Effects of the combination of polystyrene nanoplastics and Pb on seed germination and seedling growth of spinach (Spinacia oleracea L.)
-
摘要: 微塑料作为一种新型环境污染物, 对生物体和自然环境的负面影响受到广泛关注, 而微塑料与重金属复合污染对于蔬菜作物影响的研究却少有报道。为探讨聚苯乙烯纳米塑料(PSNPs)、铅(Pb)及其复合污染对菠菜种子萌发和幼苗生长的影响, 研究了菠菜种子和幼苗分别暴露于200~1600 mg∙L−1 PSNPs、5~100 mg∙L−1 Pb及其复合溶液后发芽率、发芽势、发芽指数、根长、芽长, 超氧化物歧化酶(SOD)和过氧化物酶(POD)活性, 及可溶性蛋白含量的变化。结果表明, 单一的PSNPs (≥400 mg∙L−1)胁迫会显著降低种子的发芽率、发芽势和发芽指数, 低浓度的PSNPs (200 mg∙L−1)胁迫显著促进菠菜种子根、芽的伸长, 高浓度(1600 mg∙L−1)的PSNPs胁迫显著抑制SOD、POD的活性, 不同浓度的PSNPs均会增加可溶性蛋白的含量, 但仅在800 mg∙L−1浓度组显著高于对照组。 单一的Pb (≥25 mg∙L−1)胁迫抑制菠菜种子的萌发, 降低SOD的活性, 而提高POD活性和可溶性蛋白的含量。PSNPs和Pb的复合污染表明, 相比于Pb单一胁迫, PSNPs与Pb复合污染对菠菜种子的萌发起拮抗作用, 降低了Pb单独胁迫对种子萌发的抑制作用; 而PSNPs-Pb复合污染对菠菜幼苗的影响主要是低浓度(200 mg∙L−1)PSNPs与Pb二者表现为协同作用, 高浓度(800 mg∙L−1) PSNPs与Pb复合污染加重了对菠菜幼苗的毒害, 主要表现为SOD和POD活性的显著降低。研究表明, PSNPs能够缓解Pb对菠菜种子萌发的抑制作用; 低浓度PSNPs (200 mg∙L−1)与Pb对菠菜幼苗的影响表现为协同作用, 而高浓度(800 mg∙L−1)PSNPs与Pb对菠菜幼苗主要表现为拮抗作用。Abstract: Microplastics (MPs), a new type of environmental pollutant, have attracted widespread concern for their negative effects on organisms and environment. However, there are few reports on the impacts of co-contamination of MPs and heavy metals on vegetable crops. To explore the effects of polystyrene nanoplastics (PSNPs), lead (Pb) and their co-contamination on seed germination and seedling growth of spinach, we investigated the germination rate, germination vigor, germination index, root length, shoot length, superoxide dismutase (SOD), peroxidase (POD) and soluble protein contents of spinach seeds and seedings respectively, which were exposed to control, PSNPs (200, 400, 800, 1600 mg·L−1) and Pb (5, 25, 50, 100 mg·L−1) and their combination (Pb5+PSNPs200, Pb5+PSNPs800, Pb50+PSNPs200, Pb50+PSNPs800). The results showed that single effects of PSNPs (≥400 mg·L−1) decreased the germination rate, germination vigor, germination index significantly, but there was no significant difference between 200 mg·L−1 PSNPs and control above those indicators. PSNPs at low concentration (200 mg·L−1) promoted the length of roots and shoots, but other concentrations (≥400 mg·L−1) of PSNPs had no significant impacts on roots and shoots. The activity of SOD was inhibited at high concentration (≥800 mg·L−1) of PSNPs, and the POD activity was induced when PSNPs≤800 mg·L−1, while POD was inhibited at the high concentration(1600 mg·L−1) of PSNPs. The soluble protein content in spinach seedlings of different concentrations of PSNPs increased, but the content was significantly higher than the control at 800 mg·L−1. Under Pb alone, the germination rate, germination vigor and germination index were reduced. Further, treatments with low concentration (5 mg·L−1) of Pb increased root and shoot length, while high concentrations (≥25 mg·L−1) reduced them. Moreover, inhibition of SOD and induction of POD were observed in the treatments of Pb. With the increase of Pb concentration, the soluble protein content of spinach seedlings decreased firstly at the low concentration (5 mg·L−1) and then increased. Compared with single Pb treatment, combined effects of PSNPs and Pb were generally antagonistic on the seed germination, for example, PSNPs weakened the promotion effects of low concentration(5 mg∙L−1) of Pb, and inhibited the growth of root and shoot of spinach seeds, while alleviated the inhibitory effects of high concentrations (50 mg∙L−1) of Pb on root and shoot growth. Low concentration (200 mg·L−1) of PSNPs and Pb showed synergistic effects in spinach seedings, such as enhanced the induction effects of Pb on POD activity. And the co-contamination of PSNPs in high concentration (800 mg·L−1) and Pb caused greater damage to seedings, for the activity of SOD and POD decreased significantly. The results showed that PSNPs could alleviate the inhibition effects of Pb on the germination of spinach seed. Low concentration of PSNPs (200 mg∙L−1) and Pb mainly showed synergistic effects, while high concentration of 800 mg∙L−1 PSNPs and Pb mainly showed antagonistic effects. This study demonstrates the co-contamination of PSNPs and Pb has significant toxicity on seed germination and seedling growth involved antioxidant system and soluble protein of spinach. In conclusion, coexisting PSNPs can change Pb bioavailability and plant performance. Our findings can help to evaluate the individual and comprehensive toxicity of microplastics and heavy metals to vegetable crops.
-
Key words:
- Polystyrene nanoplastics /
- Lead /
- Spinach /
- Seed germination /
- Seedling growth
-
表 1 单一聚苯乙烯纳米塑料或单一Pb对菠菜种子萌发及根长和芽长的影响
Table 1. Effects of polystyrene nanoplastics (PSNPs) or Pb on germination, and root length and shoot length of spinach seeds alone
处理组
Treatment发芽率
Germination rate (%)发芽势
Germination vigor (%)发芽指数
Germination index根长
Root length (cm)芽长
Shoot length (cm)PSNPs浓度
PSNPs concentration (mg∙L−1)0 77.50±9.57a 27.50±5.00a 5.30±0.46a 2.36±0.03b 2.5±0.07bc 200 80.00±8.17a 22.50±5.00ab 5.39±0.32a 2.48±0.03a 2.65±0.04a 400 32.50±9.57b 15.00±5.77bc 2.38±0.69b 2.40±0.08ab 2.58±0.03ab 800 25.00±5.77b 12.50±5.00c 1.73±0.55bc 2.44±0.06ab 2.41±0.11c 1600 20.00±8.17b 7.50±5.00c 1.42±0.49c 2.39±0.05b 2.44±0.09c Pb浓度
Pb concentration (mg∙L−1)0 77.50±9.57a 27.50±9.57ab 5.30±0.46a 2.36±0.03b 2.50±0.07b 5 50.00±8.17b 35.00±5.77a 4.55±0.62ab 2.60±0.11a 2.80±0.04a 25 50.00±8.17b 22.50±9.57bc 3.81±0.71b 1.98±0.03c 2.54±0.05b 50 27.50±9.57c 15.00±5.77cd 2.36±0.39c 1.60±0.11d 2.11±0.09c 100 20.00±8.17c 7.50±9.57d 1.27±0.52d 1.50±0.04d 1.93±0.06d 同列不同小写字母表示差异显著(P<0.05)。Different lowercase letters in the same column indicate significant differences (P<0.05). 表 2 聚苯乙烯纳米塑料与Pb复合对菠菜种子萌发以及根长、芽长的影响
Table 2. Effects of polystyrene nanoplastics (PSNPs) and Pb on seed germination, root length and bud length of spinach
处理组
Treatment发芽率
Germination rate (%)发芽势
Germination vigor (%)发芽指数
Germination index根长
Root length (cm)芽长
Bud length (cm)空白对照 Control 77.50±9.57a 27.50±9.57c 5.30±0.46b 2.37±0.03c 2.50±0.07c Pb5 50.00±8.17b 35.00±5.77bc 4.55±0.62b 2.60±0.11b 2.80±0.04a Pb50 27.50±9.57c 15.00±5.77d 2.36±0.39c 1.60±0.11e 2.11±0.09e Pb5+PSNPs200 70.00±8.17a 50.00±8.17a 6.46±0.79a 2.68±0.07b 2.79±0.03ab Pb5+PSNPs800 72.50±9.57a 17.50±5.00d 4.42±0.64b 2.25±0.08c 2.33±0.10d Pb50+PSNPs200 75.00±5.77a 42.50±5.00ab 6.27±0.34a 3.71±0.17a 2.69±0.05b Pb50+PSNPs800 80.00±8.17a 15.00±5.77d 4.63±0.92b 2.08±0.07d 2.20±0.09e Pb5: 5 mg∙L−1铅溶液; Pb50: 50 mg∙L−1铅溶液; PSNPs200: 200 mg∙L−1聚苯乙烯纳米塑料悬浮液; PSNPs800: 800 mg∙L−1聚苯乙烯纳米塑料悬浮液。同列不同小写字母表示差异显著(P<0.05)。Pb5: 5 mg∙L−1 Pb; Pb50: 50 mg∙L−1 Pb; PSNPs200: 200 mg∙L−1 PSNPs; PSNPs800: 800 mg∙L−1 PSNPs. Different lowercase letters in the same column indicate significant differences (P<0.05). 表 3 单一聚苯乙烯纳米塑料或单一Pb对菠菜幼苗生理指标的影响
Table 3. Effects of polystyrene nanoplastics (PSNPs) or Pb on physiological indexes of spinach seedlings alone
处理组
Treatment超氧化物歧化酶
superoxide dismutase (U·g−1)过氧化物酶
peroxidase (U·g−1)可溶性蛋白
Soluble protein (μg·g−1)PSNPs浓度
PSNPs concentration (mg∙L−1)0 664.36±18.03a 85.00±5.18d 3.00±0.25b 200 653.98±14.61a 117.60±4.18c 3.01±0.03b 400 656.06±21.53a 155.00±5.09a 3.40±0.06b 800 595.89±11.04b 138.50±7.10b 4.17±0.12a 1600 562.30±15.08c 30.00±1.55e 3.32±0.36b Pb浓度
Pb concentration (mg∙L−1)0 664.36±18.03a 85.00±5.18c 3.00±0.25b 5 456.75±14.47b 127.50±7.55b 2.71±0.01c 25 195.16±14.91c 366.25±10.44a 3.40±0.01a 50 123.88±9.80d 140.00±11.53b 3.49±0.01a 100 103.81±14.90d 132.50±9.17b 3.53±0.01a 同列不同小写字母表示差异显著(P<0.05)。Different lowercase letters in the same column indicate significant differences (P<0.05). 表 4 聚苯乙烯纳米塑料与Pb复合对菠菜幼苗生理指标的影响
Table 4. Effects of polystyrene nanoplastics (PSNPs) and Pb on physiological indexes of spinach seedings
处理
Treatments超氧化物歧化酶
Superoxide dismutase (U·g−1)过氧化物酶
Peroxidase (U·g−1)可溶性蛋白
Soluble protein (μg·g−1)空白对照 Control 664.36±18.03a 85.00±5.18d 3.00±0.25bc Pb 5 456.75±14.47b 127.50±7.55c 2.71±0.01c Pb 50 123.88±9.80d 140.00±11.53c 3.49±0.01a Pb 5+PSNPs200 269.90±15.38c 510.00±24.98a 2.61±0.30c Pb 5+PSNPs 800 141.18±7.27d 70.00±5.29d 3.36±0.30ab Pb 50+PSNPs 200 137.02±10.17d 242.00±14.80b 3.58±0.26a Pb 50+PSNPs 800 128.97±6.22d 62.00±3.61d 1.90±0.19d Pb5: 5 mg∙L−1铅溶液; Pb50: 50 mg∙L−1铅溶液; PSNPs200: 200 mg∙L−1聚苯乙烯纳米塑料悬浮液; PSNPs800: 800 mg∙L−1聚苯乙烯纳米塑料悬浮液。同列不同小写字母表示差异显著(P<0.05)。Pb5: 5 mg∙L−1 Pb; Pb50: 50 mg∙L−1 Pb; PSNPs200: 200 mg∙L−1 PSNPs; PSNPs800: 800 mg∙L−1 PSNPs. Different lowercase letters in the same column indicate significant differences (P<0.05). -
[1] 王菡娟. 2050年全球塑料产量或达11亿吨——多方呼吁共同关注塑料污染[N]. 人民政协报, 2022-06-23(6)WANG H J. Global plastic production may reach 1.1 billion tons by 2050, raising concerns about plastic pollution[N]. CPPCC Daily, 2022-06-23(6) [2] RAZA U, TSZKI T M, HUAN C, et al. Microplastics interaction with terrestrial plants and its impacts on agriculture[J]. Journal of Environmental Quality, 2021, 50(5): 1024−1041 doi: 10.1002/jeq2.20264 [3] 杨杰, 李连祯, 周倩, 等. 土壤环境中微塑料污染: 来源、过程及风险[J]. 土壤学报, 2021, 58(2): 281−298YANG J, LI L Z, ZHOU Q, et al. Microplastics contamination of soil environment: sources, processes and risks[J]. Acta Pedologica Sinica, 2021, 58(2): 281−298 [4] ABEL D S M A, WERNER K, CHRISTIANE Z, et al. Microplastics as an emerging threat to terrestrial ecosystems[J]. Global Change Biology, 2018, 24(4): 1405−1416 doi: 10.1111/gcb.14020 [5] 汤庆峰, 高峡, 李琴梅, 等. 农田土壤微塑料污染研究现状与问题思考[J]. 安徽农业科学, 2021, 49(15): 72−78,84 doi: 10.3969/j.issn.0517-6611.2021.15.020TANG Q F, GAO X, LI Q M, et al. Research status and existing problems of microplastic pollution in farmland soil[J]. Journal of Anhui Agricultural Sciences, 2021, 49(15): 72−78,84 doi: 10.3969/j.issn.0517-6611.2021.15.020 [6] KELLIE B, BANU Ö. Microplastics and nanoplastics in the freshwater and terrestrial environment: a review[J]. Water, 2020, 12(9): 2633 doi: 10.3390/w12092633 [7] PIGNATTELLI S, BROCCOLI A, RENZI M. Physiological responses of garden cress (L. sativum) to different types of microplastics[J]. Science of the Total Environment, 2020, 727(prepublish): 138609 [8] ZHOU C, LU C, MAI L, et al. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage[J]. Journal of Hazardous Materials, 2021, 401: 123412 doi: 10.1016/j.jhazmat.2020.123412 [9] VAN WEERT S, REDONDO-HASSELERHARM P E, DIEPENS N J, et al. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes[J]. The Science of the Total Environment, 2019, 654: 1040−1047 doi: 10.1016/j.scitotenv.2018.11.183 [10] JIANG X, CHEN H, LIAO Y, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, b,250: 831−838 [11] YU H, ZHANG X, HU J, et al. Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems[J]. Environmental Pollution, 2020, 265: 114830 doi: 10.1016/j.envpol.2020.114830 [12] 赵宽, 万昕, 邢德科, 等. 低分子量有机酸对土壤有效磷及重金属释放影响的研究进展[J]. 土壤通报, 2022, 53(5): 1228−1236 doi: 10.19336/j.cnki.trtb.2021113002ZHAO K, WAN X, XING D K, et al. Research progress on effects of low molecular weight organic acids on release of available phosphorus and heavy metals in soil[J]. Chinese Journal of Soil Science, 2022, 53(5): 1228−1236 doi: 10.19336/j.cnki.trtb.2021113002 [13] PAULA M, INMACULADA S, ANTONIO B, et al. Can microplastics influence the accumulation of Pb in tissues of blue crab?[J]. International Journal of Environmental Research and Public Health, 2021, 18(7): 3599 doi: 10.3390/ijerph18073599 [14] YANG Z, ZHU L, LIU J, et al. Polystyrene microplastics increase Pb bioaccumulation and health damage in the Chinese mitten crab Eriocheir sinensis[J]. Science of Total Environment. 2022, 10(829): 154586 [15] 刘玲, 洪婷婷, 胡倩男, 等. 微塑料与铅复合污染对水稻幼苗根系生长和氧化应激的影响[J]. 农业环境科学学报, 2021, 40(12): 2623−2633 doi: 10.11654/jaes.2021-0523LIU L, HONG T T, HU Q N, et al. Effects of the combination of microplastics and lead pollution on growth and oxidative responses of rice seedlings’roots[J]. Journal of Agro-Environment Science, 2021, 40(12): 2623−2633 doi: 10.11654/jaes.2021-0523 [16] WANG F, ZHANG X, ZHANG S, et al. Effects of co-contamination of microplastics and Cd on plant growth and Cd accumulation[J]. Toxics, 2020, 8: 36 doi: 10.3390/toxics8020036 [17] FARRAJI H, AZIZ H A, TAJUDDIN R M, et al. Optimization of Phytoremediation of Lead-contaminated Soil by Spinach (Spinacia oleracea L.)[J]. International Journal of Scientific Research in Knowledge, 2014, 2(10): 480−486 doi: 10.12983/ijsrk-2014-p0480-0486 [18] GUNDUZ S, UYGUR FN, KAHRAMANOGLU I. Heavy metal Phytoremediation potentials of Lepidum sativum L., Lactuca sativa L., Spinacia oleracea L. and Raphanus sativus L.[J]. Herald Journal of Agriculture and Food Science Research, 2012, 1(1): 001−005 [19] 王伟华, 姜黎. 四种钠盐胁迫对野榆钱菠菜种子萌发特性和幼苗生长的影响[J]. 中国草地学报, 2020, 42(6): 23−29 doi: 10.16742/j.zgcdxb.20190220WANG W H, JIANG L. Effects of sodium stress on seed germination and seedling growth of Atriplex aucheri[J]. Chinese Journal of Grassland, 2020, 42(6): 23−29 doi: 10.16742/j.zgcdxb.20190220 [20] 王泽正, 杨亮, 李婕, 等. 微塑料和镉及其复合对水稻种子萌发的影响[J]. 农业环境科学学报, 2021, 40(1): 44−53 doi: 10.11654/jaes.2020-0560WANG Z Z, YANG L, LI J, et al. Single and combined effects of microplastics and cadmium on the germination characteristics of rice seeds[J]. Journal of Agro-Environment Science, 2021, 40(1): 44−53 doi: 10.11654/jaes.2020-0560 [21] 宗海英, 刘君, 郭晓红, 等. 聚乙烯微塑料对花生幼苗镉吸收及生理特征的影响[J]. 农业环境科学学报, 2022, 41(7): 1400−1407 doi: 10.11654/jaes.2021-1446ZONG H Y, LIU J, GUO X H, et al. Effects of polyethylene microplastics on cadmium absorption and physiological characteristics of peanut seedling[J]. Journal of Agro-Environment Science, 2022, 41(7): 1400−1407 doi: 10.11654/jaes.2021-1446 [22] BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774−781 doi: 10.1016/j.chemosphere.2019.03.163 [23] STEPHAN P, SAILA T, JUN K Y, et al. Ageing affects microplastic toxicity over time: effects of aged polycarbonate on germination, growth, and oxidative stress of Lepidium sativum[J]. Science of the Total Environment, 2021, 790: 148166 doi: 10.1016/j.scitotenv.2021.148166 [24] 连加攀, 沈玫玫, 刘维涛. 微塑料对小麦种子发芽及幼苗生长的影响[J]. 农业环境科学学报, 2019, 38(4): 737−745LIAN J P, SHEN M M, LIU W T. Effects of microplastics on wheat seed germination and seedling growth[J]. Journal of Agro-Environment Science, 2019, 38(4): 737−745 [25] 张彦, 窦明, 邹磊, 等. 不同微塑料赋存环境对小麦萌发与幼苗生长影响研究[J]. 中国环境科学, 2021, 41(8): 3867−3877 doi: 10.3969/j.issn.1000-6923.2021.08.044ZHANG Y, DOU M, ZOU L, et al. Effects of different microplastics occurrence environment on seed germination and seedling growth of wheat (Triticum aestivum L. )[J]. China Environmental Science, 2021, 41(8): 3867−3877 doi: 10.3969/j.issn.1000-6923.2021.08.044 [26] 吴佳妮, 杨天志, 连加攀, 等. 聚苯乙烯纳米塑料(PSNPs)对大豆(Glycine max)种子发芽和幼苗生长的影响[J]. 环境科学学报, 2020, 40(12): 4581−4589WU J N, YANG T Z, LIAN J P, et al. Effects of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of soybean (Glycine max)[J]. Acta Scientiae Circumstantiae, 2020, 40(12): 4581−4589 [27] LIAN J P, WU J N, XIONG H X, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L. )[J]. Journal of Hazardous Materials, 2020, 385: 121620 doi: 10.1016/j.jhazmat.2019.121620 [28] GIORGETTI L, SPANÒ C, MUCCIFORA S, et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 2020, 149(C): 170−177 [29] 刘晓红, 刘柳青青, 栗敏, 等. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(6): 1263−1271 doi: 10.16258/j.cnki.1674-5906.2022.06.023LIU X H, LIU L, LI M, et al. Effects of polyethylene microplastics with different particle sizes on seed germination and seedling growth of maize and cucumber[J]. Ecology and Environment Sciences, 2022, 31(6): 1263−1271 doi: 10.16258/j.cnki.1674-5906.2022.06.023 [30] GUO M, ZHAO F, TIAN L, et al. Effects of polystyrene microplastics on the seed germination of herbaceous ornamental plants[J]. Science of The Total Environment, 2022, 809: 151100 doi: 10.1016/j.scitotenv.2021.151100 [31] BELLINGERI A, CASABIANCA S, CAPELLACCI S, et al. Impact of polystyrene nanoparticles on marine diatom Skeletonema marinoi chain assemblages and consequences on their ecological role in marine ecosystems[J]. Environmental Pollution, 2020, 262: 114268 doi: 10.1016/j.envpol.2020.114268 [32] YIN L S, WEN X F, HUANG D L, et al. Interactions between microplastics/nanoplastics and vascular plants[J]. Environmental Pollution, 2021, 290: 117999 doi: 10.1016/j.envpol.2021.117999 [33] NI'AM M I, YUNIATI R. Effect of lead (Pb) on seed germination of water spinach (Ipomoea aquatica Forsk)[J]. Journal of Physics Conference Series, 2021, 1725: 1−5 [34] BENDAOUD SI AHMED K, AOUES A, KHAROUBI O, et al. Lead-induced changes in germination behavior, growth and inhibition of-aminolevulinic acid dehydratase activity in Raphanus sativus L.[J]. African Journal of Plant Science, 2020, 14(7): 254−261 doi: 10.5897/AJPS2019.1899 [35] 杨文玲, 岳丹丹, 李冠杰, 等. 铅铬胁迫对小麦种子萌发及幼苗脯氨酸含量的影响[J]. 生物技术通报, 2015(12): 110−114 doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.016YANG W L, YUE D D, LI G J, et al. The effects of lead and chromium stresses on seed germination and proline content in wheat seedlings[J]. Biotechnology Bulletin, 2015(12): 110−114 doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.016 [36] 高鸿鹏, 郑直, 刘超, 等. 镉铅胁迫对桑树种子萌发和幼苗生长以及重金属累积的影响[J]. 安徽农业科学, 2020, 48(11): 131−136 doi: 10.3969/j.issn.0517-6611.2020.11.039GAO H P, ZHENG Z, LIU C, et al. Effects of cadmium and lead stress on seed germination, seedling growth and heavy metal accumulation of mulberry[J]. Journal of Anhui Agricultural Sciences, 2020, 48(11): 131−136 doi: 10.3969/j.issn.0517-6611.2020.11.039 [37] 张雅莉, 王林生. 铅胁迫对硬粒小麦种子萌发及幼苗生长的影响[J]. 山东农业科学, 2015, 47(3): 68−71 doi: 10.14083/j.issn.1001-4942.2015.03.019ZHANG Y L, WANG L S. Effects of Pb stress on seed germination and seedling growth of durum wheat[J]. Shandong Agricultural Sciences, 2015, 47(3): 68−71 doi: 10.14083/j.issn.1001-4942.2015.03.019 [38] ZANGANEH R, JAMEI R, RAHMANI F. Pre- sowing seed treatment with salicylic acid and sodium hydrosulfide confers Pb toxicity tolerance in maize (Zea mays L. )[J]. Ecotoxicology and Environmental Safety, 2020, 206: 111392 doi: 10.1016/j.ecoenv.2020.111392 [39] 林梅, 王湘平. 铅和镉胁迫对黄瓜种子萌发期间的毒害效应[J]. 湖南农业大学学报(自然科学版), 2012, 38(1): 41−45LIN M, WANG X P. Poison effect of Pb and Cd stress on cucumber seeds during the course of germination[J]. Journal of Hunan Agricultural University (Natural Sciences), 2012, 38(1): 41−45 [40] BHARDWAJ P, CHATURVEDI AND P PRASAD A K. Effect of enhanced lead and cadmium in soil on physiological and biochemical attributes of Phaseolus vulgaris L.[J]. Nature and Science, 2009, 7(8): ■−■ [41] 廖苑辰, 娜孜依古丽·加合甫别克, 李梅, 等. 微塑料对小麦生长及生理生化特性的影响[J]. 环境科学, 2019, 40(10): 4661−4667 doi: 10.13227/j.hjkx.201903113LIAO Y C, NAZYGUL JAHITBEK, LI M, et al. Effects of microplastics on the growth, physiology, and biochemical characteristics of wheat (Triticum aestivum)[J]. Environmental Science, 2019, 40(10): 4661−4667 doi: 10.13227/j.hjkx.201903113 [42] 黄献培, 向垒, 郭静婕, 等. 聚苯乙烯微球对菜心种子及幼苗的毒性效应[J]. 农业环境科学学报, 2021, 40(5): 926−933 doi: 10.11654/jaes.2020-1473HUANG X P, XIANG L, GUO J J, et al. Toxicity of polystyrene microplastics on seeds and seedlings of Brassica campestris L.[J]. Journal of Agro-Environment Science, 2021, 40(5): 926−933 doi: 10.11654/jaes.2020-1473 [43] 叶子琪, 蒋小峰, 汤其阳, 等. 聚乙烯微塑料对蚕豆幼苗的毒性效应[J]. 南京大学学报(自然科学), 2021, 57(3): 385−392YE Z Q, JIANG X F, TANG Q Y, et al. Toxic effects of polyethylene microplastics on higher plant Vicia faba[J]. Journal of Nanjing University (Natural Sciences), 2021, 57(3): 385−392 [44] LIU S, WANG J, ZHU J, et al. The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings[J]. Chemosphere. 2021, 282: 130967 [45] 林琳, 旦增卓嘎, 吴玲玲. 铅、镉单一及复合胁迫对生菜幼苗抗氧化酶及亚细胞结构的毒性效应[J]. 生态毒理学报, 2022, 17(2): 337−348LIN L, DANZENGZHUOGA, WU L L. Toxicity of single and combined Pb and Cd stress on antioxidant enzymes and subcellular structure of lettuce[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 337−348 [46] 李玉婷, 李莎, 曹杰, 等. 微塑料对外生菌根真菌生长和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(5): 1049−1060 doi: 10.3969/j.issn.1004-1524.2022.05.20LI Y T, LI S, CAO J, et al. Effects of microplastics on growth and antioxidant system of ectomycorrhizal fungi[J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1049−1060 doi: 10.3969/j.issn.1004-1524.2022.05.20 [47] 王成伟, 刘禹, 宋正国, 等. 微塑料对DBP胁迫下生菜光合作用及品质的影响[J]. 农业环境科学学报, 2021, 40(3): 508−516 doi: 10.11654/jaes.2020-1134WANG C W, LIU Y, SONG Z G, et al. Effects of microplastics and DBP on photosynthesis and nutritional quality of lettuce[J]. Journal of Agro-Environment Science, 2021, 40(3): 508−516 doi: 10.11654/jaes.2020-1134 [48] 王芳洲, 王友绍. Cu2+、Pb2+胁迫对秋茄幼苗可溶性蛋白和抗氧化酶活性的影响[J]. 生态科学, 2020, 39(4): 10−18WANG F Z, WANG Y S. Effects of Cu2+ and Pb2+ stresses on soluble protein content and activities of antioxidant enzymes in Kandelia obovata seedlings[J]. Ecological Science, 2020, 39(4): 10−18 [49] 韩航, 陈顺钰, 薛凌云, 等. 铅胁迫对金丝草生长及生理生化的影响[J]. 草业学报, 2018, 27(4): 131−138 doi: 10.11686/cyxb2017357HAN H, CHEN S Y, XUE L Y, et al. Effects of lead stress on growth and physiology of Pogonatherum crinitum[J]. Acta Prataculturae Sinica, 2018, 27(4): 131−138 doi: 10.11686/cyxb2017357 [50] WANG S, LI Q, HUANG S Z, et al. Single and combined effects of microplastics and lead on the freshwater algae Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111664 doi: 10.1016/j.ecoenv.2020.111664 -

计量
- 文章访问数: 135
- HTML全文浏览量: 74
- PDF下载量: 11
- 被引次数: 0