Effects of nano-Si on tomota plant growth and carbohydrates accumulation at low temperature
-
摘要: 为探究纳米硅对低温下番茄根系构型及碳水化合物积累的调控机制, 以番茄品种‘中杂9号’为材料, 通过基质盆栽试验, 研究了施用纳米硅对低温下番茄幼苗生物量、根系构型、光合能力以及非结构性碳水化合物含量的影响。结果表明: 1)低温下番茄幼苗生物量、总根长、根尖数、光合色素含量和净光合速率等显著下降(P<0.05), 可溶性糖、蔗糖和淀粉含量显著增加(P<0.05), 其中地上部鲜重、净光合速率和总根长分别降低48.60%、66.88%和65.49% (P<0.05)。2)施用纳米硅在常温和低温下均能显著提高番茄幼苗的生物量、根系活力、根尖数、分形维数、净光合速率和非结构性碳水化合物含量, 其中低温下施用纳米硅番茄幼苗根分叉数、净光合速率和叶片可溶性糖含量分别提高35.25%、48.24%和75.69% (P<0.05)。由上可知, 低温严重制约了番茄的光合作用、根系的生长发育以及非结构性碳水化合物的积累, 根系构型参数偏向于不利于植物正常生长的方向变化, 施用纳米硅可通过促进光合色素合成、提高光合速率和根系活力、改善根系构型及提高非结构性碳水化合物积累来提高番茄抗冷性。Abstract: Low temperatures are one of the main limiting factors in the development of agricultural facilities in North China. Farmers need cheap and convenient agronomic measures to improve tomato resistance to low temperatures. The aim of this study was to investigate the effects of nano-Si on root system architecture and the accumulation mechanism of non-structural carbohydrates of tomato seedlings at low temperatures. In this study, the tomato cultivar ‘Zhongza 9’ was cultivated by substrate cultivation and was used as the test material, and the effects of leaf spraying nano-Si (0 mg∙L−1 and 100 mg∙L−1) at room temperature (25 ℃/16 ℃, day/night) and low temperature (15 ℃/6 ℃, day/night) on tomato biomass, root system architecture, photosynthetic capacity, and non-structural carbohydrates contents were studied. The results showed that: 1) At low temperatures, the biomass, total root length, root tips number, photosynthetic pigment content, and net photosynthetic rate of tomatoes were significantly decreased (P<0.05), while the contents of soluble sugar, sucrose, and starch were significantly increased (P<0.05), and shoot fresh weight, net photosynthetic rate, and total root length were decreased by 48.60%, 66.88%, and 65.49%, respectively (P<0.05). 2) Application of nano-Si significantly increased tomato biomass, root activity, root tips number, fractal dimension, net photosynthetic rate, and non-structural carbohydrates contents at room temperature and low temperature (P<0.05), whereas application of nano-Si at low temperatures increased the root tips number, net photosynthetic rate, and leaf soluble sugar content by 35.25%, 48.24%, and 75.69%, respectively (P<0.05). In conclusion, low temperatures severely restrict photosynthesis, root growth, and transport of non-structural carbohydrates in tomato leaves, and root system architecture parameters tend to change in directions that are not conducive to plant growth. The application of nano-Si could improve the cold resistance of tomatoes by promoting the synthesis of photosynthetic pigments, increasing the photosynthetic rate and root activity, improving root system architecture, and increasing the synthesis of non-structural carbohydrates.
-
Key words:
- Low temperature /
- Tomato /
- Nano-Si /
- Root system architecture /
- Non-structure carbohydrate
-
表 1 各试验处理的温度和纳米硅溶液(NPs)喷施浓度
Table 1. Temperature and spray concentration of nano-Si solution (NPs) for each test treatment
处理
Treatment昼/夜温度
Day/night
temperature (℃)NPs溶液浓度
Concentration of NPs
solution (mg∙L−1)RT 25/16 0 RT+Si 25/16 100 LT 15/6 0 LT+Si 15/6 100 表 2 纳米硅对低温下番茄生物量和根系活力的影响
Table 2. Effects of nano-Si on biomass and root activity of tomato seedlings under low temperature
处理
Treatment地上部鲜重
Shoot fresh weight (g)地上部干重
Shoot dry weight (g)地下部鲜重
Root fresh weight (g)地下部干重
Root dry weight (mg)根系活力
Root activity (mg∙g−1∙h−1)RT 12.10±0.36b 1.11±0.02b 3.67±0.32b 239.00±12.00b 0.97±0.03d RT+Si 13.79±0.38a 1.33±0.02a 4.48±0.36a 316.30±7.02a 1.48±0.09c LT 6.22±0.44d 0.86±0.02d 2.07±0.16d 140.00±5.29d 1.84±0.16b LT+Si 9.26±0.44c 1.01±0.03c 2.96±0.20c 182.30±4.16c 2.39±0.08a 同列数据后不同小写字母表示各处理间差异显著(P<0.05)。Different lowercase letters in the same column indicate significant differences among treatments (P<0.05). 表 3 纳米硅对低温下番茄根系基础指标的影响
Table 3. Effects of nano-Si on root basic indicators of tomato seedlings under low temperature
处理
Treatment总根长
Total root
length (cm)根表面积
Root surface
area (cm2)根平均直径
Mean root
diameter (mm)根体积
Root volume
(cm3)根组织密度
Root tissue density
(cm·cm−3)根长密度
Root length density
(cm·g−3)比根长
Specific root length
(cm·g−1)RT 1278.43±97.48b 195.98±19.51b 0.465±0.005b 2.40±0.19b 2.10±0.18b 7.31±0.56b 348.57±5.70b RT+Si 1650.88±78.59a 264.08±2.59a 0.532±0.004a 3.51±0.04a 2.56±0.21a 9.43±0.45a 369.46±12.83a LT 441.24±23.63d 60.59±3.15d 0.425±0.017d 0.69±0.06d 1.18±0.09d 2.52±0.14d 213.13±7.51d LT+Si 733.61±22.37c 111.03±3.67c 0.498±0.014c 1.38±0.06c 1.69±0.11c 4.19±0.13c 247.94±8.60c 同列数据后不同小写字母表示各处理间差异显著(P<0.05)。Different lowercase letters in the same column indicate significant differences among treatments (P<0.05). 表 4 纳米硅对低温下番茄根系构型参数的影响
Table 4. Effects of nano-Si on root architecture parameters of tomato seedlings under low temperature
处理
Treatment根分叉数
Root forks根尖数
Root tips内部链接数
Altitude外部链接数
Magnitude拓扑指数
Topological index分形维数
Fractal dimensionRT 2830.00±65.64b 8177.67±305.29b 104.00±2.65b 5413.67±53.26b 0.5402±0.0030d 1.526±0.010b RT+Si 3800.33±51.87a 10 585.00±312.60a 145.67±3.51a 6287.33±74.93a 0.5695±0.0021c 1.662±0.004a LT 1263.33±47.01d 1703.67±112.90d 63.67±2.08d 1327.33±18.82d 0.5776±0.0050b 1.302±0.004d LT+Si 1708.67±98.08c 3548.00±90.07c 97.00±1.00c 2300.33±48.79c 0.5910±0.0022a 1.412±0.024c 同列数据后不同小写字母表示各处理间差异显著(P<0.05)。Different lowercase letters in the same column indicate significant differences among treatments (P<0.05). 表 5 纳米硅对低温下番茄光合色素含量和净光合速率的影响
Table 5. Effects of nano-Si on photosynthetic pigment contents and net photosynthetic rate of tomato seedlings under low temperature
处理
Treatment叶绿素a
Chlorophyll a
[mg·g−1(FW)]叶绿素b
Chlorophyll b
[mg·g−1(FW)]类胡萝卜素
Carotenoid
[mg·g−1(FW)]叶绿素a/b
Chlorophyll a/b总叶绿素
Total chlorophyll
[mg·g−1(FW)]净光合速率
Net photosynthetic rate
(µmol·m−2·s−1)RT 2.65±0.27a 0.79±0.08a 0.37±0.04a 3.34±0.04a 3.45±0.35a 7.70±0.30b RT+Si 2.65±0.20a 0.82±0.02a 0.41±0.05a 3.22±0.17a 3.47±0.23a 8.46±0.34a LT 1.21±0.07c 0.36±0.02c 0.16±0.01c 3.38±0.10a 1.56±0.09c 2.55±0.11d LT+Si 1.91±0.18b 0.59±0.03b 0.26±0.02b 3.23±0.15a 2.50±0.21b 3.78±0.18c 同列数据后不同小写字母表示各处理间差异显著(P<0.05)。Different lowercase letters in the same column indicate significant differences among treatments (P<0.05). 表 6 纳米硅对低温下番茄非结构性碳水化合物的影响
Table 6. Effect of nano-Si on non-structural carbohydrates contents of tomato seedlings at low temperature
处理
Treatment可溶性糖含量
Soluble sugar content [mg·g−1(FW)]果糖含量
Fructose content [mg·g−1(FW)]蔗糖含量
Sucrose content [mg·g−1(FW)]淀粉含量
Starch content [mg·g−1(FW)]叶片 Leaf 根系 Root 叶片 Leaf 根系 Root 叶片 Leaf 根系 Root 叶片 Leaf 根系 Root RT 4.42±0.04d 3.03±0.06d 10.09±0.17c 9.53±0.16c 3.22±0.02d 1.50±0.01d 7.48±0.04b 0.85±0.04d RT+Si 12.54±0.26b 8.75±0.02b 11.59±0.34b 11.53±0.26a 4.28±0.03c 2.61±0.02c 8.84±0.04a 2.02±0.02a LT 9.05±0.12c 7.11±0.21c 10.35±0.12c 7.21±0.20d 4.64±0.16b 2.88±0.12b 6.54±0.09d 0.96±0.01c LT+Si 15.90±0.24a 10.28±0.13a 12.65±0.21a 10.17±0.14b 6.28±0.19a 3.49±0.11a 7.29±0.07c 1.47±0.01b 同列数据后不同小写字母表示各处理间差异显著(P<0.05)。Different lowercase letters in the same column indicate significant differences among treatments (P<0.05). -
[1] 束胜, 汤园园, 罗佳音, 等. 外源24-表油菜素内酯对亚低温弱光胁迫下番茄叶片碳同化和抗氧化代谢的影响[J]. 植物生理学报, 2016, 52(8): 1295−1304 doi: 10.13592/j.cnki.ppj.2016.0262SHU S, TANG Y Y, LUO J Y, et al. Effects of exogenous 24-epibrassinolide on carbon assimilation and antioxidant metabolism of tomato leaves under sub-low temperatures and weak light stress[J]. Plant Physiology Journal, 2016, 52(8): 1295−1304 doi: 10.13592/j.cnki.ppj.2016.0262 [2] 孙锦, 高洪波, 田婧, 等. 我国设施园艺发展现状与趋势[J]. 南京农业大学学报, 2019, 42(4): 594−604 doi: 10.7685/jnau.201810027SUN J, GAO H B, TIAN J, et al. Development status and trends of protected horticulture in China[J]. Journal of Nanjing Agricultural University, 2019, 42(4): 594−604 doi: 10.7685/jnau.201810027 [3] SETYAWATI M I, LEONG D T. Mesoporous silica nanoparticles as an antitumoral-angiogenesis strategy[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 6690−6703 [4] MEHRABANJOUBANI P, ABDOLZADEH A, SADEGHIPOUR H R, et al. Silicon affects transcellular and apoplastic uptake of some nutrients in plants[J]. Pedosphere, 2015, 25(2): 192−201 doi: 10.1016/S1002-0160(15)60004-2 [5] GREGER M, LANDBERG T, VACULÍK M. Silicon influences soil availability and accumulation of mineral nutrients in various plant species[J]. Plants (Basel, Switzerland), 2018, 7(2): 41 [6] ALLEN D J, ORT D R. Impacts of chilling temperatures on photosynthesis in warm-climate plants[J]. Trends in Plant Science, 2001, 6(1): 36−42 doi: 10.1016/S1360-1385(00)01808-2 [7] SUN D Q, HUSSAIN H I, YI Z F, et al. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles[J]. Plant Cell Reports, 2014, 33(8): 1389−1402 doi: 10.1007/s00299-014-1624-5 [8] HARTMANN H, TRUMBORE S. Understanding the roles of nonstructural carbohydrates in forest trees — from what we can measure to what we want to know[J]. The New Phytologist, 2016, 211(2): 386−403 doi: 10.1111/nph.13955 [9] BOUDA M, BRODERSEN C, SAIERS J. Whole root system water conductance responds to both axial and radial traits and network topology over natural range of trait variation[J]. Journal of Theoretical Biology, 2018, 456: 49−61 doi: 10.1016/j.jtbi.2018.07.033 [10] 王鹏, 牟溥, 李云斌. 植物根系养分捕获塑性与根竞争[J]. 植物生态学报, 2012, 36(11): 1184−1196WANG P, MOU P, LI Y B. Review of root nutrient foraging plasticity and root competition of plants[J]. Chinese Journal of Plant Ecology, 2012, 36(11): 1184−1196 [11] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2000 [12] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350−356 doi: 10.1021/ac60111a017 [13] 陈秀玉. 外源海藻糖对盐胁迫下番茄糖代谢影响的研究[D]. 天津: 天津大学, 2019CHEN X Y. Effect of exogenous trehalose on sugar metabolism response to salt stress in tomato seedlings[D]. Tianjin: Tianjin University, 2019 [14] HEWITT B R. Spectrophotometric determination of total carbohydrate[J]. Nature, 1958, 182(4630): 246−247 [15] 黄伟, 任华中, 张福墁. 低温弱光对番茄苗期生长和光合作用的影响[J]. 中国蔬菜, 2002(4): 15−17 doi: 10.3969/j.issn.1000-6346.2002.04.006HUANG W, REN H Z, ZHANG F M. Influences of low temperature and poor light on grwoth and photosynthesis of tomato seedling[J]. China Vegetables, 2002(4): 15−17 doi: 10.3969/j.issn.1000-6346.2002.04.006 [16] 黄奇娜, 江苏, 汪利民, 等. 低温胁迫后水分对水稻幼苗根系活力和水孔蛋白相关基因表达的影响[J]. 中国水稻科学, 2022, 36(4): 367−376 doi: 10.16819/j.1001-7216.2022.210805HUANG Q N, JIANG S, WANG L M, et al. Effects of moisture content on root vigor and the expression of aquaporin-related genes in rice seedlings under low temperature stress[J]. Chinese Journal of Rice Science, 2022, 36(4): 367−376 doi: 10.16819/j.1001-7216.2022.210805 [17] 郭树勋, 杨然, 胡晓辉, 等. 外源硅对不同低温胁迫下番茄根系生长及生理特性的影响[J]. 山西农业大学学报(自然科学版), 2021, 41(4): 50−57 doi: 10.13842/j.cnki.issn1671-8151.202103056GUO S X, YANG R, HU X H, et al. Effects of exogenous silicon on the growth and physiological characteristics of tomato seedlings under different low temperature stress[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2021, 41(4): 50−57 doi: 10.13842/j.cnki.issn1671-8151.202103056 [18] ADEBAYO A R, KUTU F R, SEBETHA E T. Data on root system architecture of water efficient maize as affected by different nitrogen fertilizer rates and plant density[J]. Data in Brief, 2020, 30: 105561 doi: 10.1016/j.dib.2020.105561 [19] KARAAGAÇ O. Hybrid Cucurbita rootstocks improve root architecture, yield, quality, and antioxidant defense systems of cucumber (Cucumis sativus) under low temperature conditions[J]. International Journal of Agriculture and Biology, 2020, 23: 613−622 [20] ASGARI F, MAJD A, JONOUBI P, et al. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.)[J]. Plant Physiology and Biochemistry, 2018, 127: 152−160 doi: 10.1016/j.plaphy.2018.03.021 [21] 龚束芳, 刘阳, 速馨逸, 等. 纳米硅肥对远东芨芨草幼苗模拟抗旱的影响[J]. 草业科学, 2018, 35(12): 2924−2930 doi: 10.11829/j.issn.1001-0629.2018-0109GONG S F, LIU Y, SU X Y, et al. Influence of nano-silicon fertilizer on osmotic stress in Achnatherum extremiorientale[J]. Pratacultural Science, 2018, 35(12): 2924−2930 doi: 10.11829/j.issn.1001-0629.2018-0109 [22] 贾林巧, 陈光水, 张礼宏, 等. 常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应[J]. 应用生态学报, 2021, 32(2): 529−537JIA L Q, CHEN G S, ZHANG L H, et al. Plastic responses of fine root morphology and architecture traits to nitrogen addition in ectomycorrhizal and arbuscular mycorrhizal tree species in an evergreen broadleaved forest[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 529−537 [23] TRIPATHI P, SUBEDI S, KHAN A L, et al. Silicon effects on the root system of diverse crop species using root phenotyping technology[J]. Plants (Basel, Switzerland), 2021, 10(5): 885 [24] 李秉钧, 颜耀, 吴文景, 等. 环境因子对植物根系及其构型的影响研究进展[J]. 亚热带水土保持, 2019, 31(3): 41−45 doi: 10.3969/j.issn.1002-2651.2019.03.008LI B J, YAN Y, WU W J, et al. Study progress on the impact of environment factor to the plant root system and configuration[J]. Subtropical Soil and Water Conservation, 2019, 31(3): 41−45 doi: 10.3969/j.issn.1002-2651.2019.03.008 [25] 李琬婷, 宁朋, 王菲, 等. 外源脱落酸对干旱胁迫下滇润楠幼苗生长及生理特性的影响[J]. 应用生态学报, 2020, 31(5): 1543−1550LI W T, NING P, WANG F, et al. Effects of exogenous abscisic acid (ABA) on growth and physiological characteristics of Machilus yunnanensis seedlings under drought stress[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1543−1550 [26] MAI T H, SCHNEPF A, VEREECKEN H, et al. Continuum multiscale model of root water and nutrient uptake from soil with explicit consideration of the 3D root architecture and the rhizosphere gradients[J]. Plant and Soil, 2019, 439(1/2): 273−292 [27] YANG Q C, CHENG W J, HAO Z, et al. Study on the fractal characteristics of the plant root system and its relationship with soil strength in tailing ponds[J]. Wireless Communications and Mobile Computing, 2022, 2022: 1−14 [28] NAMJOYAN S, SOROOSHZADEH A, RAJABI A, et al. Improving root quality and yield of sugar beet by nano-silicon and tebuconazole under limited irrigation[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(4): 3378−3386 doi: 10.1007/s42729-021-00613-x [29] SIDDIQUI M H, AL-WHAIBI M H, FAISAL M, et al. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L.[J]. Environmental Toxicology and Chemistry, 2014, 33(11): 2429−2437 doi: 10.1002/etc.2697 [30] 杜清洁, 代侃韧, 李建明, 等. 亚低温与干旱胁迫对番茄叶片光合及荧光动力学特性的影响[J]. 应用生态学报, 2015, 26(6): 1687−1694DU Q J, DAI K R, LI J M, et al. Effects of sub-low temperature and drought stress on characteristics of photosynthetic and fluorescence kinetics in tomato leaves[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1687−1694 [31] 周星, 李博, 朱莜芸, 等. 齐穗后弱光胁迫对杂交籼稻节间非结构性碳水化合物积累转运的影响[J]. 中国生态农业学报(中英文), 2022, 30(10): 1610−1619 doi: 10.12357/cjea.20220187ZHOU X, LI B, ZHU Y Y, et al. Effects of shading stress after heading on the accumulation and remobilization characteristics of non-structural carbohydrates in internodes of indica hybrid rice[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1610−1619 doi: 10.12357/cjea.20220187 [32] 李娜妮, 何念鹏, 于贵瑞. 中国东北典型森林生态系统植物叶片的非结构性碳水化合物研究[J]. 生态学报, 2016, 36(2): 430−438LI N N, HE N P, YU G R. Evaluation of leaf non-structural carbohydrate contents in typical forest ecosystems in northeast China[J]. Acta Ecologica Sinica, 2016, 36(2): 430−438 [33] 陈凤琼, 陈秋森, 刘汉林, 等. 不同外源试剂对菜用大豆低温胁迫的调控效应[J]. 大豆科学, 2022, 41(2): 165−171 doi: 10.11861/j.issn.1000-9841.2022.02.0165CHEN F Q, CHEN Q S, LIU H L, et al. Regulatory effects of different exogenous reagent on vegetable soybean under low temperature stress[J]. Soybean Science, 2022, 41(2): 165−171 doi: 10.11861/j.issn.1000-9841.2022.02.0165 [34] HOCH G, RICHTER A, KÖRNER C. Non-structural carbon compounds in temperate forest trees[J]. Plant, Cell & Environment, 2003, 26(7): 1067−1081 [35] 孙德权, 陆新华, 胡玉林, 等. 纳米硅材料对植物生长发育影响的研究进展[J]. 热带作物学报, 2019, 40(11): 2300−2311 doi: 10.3969/j.issn.1000-2561.2019.11.028SUN D Q, LU X H, HU Y L, et al. Research progress of silica nanoparticle effects on the growth and development of plants[J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2300−2311 doi: 10.3969/j.issn.1000-2561.2019.11.028 -

计量
- 文章访问数: 162
- HTML全文浏览量: 65
- PDF下载量: 37
- 被引次数: 0