数
Number of samples线性回归方程
Equation相关系数
Correlation coefficient重碳酸型 Bicarbonate type 144 M=0.882×EC+21.45 0.967 重碳酸氯化物硫酸型 Bicarbonate chloride sulfate type 115 M=0.818×EC−15.39 0.971 重碳酸氯化物型 Bicarbonate chloride type 125 M=0.777×EC+76.77 0.927 重碳酸硫酸型 Bicarbonate sulfuric acid type 36 M=0.888×EC−20.39 0.992 硫酸氯化物重碳酸型 Sulfuric chloride bicarbonate type 19 M=0.805×EC+6.759 0.880 氯化物重碳酸硫酸型 Chloride bicarbonate sulfuric acid type 46 M=0.792×EC−47.43 0.990 氯化物硫酸重碳酸型 Chloride sulfuric acid bicarbonate type 35 M=0.854×EC−231.82 0.979 氯化物重碳酸型 Chloride bicarbonate type 27 M=0.725×EC+49.16 0.961 重碳酸硫酸氯化物型 Bicarbonate sulfate chloride type 72 M=0.864×EC−54.52 0.986 平均 Mean 626 M=0.766×EC+109.89 0.982 公式中, M为矿化度(mg·L−1), EC为电导率(μS·cm−1)。In the equation, M is mineralization degree (mg·L−1), EC is electrical conductivity (μS·cm−1). 表 2 天然水水质的分类
Table 2. Classification of natural water
g·L−1 O. A. Aleken分类(1970)
O. A. Aleken (1970) classification美国分类 (1970)
American classification (1970)中国分类
Chinese classification舒卡列夫分类
Shukalev classification淡水 Freshwater <1 <1 <1.0 <1.5 微咸水 Brackish water 1~25 1~10 1.0~3.0 1.5~10.0 咸水 Saline water 25~50 10~100 3.0~10.0 10.0~40.0 盐水 Brine >50 >100 10.0~50.0 >40.0 卤水 Bittern >50.0 表 3 基于相对产量和土壤电导率关系的主要大田农作物的耐盐能力
Table 3. Salt tolerance of main field crops based on the relative yield and electrical conductivity
盐分敏感程度
Salinity sensitivity作物
Crop电导率阈值
Threshold of electrical conductivity (dS·m−1)敏感性
Sensibility [%∙(dS∙m−1)−1]敏感 菜豆 Beans 1.0 17.0 Sensitive 水稻 Rice 3.0 12.0 玉米 Maize 1.7 12.0 中等敏感 苜蓿 Alfalfa 2.0 7.3 Moderate sensitive 中等耐受 小麦 Wheat 6.0 7.1 Moderate tolerance 大豆 Soybean 5.0 20.0 高粱 Sorghum 6.8 16.0 耐盐 棉花 Cotton 7.7 5.2 Tolerant 大麦 Oats 8.0 5.0 资料来源: Maas[65]和Tanji [66]。表中数据根据公式Y/Y0=100−b(EC−t)计算。其中Y/Y0为相对产量; b是盐敏感性, 表示为EC变化引起的相对产量降低幅度[%∙(dS∙m−1)−1]; t为电导率(EC)的阈值, EC<t, 对相对产量没有影响, EC>t, 相对产量降低。Source: Maas (1984)[65]和Tanji (1990)[66]. The data are calculated with the formula Y/Y0=100−b(EC−t). In the formula, Y/Y0 is the relative yield; EC is electrical conductivity. b is the crop sensitity to salinity, inidcating decreasing of relative yield when EC increase [%∙(dS∙m−1)−1]. t is the threshold of EC (dS∙m−1). There isn’t impact of EC on relative yield when EC is below t. The relative yield will decrease when EC is higher than t. -
[1] 康绍忠. 藏粮于水 藏水于技−发展高水效农业 保障国家食物安全[J]. 中国水利, 2022(13): 1−5KANG S Z. Store grain in water and technology— development of highly-efficient agricultural water use for ensuring national food security[J]. China Water Resources, 2022(13): 1−5 [2] Food and Agriculture Organization of United Nations. Emissions totals[EB/OL]. [2022-11-07]. https://www.fao.org/faostat/zh/#data/GT [3] 刘友兆, 付光辉. 中国微咸水资源化若干问题研究[J]. 地理与地理信息科学, 2004, 20(2): 57−60LIU Y Z, FU G H. Utilization of gentle salty water resource in China[J]. Geography and Geo-Information Science, 2004, 20(2): 57−60 [4] 陈素英, 张喜英, 邵立威, 等. 微咸水非充分灌溉对冬小麦生长发育及夏玉米产量的影响[J]. 中国生态农业学报, 2011, 19(3): 579−585 doi: 10.3724/SP.J.1011.2011.00579CHEN S Y, ZHANG X Y, SHAO L W, et al. Effect of deficit irrigation with brackish water on growth and yield of winter wheat and summer maize[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3): 579−585 doi: 10.3724/SP.J.1011.2011.00579 [5] 张喜英, 刘小京, 陈素英, 等. 环渤海低平原农田多水源高效利用机理和技术研究[J]. 中国生态农业学报, 2016, 24(8): 995−1004ZHANG X Y, LIU X J, CHEN S Y, et al. Efficient utilization of various water sources in farmlands in the low plain nearby Bohai Sea[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 995−1004 [6] SU H, SUN H Y, DONG X L, et al. Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation[J]. Agricultural Water Management, 2021, 258: 107203 doi: 10.1016/j.agwat.2021.107203 [7] 李佳, 曹彩云, 郑春莲, 等. 河北低平原冬小麦长期咸水灌溉矿化度阈值研究[J]. 中国生态农业学报, 2016, 24(5): 643−651LI J, CAO C Y, ZHENG C L, et al. Salinity threshold of long-term saline water irrigation for winter wheat in Hebei Lowland Plain[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 643−651 [8] 刘中业, 徐建国, 祁晓凡, 等. 地下水电导率与矿化度相关关系分析−以鲁北平原为例[J]. 山东国土资源, 2013, 29(9): 57−60, 64LIU Z Y, XU J G, QI X F, et al. Analysis on groundwater conductivity and salinity correlation — Setting Lubei Plain in Shandong Province as an example[J]. Shandong Land and Resources, 2013, 29(9): 57−60, 64 [9] 高宗军, 郭健斌, 魏久传. 水文地质学[M]. 徐州: 中国矿业大学出版社, 2011GAO Z J, GUO J B, WEI J C. Hydrogeology[M]. Xuzhou: China University of Mining & Technology Press, 2011 [10] 中国环境科学研究院, 生态环境部南京环境科学研究所, 生态环境部土壤与农业农村生态环境监管技术中心, 农业农村部环境保护科研监测所. GB 5084—2021. 《农田灌溉水质标准》[S]. 北京: 中国环境出版集团, 2021Chinese Academy of Environmental Sciences, Nanjing Institute of Environmental Sciences of the Ministry of Ecology and Environment, Technical Center for Soil and Agriculture and Rural Ecological Environment Supervision of the Ministry of Ecological Environment; Environmental Protection Research and Monitoring Institute of the Ministry of Agriculture and Rural Affairs. GB 5084—2021. Standards for Irrigation Water Quality[S]. Beijing: China Environmental Publishing Group, 2021 [11] AYERS R S, WESTCOTT D W. Water quality for agriculture[R]. Rome: FAO Irrigation & Drainage, 1985, Rev. 1 [12] RHOADES J, KANDIAH A, MASHALI A. The use of saline waters for crop production[R]. Rome: FAO Irrigation & Drainage No 48, 1992: 5–6 [13] 郭凯, 巨兆强, 封晓辉, 等. 咸水结冰灌溉改良盐碱地的研究进展及展望[J]. 中国生态农业学报, 2016, 24(8): 1016−1024GUO K, JU Z Q, FENG X H, et al. Advances and expectations of researches on saline soil reclamation by freezing saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1016−1024 [14] 蔡达伟, 孔淑琼, 刘瑞琪. 微咸水农田安全灌溉研究进展[J]. 节水灌溉, 2020(10): 91−95, 100CAI D W, KONG S Q, LIU R Q. A review of brackish water for agricultural safe irrigation[J]. Water Saving Irrigation, 2020(10): 91−95, 100 [15] SAGGU S, KAUSHAL M. Fresh and saline water irrigation through drip and furrow method[J]. International Journal of Tropical Agriculture, 1991, 9: 194−202 [16] 余根坚. 节水灌溉条件下水盐运移与用水管理模式研究[D]. 武汉: 武汉大学, 2014YU G J. Research on water-salt migration and water management mode under water-saving irrigation conditions[D]. Wuhan: Wuhan University, 2014 [17] 李成, 冯浩, 罗帅, 等. 垄膜沟灌对旱区农田土壤盐分及硝态氮运移特征的影响[J]. 水土保持学报, 2019, 33(3): 268−275LI C, FENG H, LUO S, et al. Effects of ridge with plastic mulch-furrow irrigation on soil salt and nitrate nitrogen transport characteristics in arid areas[J]. Journal of Soil and Water Conservation, 2019, 33(3): 268−275 [18] 罗帅. 河套灌区垄膜沟灌模式下不同灌水量对春玉米田水盐氮运移特征的影响[D]. 杨凌: 西北农林科技大学, 2021LUO S. The influence of irrigation amounts on transport characteristics of soil water-salt-nitrogen in spring maize fields under ridge mulched with plastic film-furrow irrigation in Hetao irrigation district[D]. Yangling: Northwest Agricultural and Forest University, 2021 [19] 李国安, 蒋静, 马娟娟, 等. 咸水灌溉对土壤水盐分布和小麦产量的影响[J]. 排灌机械工程学报, 2018, 36(6): 544−552LI G A, JIANG J, MA J J, et al. Effect of saline water irrigation on water-salt distribution and yield of wheat[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(6): 544−552 [20] 陈素英, 邵立威, 孙宏勇, 等. 微咸水灌溉对土壤盐分平衡与作物产量的影响[J]. 中国生态农业学报, 2016, 24(8): 1049−1058CHEN S Y, SHAO L W, SUN H Y, et al. Effect of brackish water irrigation on soil salt balance and yield of both winter wheat and summer maize[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1049−1058 [21] LIU C M. Soil salinity control regarding subsurface water regulation in North China Plain[J]. The Journal of Chinese Geography, 1996, 6(4): 28−37 [22] SEPASKHAH A, KANOONI A, GHASEMI M. Estimating water table contributions to corn and sorghum water use[J]. Agricultural Water Management, 2003, 58(1): 67−79 doi: 10.1016/S0378-3774(02)00081-1 [23] NARJARY B, KUMAR S, MEENA M D, et al. Effects of shallow saline groundwater table depth and evaporative flux on soil salinity dynamics using hydrus-1D[J]. Agricultural Research, 2021, 10(1): 105−115 doi: 10.1007/s40003-020-00484-1 [24] LIU T G, LUO Y. Effects of shallow water tables on the water use and yield of winter wheat (Triticum aestivum L.) under rain-fed condition[J]. Australian Journal of Crop Science, 2011, 5(13): 1692−1697 [25] 张盼盼, 赵慧, 荣昊. 微咸水灌溉对盐碱土水盐运移的影响[J]. 人民长江, 2021, 52(5): 198−202, 208ZHANG P P, ZHAO H, RONG H. Effect of brackishwater content on water and salt transport law in saline-alkali soil irrigation[J]. Yangtze River, 2021, 52(5): 198−202, 208 [26] 唐胜强, 佘冬立. 灌溉水质对土壤饱和导水率和入渗特性的影响[J]. 农业机械学报, 2016, 47(10): 108−114TANG S Q, SHE D L. Influence of water quality on soil saturated hydraulic conductivity and infiltration properties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 108−114 [27] 刘淙琮, 孙宏勇, 郭凯, 等. 不同矿化度咸水在滨海典型植被盐碱地中的入渗特性研究[J]. 土壤, 2022, 54(1): 177−183LIU C C, SUN H Y, GUO K, et al. Infiltration characteristics of saline water with different salinity in coastal saline-alkali land with typical vegetation[J]. Soils, 2022, 54(1): 177−183 [28] 张余良, 陆文龙, 张伟, 等. 长期微咸水灌溉对耕地土壤理化性状的影响[J]. 农业环境科学学报, 2006, 25(4): 969−973ZHANG Y L, LU W L, ZHANG W, et al. Effects of long term brackish water irrigation on characteristics of agrarian soil[J]. Journal of Agro-Environment Science, 2006, 25(4): 969−973 [29] 冯棣, 张俊鹏, 孙池涛, 等. 长期咸水灌溉对土壤理化性质和土壤酶活性的影响[J]. 水土保持学报, 2014, 28(3): 171−176FENG D, ZHANG J P, SUN C T, et al. Effects of long-term irrigation with saline water on soil physical-chemical properties and activities of soil enzyme[J]. Journal of Soil and Water Conservation, 2014, 28(3): 171−176 [30] 时唯伟, 支月娥, 王景, 等. 土壤次生盐渍化与微生物数量及土壤理化性质研究[J]. 水土保持学报, 2009, 23(6): 166−170SHI W W, ZHI Y E, WANG J, et al. Secondary salinization of greenhouse soil and its effects on microbe number and soil physico-chemical properties[J]. Journal of Soil and Water Conservation, 2009, 23(6): 166−170 [31] 周玲玲, 孟亚利, 王友华, 等. 盐胁迫对棉田土壤微生物数量与酶活性的影响[J]. 水土保持学报, 2010, 24(2): 241−246ZHOU L L, MENG Y L, WANG Y H, et al. Effects of salinity stress on cotton field soil microbe quantity and soil enzyme activity[J]. Journal of Soil and Water Conservation, 2010, 24(2): 241−246 [32] DONG X L, WANG J T, ZHANG X J, et al. Long-term saline water irrigation decreased soil organic carbon and inorganic carbon contents[J]. Agricultural Water Management, 2022. DOI: 10.1016/j.agwat.2022.107760 [33] 高聪帅. 环渤海低平原微咸水灌溉对土壤质量和作物影响及调控研究[D]. 北京: 中国科学院大学, 2021GAO C S. Effects of brackish water irrigation on soil quality and crops near the Bohai Low Plain[D]. Beijing: University of Chinese Academy of Sciences, 2021 [34] AKHTAR M, HUSSAIN F, ASHRAF M Y, et al. Influence of salinity on nitrogen transformations in soil[J]. Communications in Soil Science and Plant Analysis, 2012, 43(12): 1674−1683 doi: 10.1080/00103624.2012.681738 [35] 李亚威, 徐俊增, 卫琦, 等. 不同水盐条件下盐渍土硝化过程特征[J]. 排灌机械工程学报, 2018, 36(9): 909−913LI Y W, XU J Z, WEI Q, et al. Soil nitrification process under different soil moisture and salinity conditions[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(9): 909−913 [36] 王帅杰, 杨培岭, 苏艳平, 等. 微咸水与淡水轮灌对春玉米土壤CO2和N2O排放的影响[J]. 中国农业大学学报, 2018, 23(10): 41−48WANG S J, YANG P L, SU Y P, et al. Effects of alternative irrigation between brackish water and fresh water on CO2 and N2O emission from spring maize soil[J]. Journal of China Agricultural University, 2018, 23(10): 41−48 [37] 邹其会. 不同水质灌溉对温室气体排放和氮素运移的影响[D]. 北京: 中国农业大学, 2013ZOU Q H. Effects of treated wastewater and brackish water irrigation on soil greenhouse gas emissions and nitrogen transportation[D]. Beijing: China Agricultural University, 2013 [38] 李双男, 侯振安. 咸水滴灌对棉田土壤氧化亚氮排放的影响[J]. 石河子大学学报: 自然科学版, 2016, 34(3): 301−308LI S N, HOU Z A. Effect of drip irrigation with saline water on soil nitrous oxide emissions in cotton field[J]. Journal of Shihezi University: Natural Science, 2016, 34(3): 301−308 [39] KONTOPOULOU C, BILALS D, PAPPA V A, et al. Effects of organic farming practices and salinity on yield and greenhouse gas emission from a common bean crop[J]. Scientia Horticulture, 2015, 183: 48–57 [40] MUNNS R. Comparative physiology of salt and water stress[J]. Plant, Cell & Environment, 2002, 25(2): 239−250 [41] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651−681 doi: 10.1146/annurev.arplant.59.032607.092911 [42] CRAMER G R, LÄUCHLI A, EPSTEIN E. Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root growth of cotton[J]. Plant Physiology, 1986, 81(3): 792−797 doi: 10.1104/pp.81.3.792 [43] 弋良朋, 王祖伟. 盐胁迫下3种滨海盐生植物的根系生长和分布[J]. 生态学报, 2011, 31(5): 1195−1202YI L P, WANG Z W. Root system characters in growth and distribution among three littoral halophytes[J]. Acta Ecologica Sinica, 2011, 31(5): 1195−1202 [44] 贾秀苹, 岳云, 陈炳东. 盐胁迫对油葵生育时期和农艺性状的影响分析[J]. 作物杂志, 2009(6): 45−48JIA X P, YUE Y, CHEN B D. Influence of salt stress on maturity and agronomic characters of oil sunflower[J]. Crops, 2009(6): 45−48 [45] 李洪亮. 盐胁迫对水稻生育时期和农艺性状的影响[J]. 黑龙江农业科学, 2010(11): 18−20LI H L. Effect of salt stress on maturity and agronomic characters of rice[J]. Heilongjiang Agricultural Sciences, 2010(11): 18−20 [46] 郑延海. 冬小麦对盐分与臭氧胁迫的生理生态响应机理研究[D]. 北京: 中国科学院研究生院, 2009ZHENG Y H. Ecophysiological response mechanism of winter wheat (Triticum aestivum L.) to salinity and ozone stresses[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2009 [47] 苏寒, 王金涛, 董心亮, 等. 不同质量浓度咸水灌溉对冬小麦产量和生理生化特性的影响[J]. 灌溉排水学报, 2021, 40(8): 1−9SU H, WANG J T, DONG X L, et al. Effects of different saline water irrigation on yield, physiological and biochemical traits of winter wheat[J]. Journal of Irrigation and Drainage, 2021, 40(8): 1−9 [48] 于潇, 侯云寒, 徐征和, 等. 微咸水灌溉对冬小麦光合及荧光动力学参数的影响[J]. 节水灌溉, 2019(2): 102−106YU X, HOU Y H, XU Z H, et al. Effects of brackish water irrigation on photosynthetic characteristics and fluorescence kinetics parameters of winter wheat[J]. Water Saving Irrigation, 2019(2): 102−106 [49] 吴忠东, 王全九. 不同微咸水组合灌溉对土壤水盐分布和冬小麦产量影响的田间试验研究[J]. 农业工程学报, 2007, 23(11): 71−76WU Z D, WANG Q J. Field study on impacts of soil water-salt distribution and winter wheat yield by different saline water combination irrigations[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(11): 71−76 [50] 孙宏勇, 刘小京, 张喜英. 盐碱地水盐调控研究[J]. 中国生态农业学报, 2018, 26(10): 1528−1536SUN H Y, LIU X J, ZHANG X Y. Regulations of salt and water of saline-alkali soil: a review[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1528−1536 [51] 尚伟, 石建初, 牛灵安, 等. 灌溉水矿化度及盐分带入量对小麦相对产量影响的统计分析[J]. 灌溉排水学报, 2009, 28(5): 41−44SHANG W, SHI J C, NIU L A, et al. Statistical analysis of the relationship between irrigated saline water’s mineralization degree/salt mass and the relative yield of wheat[J]. Journal of Irrigation and Drainage, 2009, 28(5): 41−44 [52] 王辉. 我国微咸水灌溉研究进展[J]. 节水灌溉, 2016(6): 59−63WANG H. Advances in study of brackish water irrigation in China[J]. Water Saving Irrigation, 2016(6): 59−63 [53] ZHANG J P, LI K J, GAO Y, et al. Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model[J]. Agricultural Water Management, 2022, 261: 107355 doi: 10.1016/j.agwat.2021.107355 [54] 毛振强, 宇振荣, 马永良. 微咸水灌溉对土壤盐分及冬小麦和夏玉米产量的影响[J]. 中国农业大学学报, 2003, 8(S1): 20−25MAO Z Q, YU Z R, MA Y L. Influence of brackish water on the soil salt regime and yield of winter wheat and summer maize[J]. Journal of China Agricultural University, 2003, 8(S1): 20−25 [55] 陈佩, 王金涛, 董心亮, 等. 蔬菜咸水灌溉研究进展[J]. 中国生态农业学报(中英文), 2022, 30(5): 799−808CHEN P, WANG J T, DONG X L, et al. Review of research development associated with the application of saline water irrigation to vegetables[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 799−808 [56] 徐云岭, 余叔文. 植物盐胁迫蛋白[J]. 植物生理学通讯, 1989, 25(2): 12−16XU Y L, YU S W. Salt-stress proteins in plants[J]. Plant Physiology Communications, 1989, 25(2): 12−16 [57] 周瑞莲, Pasternak Dov, 赵哈林. 沙漠地区盐水灌溉对牧草产量及品质的影响[J]. 应用生态学报, 2002, 13(8): 985−989 doi: 10.3321/j.issn:1001-9332.2002.08.015ZHOU R L, PASTERNAK D, ZHAO H L. Influence of saltwater irrigation on the yield and quality of Cynodon dactylon under desert conditions[J]. Chinese Journal of Applied Ecology, 2002, 13(8): 985−989 doi: 10.3321/j.issn:1001-9332.2002.08.015 [58] 马玉诏, 党红凯, 李科江, 等. 咸水灌溉对冬小麦籽粒品质特性和产量的影响[J]. 应用生态学报, 2022, 33(4): 1063−1068MA Y Z, DANG H K, LI K J, et al. Effects of brackish water irrigation on grain quality characteristics and yield of winter wheat[J]. Chinese Journal of Applied Ecology, 2022, 33(4): 1063−1068 [59] 肖丹丹. 不同浓度盐水灌溉对水稻产量、叶片生理特征及品质的影响[D]. 扬州: 扬州大学, 2021XIAO D D. Effects of salty water irrigation with different concentrations on rice yield, leaf physiological characteristics and grain quality[D]. Yangzhou: Yangzhou University, 2021 [60] 翟彩娇, 邓先亮, 张蛟, 等. 盐分胁迫对稻米品质性状的影响[J]. 中国稻米, 2020, 26(2): 44−48ZHAI C J, DENG X L, ZHANG J, et al. Effects of salt stress on quality traits of Japonica rice[J]. China Rice, 2020, 26(2): 44−48 [61] 李玉, 田宪艺, 王振林, 等. 有机肥替代部分化肥对滨海盐碱地土壤改良和小麦产量的影响[J]. 土壤, 2019, 51(6): 1173−1182LI Y, TIAN X Y, WANG Z L, et al. Effects of substitution of partial chemical fertilizers with organic fertilizers on soil improvement and wheat yield in coastal saline and alkaline land[J]. Soils, 2019, 51(6): 1173−1182 [62] 牛君仿, 冯俊霞, 路杨, 等. 咸水安全利用农田调控技术措施研究进展[J]. 中国生态农业学报, 2016, 24(8): 1005−1015NIU J F, FENG J X, LU Y, et al. Advances in agricultural practices for attenuating salt stress under saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1005−1015 [63] 余世鹏, 杨劲松, 刘广明. 不同水肥盐调控措施对盐碱耕地综合质量的影响[J]. 土壤通报, 2011, 42(4): 942−947YU S P, YANG J S, LIU G M. Impacts of different water-fertilizer-salt regulation measures on saline farmland quality[J]. Chinese Journal of Soil Science, 2011, 42(4): 942−947 [64] DEINLEIN U, STEPHAN A B, HORIE T, et al. Plant salt-tolerance mechanisms[J]. Trends Plant Sciences, 2014, 19: 371−379 doi: 10.1016/j.tplants.2014.02.001 [65] MAAS E V. Crop tolerance[J]. California Agriculture, 1984, 38(10): 20−21 [66] TANJI K K. Agricultural salinity assessment and management[C]. Nwe York, USA: American Society of Civil Engineers, 1990: 413–415 [67] 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 2022, 59(1): 10−27YANG J S, YAO R J, WANG X P, et al. Research on salt-affected soils in China: history, status quo and prospect[J]. Acta Pedologica Sinica, 2022, 59(1): 10−27 [68] 杜学军, 胡树文. 基于文献计量分析的近30年国内外盐碱地研究进展[J]. 安徽农业科学, 2021, 49(18): 236–239, 242DU X J, HU S W. Research progress of saline-alkali land at home and abroad over the past 30 years based on bibliometric analysis[J]. Journal of Anhui Agricultural Sciences, 2021, 49(18): 236−239, 242 -

计量
- 文章访问数: 253
- HTML全文浏览量: 80
- PDF下载量: 75
- 被引次数: 0