Growth and photosynthetic characteristics of different heat-sensitive potato genotypes during the tuberization stage under high-temperature stress
-
摘要: 全球变暖对粮食生产的负面影响日益受到关注, 马铃薯是重要的粮菜兼用作物, 对高温敏感。探究耐热和热敏感型马铃薯资源在响应高温胁迫时的生理差异, 可为深入研究马铃薯耐热机制提供理论依据。本研究以耐热型品系‘滇187’(D187)和热敏感型品种‘青薯9号’(QS9)为材料, 在30 ℃高温胁迫处理2周后, 分析2个马铃薯材料在块茎形成期的植株形态和光合作用差异。在植株形态方面, 高温使马铃薯植株株高和节间长度显著(P<0.01)增加, 叶片直立, 叶片长度和面积缩小, 株型更为紧凑; 与QS9相比, D187叶片数和披垂角更为稳定。高温胁迫下马铃薯植株水分散失加快, 水分利用率降低, 对CO2吸收和低浓度CO2利用能力减弱, 呼吸作用消耗增加, 1,5-二磷酸核酮糖(RuBP)的再生能力减弱, 黑暗下的叶绿素荧光参数降低, 光下叶绿素荧光参数升高, 对有限强光的利用能力增强。高温胁迫下, D187叶片具有更高的净光合速率、水分利用效率、最大净光合速率、表观量子效率、羧化效率、最大羧化速率、最大电子传递速率, 更低的光补偿点和暗呼吸速率, 说明D187光合能力更强、弱光利用率更高、呼吸消耗更低、碳同化能力更强。D187的形态和光合作用指标中, 可塑性指数大于0.5的参数均多于QS9, 平均可塑性指数(0.448)高于QS9 (0.418), 说明耐热型马铃薯能够更好地通过调节植株形态和光合作用来适应高温环境。Abstract: The potato (Solanum tuberosum L.) is an important grain and vegetable crop. Global warming affects its growth and production owing to its high temperature sensitivity. Investigating the physiological differences between heat-tolerant and heat-sensitive resources can help rationalize the mechanism of high-temperature resistance in potatoes. The parameters related to the morphology and photosynthesis of the heat-tolerant line ‘Dian 187’ (D187) and the heat-sensitive cultivar ‘Qingshu 9’ (QS9) were measured and analyzed after two weeks of high-temperature stress at 30 ℃. Under high-temperature stress, the plant height and internode length were increased, the leaves were upright, the length and area of leaves were reduced, and the plant architecture was more compact. The extent of change in the leaf number and bend angle in D187 was greater than that in QS9. The high-temperature affected potato net photosynthetic rate, water use efficiency, maximum net photosynthetic rate, apparent quantum yield, carboxylation efficiency, maximum carboxylation rate, and maximum electron transport rate, which were lower in QS9 than those in D187 under high-temperature stress. Furthermore, D187 had a lower light compensation point and dark respiration rate than the heat-sensitive cultivar (QS9), and as a result of its strong adaptability, the number of indexes with phenotypic plasticity index exceeding 0.5 in D187 was more than that in QS9. The mean phenotypic plasticity index of morphology, photosynthesis, and yield was 0.448 in D187, which was higher than that in QS9 (0.418). Furthermore, under high-temperature stress, the ability to absorb CO2 and low-concentration CO2 utilization were weakened, along with the acceleration of water loss and the reduction of water use efficiency in potato plants. Consequently, respiratory consumption increased, and the regeneration abilities of ribulose 1,5-diphosphate (RuBP) and chlorophyll fluorescence parameters were reduced in the dark. In contrast, chlorophyll fluorescence parameters increased under light, and the utilization ability of limited light was also enhanced. Differences in morphology and photosynthetic self-adaptation abilities are the main reasons for the difference in high-temperature resistance between heat-tolerant and heat-sensitive resources, which will help clarify the mechanism of high-temperature adaptability in potato plants and provide references for the selection of cultivars with high-temperature resistance and innovation in cultivation techniques.
-
Key words:
- Potato /
- High-temperature stress /
- Morphological character /
- Photosynthetic parameters /
- Yield
-
图 4 ‘青薯9号’和‘滇187’马铃薯在正常温度(20 ℃)和高温(30 ℃)下植株株型和叶片形态指标
*和**分别表示两温度间差异显著(P<0.05, n=10)和极显著(P<0.01, n=10)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively. n=10.
Figure 4. Morphological indexes of plant architecture and leaf of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
图 6 ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下光响应和光诱导过程中的光能分配特征
ΦPSⅡ: 光化学耗散比例; ΦNPQ: 非光化学猝灭耗散比例; Φf,d: 荧光耗散比例。ФPSⅡ: quantum yield of photochemical dissipation; ФNPQ: quantum yield of non-photochemical quenching dissipation; Фf,d: quantum yield of fluorescence quenching dissipation.
Figure 6. Characteristics of light energy distribution of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures during light response and photosynthetic induction
图 7 ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯高温(30 ℃)下形态、光合和产量特征等各参数的表型可塑性指数
Figure 7. Phenotypic plasticity indexes of parameters of morphology, photosynthesis, and yield of potato materials of QS9 and D187 at high (30 ℃) temperatures
Pn: net photosynthetic rate; Gs: stomatal conductance; Ci: intercellular CO2 concentration; Tr: transpiration rate; WUE: water use efficiency; Pn·max: maximum net photosynthetic rate; LSP: light saturation point; LCP: light compensation point; Rd: dark respiration rate; AQY: apparent quantum yield; CE: carboxylation efficiency; RL: photorespiration; CCP: carbon dioxide compensation point; Vc·max: maximum carboxylation rate; Jmax: maximum electron transportation rate; T30%P: time to reach 30% of maximum photosynthetic rate of dark adaptation ; T60%P: time to reach 60% of maximum photosynthetic rate of dark adaptation; T90%P: time to reach 90% of maximum photosynthetic rate of dark adaptation; IS60s: maximum photosynthetic rate within 60 s; IS300s: maximum photosynthetic rate within 300 s; IS600s: maximum photosynthetic rate within 600 s; F0: initial fluorescence intensity; Fm: maximum fluorescence intensity; Fv/Fm: potential photochemical quantum efficiency of photosystem Ⅱ; Fv/F0: potential photochemical activity of photosystem Ⅱ.
图 8 ‘青薯9号’(QS9)和‘滇187’(D187)在正常温度和高温下的形态、光合及产量指标的主成分分析
椭圆为不同温度下各参数的置信区间; 箭头代表各指标与主成分的关系。Pn、Gs、Ci、Tr、WUE、Pn max、LSP、LCP、Rd、AQY、CE、RL、CCP、Vc max、J max、F0、Fm、Fv/Fm、Fv/F0依次为净光合速率、气孔导度、胞间CO2浓度、蒸腾速率、水分利用效率、最大净光合速率、光饱和点、光补偿点、暗呼吸速率、表观量子效率、羧化效率、光呼吸速率、CO2补偿点、最大羧化速率、最大电子传递速率、黑暗下初始荧光强度、黑暗下最大荧光强度、PSⅡ潜在光化学量子效率、PSⅡ潜在光化学活性; T 30%P、T 60%P、T 90%P为暗适应后达到最大净光合速率30%、60%、90%所需的时间, IS 60s、IS 300s、IS 600s为暗适应后60 s、300 s、600 s所达到的最大净光合速率百分比。The ellipse is the confidence interval of each parameter under different temperature; the arrow represents the relationship between each index and the principal component. Pn, Gs, Ci, Tr, WUE, Pn max, LSP, LCP, Rd, AQY, CE, RL, CCP, Vc max, Jmax, F0, Fm, Fv/Fm, and Fv/F0 are net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, water use efficiency, maximum net photosynthetic rate, light saturation point, light compensation point, dark respiration rate, apparent quantum yield, carboxylation efficiency, photorespiration, carbon dioxide compensation point, maximum carboxylation rate, maximum electron transportation rate, initial fluorescence after dark adaptation, maximum fluorescence after dark adaptation, maximum quantum yield of photosystem Ⅱ, potential photochemical activity of photosystem Ⅱ, respectively. T30%P, T60%P and T90%P are the times to reach 30%, 60% and 90% of maximum photosynthetic rate of dark adaptation; IS60s, IS300s and IS600s are the proportions of the maximum photosynthetic rate within 60 s, 300 s and 600 s, respectively, after dark adaptation.
Figure 8. Principal component analysis of morphology, photosynthesis, and yield indexes of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
表 1 ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的净光合速率及相关参数
Table 1. Net photosynthetic rate and related parameters of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
光合特征参数
Photosynthetic parameterQS9 D187 20 ℃ 30 ℃ 20 ℃ 30 ℃ 净光合速率 Net photosynthetic rate (μmol∙m−2∙s−1) 9.74±0.23 7.12±0.17** 7.43±1.67 8.31±0.51 气孔导度 Stomatal conductance (mol∙m−2∙s−1) 0.16±0.02 0.14±0.03 0.10±0.02 0.12±0.02 胞间CO2浓度 Intercellular CO2 concentration (μmol∙mol−1) 289.31±13.84 279.64±23.6 274.76±15.08 257.41±7.99 蒸腾速率 Transpiration rate (mmol∙m−2∙s−1) 3.93±0.41 6.35±0.92* 2.98±0.56 7.26±0.77** 水分利用效率 Water use efficiency (μmol∙mmol−1) 2.50±0.22 1.14±0.15** 2.20±0.31 1.19±0.05** *和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively. 表 2 ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的光响应特征参数
Table 2. Parameters of light response of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
光响应特征参数
Parameter of light responseQS9 D187 20 ℃ 30 ℃ 20 ℃ 30 ℃ 最大净光合速率 Maximum net photosynthetic rate (μmol∙m−2∙s−1) 18.03±0.14 19.09±0.88 11.98±1.32 19.19±1.00** 光饱和点 Light saturation point (μmol∙m−2∙s−1) 530.25±12.30 749.59±37.87** 537.28±98.43 694.35±17.70 光补偿点 Light compensation point (μmol∙m−2∙s−1) 35.62±3.17 50.06±6.09* 29.40±1.66 45.35±21.62 暗呼吸速率 Dark respiration rate (mmol∙m−2∙s−1) −3.25±0.28 −3.43±0.48 −2.28±0.45 −2.59±0.93 表观量子效率 Apparent quantum yield (μmol∙mol−1) 0.08±0.00 0.06±0.00** 0.07±0.02 0.07±0.00 *和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively. 表 3 ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的CO2响应特征参数
Table 3. Parameters of CO2 response of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
CO2响应特征参数
Parameter of CO2 responseQS9 D187 20 ℃ 30 ℃ 20 ℃ 30 ℃ 羧化效率 Carboxylation efficiency (mol∙mol−1) 0.12±0.01 0.12±0.01 0.15±0.002 0.15±0.002 光呼吸速率 Photorespiration (μmol∙m−2∙s−1) −10.76±0.94 −13.58±0.44* −18.44±0.83 −20.87±2.80 CO2补偿点 Carbon dioxide compensation point (μmol∙mol−1) 90.50±2.06 112.92±3.61** 119.94±4.91 135.01±18.79 最大羧化速率 Maximum carboxylation rate (Vc max, μmol∙mol−1) 142.60±7.75 141.74±9.40 157.75±9.04 167.39±2.86 最大电子传递速率 Maximum electron transportation rate (Jmax, μmol∙mol−1) 570.87±24.04 504.44±31.37 727.32±103.26 678.66±28.21 Jmax/Vc max 4.01±0.05 3.56±0.04** 4.65±0.9 4.05±0.13 *和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively. 表 4 ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的光合诱导特征参数
Table 4. Parameters of photosynthetic induction of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
光合诱导特征参数
Parameter of photosynthetic inductionQS9 D187 20 ℃ 30 ℃ 20 ℃ 30 ℃ T30%P (s) 289.37±27.11 194.11±11.47** 327.04±46.83 193.83±10.57* T60%P (s) 582.35±50.62 317.94±20.31** 626.05±96.23 375.44±25.88* T90%P (s) 1308.12±109.89 624.70±42.5** 1366.76±227.63 825.33±65.42* IS60s (%) 13.92±3.27 25.57±3.72** 8.09±4.5 27.09±2.27** IS300s (%) 45.63±4.01 74.81±3.19** 41.97±7.11 65.26±3.25* IS600s (%) 69.33±3.65 93.44±1.38** 66.96±7.39 86.17±2.37* T30%P、T60%P、T90%P为暗适应后达到最大净光合速率30%、60%、90%所需的时间; IS60s、IS300s、IS600s为暗适应后60 s、300 s、600 s所达到的最大净光合速率百分比。*和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。T30%P, T60%P and T90%P are the times to reach 30%, 60% and 90% of maximum photosynthetic rate of dark adaptation; IS60s, IS300s and IS600s are the proportions of the maximum photosynthetic rate within 60 s, 300 s and 600 s, respectively, after dark adaptation. * and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively. 表 5 ‘青薯9号’(QS9)和‘滇187’(D187)马铃薯在正常温度(20 ℃)和高温(30 ℃)下的叶绿素荧光参数
Table 5. Chlorophyll fluorescence parameters of potato materials of QS9 and D187 at normal (20 ℃) and high (30 ℃) temperatures
叶绿素荧光参数
Chlorophyll fluorescence parameterQS9 D187 20 ℃ 30 ℃ 20 ℃ 30 ℃ 黑暗下初始荧光强度
Initial fluorescence intensity (F0)199.40±1.37 163.90±24.66 134.63±1.49 131.03±2.33 黑暗下最大荧光强度
Maximum fluorescence intensity (Fm)1078.28±17.95 844.43±127.65* 743.99±8.02 692.32±10.38** PSⅡ潜在光化学量子效率
Potential photochemical quantum efficiency of photosystem Ⅱ (Fv/Fm)0.82±0.002 0.81±0.001** 0.82±0.001 0.81±0.002** PSⅡ潜在光化学活性
Potential photochemical activity of photosystem Ⅱ (Fv/F0)4.41±0.06 4.15±0.03** 4.53±0.03 4.28±0.05** *和**分别表示两温度间差异显著(P<0.05)和极显著(P<0.01)。* and ** indicate significant differences between 20 ℃ and 30 ℃ at P<0.05 and P<0.01, respectively. 表 6 ‘青薯9号’(QS9)和‘滇187’(D187)形态特征、光合特征和产量特征参数初始特征值及累积贡献率
Table 6. Initial eigenvalues and accumulated variance contribution of each component of morphology, photosynthesis, and yield of potato materials of QS9 and D187
品种(系)
Variety (line)主成分
Principal component特征值
Eigenvalue贡献率
Rate of contribution (%)累积贡献率
Cumulative contribution (%)QS9 1 26.72 65.17 65.17 2 4.55 11.11 76.27 3 3.00 7.31 83.58 D187 1 23.96 58.44 58.44 2 5.27 12.84 71.28 3 3.94 9.62 80.90 -
[1] GRIGGS D, NOGUER M. Climate change 2001: the scientific basis. contribution of working group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change[J]. Weather, 2002, 57: 267−269 doi: 10.1256/004316502320517344 [2] LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980[J]. Science, 2011, 333(6042): 616−620 doi: 10.1126/science.1204531 [3] FOGELMAN E, OREN-SHAMIR M, HIRSCHBERG J, et al. Nutritional value of potato (Solanum tuberosum) in hot climates: anthocyanins, carotenoids, and steroidal glycoalkaloids[J]. Planta, 2019, 249(4): 1143−1155 doi: 10.1007/s00425-018-03078-y [4] KOOMAN P L, HAVERKORT A J. Modelling development and growth of the potato crop influenced by temperature and daylength: LINTUL-POTATO[M]//HAVERKORT A J, MACKERRON D K L. Potato Ecology and Modelling of Crops Under Conditions Limiting Growth. Dordrecht: Springer, 1995: 41−59 [5] 徐超, 王明田, 杨再强, 等. 高温对温室草莓光合生理特性的影响及胁迫等级构建[J]. 应用生态学报, 2021, 32(1): 231−240XU C, WANG M T, YANG Z Q, et al. Effects of high temperature on photosynthetic physiological characteristics of strawberry seedlings in greenhouse and construction of stress level[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 231−240 [6] WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants: an overview[J]. Environmental and Experimental Botany, 2007, 61(3): 199−223 doi: 10.1016/j.envexpbot.2007.05.011 [7] 江晓东, 华梦飞, 杨沈斌, 等. 喷施钾钙硅制剂改善高温胁迫水稻叶片光合性能提高产量[J]. 农业工程学报, 2019, 35(5): 126−133 doi: 10.11975/j.issn.1002-6819.2019.05.015JIANG X D, HUA M F, YANG S B, et al. Spraying exogenous potassium, calcium and silicon solutions improve photosynthetic performance of flag leaf and increase the yield of rice under heat stress condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 126−133 doi: 10.11975/j.issn.1002-6819.2019.05.015 [8] POLLASTRI S, JORBA I, HAWKINS T J, et al. Leaves of isoprene-emitting tobacco plants maintain PSⅡ stability at high temperatures[J]. The New Phytologist, 2019, 223(3): 1307−1318 doi: 10.1111/nph.15847 [9] BURTON D. Physiological responses of melanophores and xanthophores of hypophysectomized and spinal winter flounder, Pseudopleuronectes americanus Walbaum[J]. Proceedings of the Royal Society of London Series B Biological Sciences, 1981, 213(1191): 217−231 [10] REYNOLDS M P, EWING E E, OWENS T G. Photosynthesis at high temperature in tuber-bearing Solanum species: a comparison between accessions of contrasting heat tolerance[J]. Plant Physiology, 1990, 93(2): 791−797 doi: 10.1104/pp.93.2.791 [11] WINKLER L, BUANGA N F, GOETZE E. Gas-liquid chromatographic analysis of cardiolipin from fetal and maternal liver of the rat[J]. Biochimica et Biophysica Acta, 1971, 231(3): 535−536 doi: 10.1016/0005-2760(71)90122-6 [12] WANG L X, XIN J, JIANPING L, et al. Effects of short-term high temperature stress on the photosynthesis of potato in different growth stages[J]. Agricultural Science and Technology Hunan, 2011, 12: 317−342 [13] 郭新宇, 张光海, 李凯峰, 等. 不同马铃薯品种(系)苗期耐热性评价[J]. 云南农业大学学报(自然科学), 2020, 35(2): 196−205GUO X Y, ZHANG G H, LI K F, et al. Evaluation of heat tolerance of different potato varieties (lines)[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(2): 196−205 [14] 双升普, 张金燕, 寸竹, 等. 光照强度驱动典型阴生植物三七的生理生态响应特征[J]. 生态学报, 2022, 42(9): 3596−3612SHUANG S P, ZHANG J Y, CUN Z, et al. Ecophysiological characteristics of a typically shade-tolerant species Panax notoginseng in response to different light intensities[J]. Acta Ecologica Sinica, 2022, 42(9): 3596−3612 [15] GRANDA E, SCOFFONI C, RUBIO-CASAL A E, et al. Leaf and stem physiological responses to summer and winter extremes of woody species across temperate ecosystems[J]. Oikos, 2014, 123(11): 1281−1290 doi: 10.1111/oik.01526 [16] LEHRETZ G G, SONNEWALD S, HORNYIK C, et al. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato[J]. Current Biology:CB, 2019, 29(10): 1614−1624.e3 doi: 10.1016/j.cub.2019.04.027 [17] HASTILESTARI B R, LORENZ J, REID S, et al. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures[J]. Plant, Cell & Environment, 2018, 41(11): 2600−2616 [18] KIM Y U, SEO B S, CHOI D H, et al. Impact of high temperatures on the marketable tuber yield and related traits of potato[J]. European Journal of Agronomy, 2017, 89: 46−52 doi: 10.1016/j.eja.2017.06.005 [19] KIM Y U, LEE B W. Differential mechanisms of potato yield loss induced by high day and night temperatures during tuber initiation and bulking: photosynthesis and tuber growth[J]. Frontiers in Plant Science, 2019, 10: 300 doi: 10.3389/fpls.2019.00300 [20] XIANG D B, SONG Y, WU Q, et al. Relationship between stem characteristics and lodging resistance of Tartary buckwheat (Fagopyrum tataricum)[J]. Plant Production Science, 2019, 22(2): 202−210 doi: 10.1080/1343943X.2019.1577143 [21] CHEN M Z, ZHANG Y L, LIANG F B, et al. The net photosynthetic rate of the cotton boll-leaf system determines boll weight under various plant densities[J]. European Journal of Agronomy, 2021, 125: 126251 doi: 10.1016/j.eja.2021.126251 [22] MITTLER R, BLUMWALD E. Genetic engineering for modern agriculture: challenges and perspectives[J]. Annual Review of Plant Biology, 2010, 61: 443−462 doi: 10.1146/annurev-arplant-042809-112116 [23] 康华靖, 李红, 陶月良, 等. 气体交换与荧光同步测量估算植物光合电子流的分配[J]. 生态学报, 2015, 35(4): 1217−1224KANG H J, LI H, TAO Y L, et al. Discussion on simultaneous measurements of leaf gas exchange and chlorophyll fluorescence for estimating photosynthetic electron allocation[J]. Acta Ecologica Sinica, 2015, 35(4): 1217−1224 [24] 李娜, 张峰举, 许兴, 等. 增温对宁夏北部春小麦叶片光合作用的影响[J]. 生态学报, 2019, 39(24): 9101−9110LI N, ZHANG F J, XU X, et al. Effects of elevated temperature on photosynthesis of spring wheat in northern Ningxia[J]. Acta Ecologica Sinica, 2019, 39(24): 9101−9110 [25] 张迎辉, 王雪梅, 连巧霞. 5个彩叶树种光响应曲线特性研究[J]. 热带作物学报, 2019, 40(9): 1737−1741 doi: 10.3969/j.issn.1000-2561.2019.09.010ZHANG Y H, WANG X M, LIAN Q X. Light response curve of photosynthesis of five colored-leaf trees[J]. Chinese Journal of Tropical Crops, 2019, 40(9): 1737−1741 doi: 10.3969/j.issn.1000-2561.2019.09.010 [26] 于波, 秦嗣军, 吕德国. 锌对苹果果实膨大期叶片13C光合产物合成及向果实转移分配的影响[J]. 应用生态学报, 2021, 32(6): 2007−2013YU B, QIN S J, LYU D G. Effects of zinc levels on synthesis and translocation of 13C-photoassimilates in leaves to fruit of apple during fruit expanding stage[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2007−2013 [27] LONG S P, BERNACCHI C J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error[J]. Journal of Experimental Botany, 2003, 54(392): 2393−2401 doi: 10.1093/jxb/erg262 [28] 李彩斌, 郭华春. 耐弱光基因型马铃薯在遮阴条件下的光合和荧光特性分析[J]. 中国生态农业学报, 2017, 25(8): 1181−1189LI C B, GUO H C. Analysis of photosynthetic and fluorescence characteristics of low-light tolerant genotype potato under shade condition[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8): 1181−1189 [29] 孙谷畴, 赵平, 曾小平, 等. 不同光强下焕镛木和观光木的光合参数变化[J]. 植物生态学报, 2002, 26(3): 355−362SUN G C, ZHAO P, ZENG X P, et al. Changes of leaf photosynthetic parameters in leaves of woonyoungia septentrionalis and tsoongiodendron lotungensis under different growth-irradiation[J]. Acta Phytoecologica Sinica, 2002, 26(3): 355−362 [30] 徐祥增, 张金燕, 张广辉, 等. 光强对三七光合能力及能量分配的影响[J]. 应用生态学报, 2018, 29(1): 193−204XU X Z, ZHANG J Y, ZHANG G H, et al. Effects of light intensity on photosynthetic capacity and light energy allocation in Panax notoginseng[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 193−204 [31] PONS T L, PEARCY R W, SEEMANN J R. Photosynthesis in flashing light in soybean leaves grown in different conditions. Ⅰ. Photosynthetic induction state and regulation of ribulose-1,5-bisphosphate carboxylase activity[J]. Plant, Cell and Environment, 1992, 15(5): 569−576 doi: 10.1111/j.1365-3040.1992.tb01490.x [32] 张东升, 韩硕, 王旗, 等. 枣棉间作条件下棉花密度对棉花光合特性及产量影响[J]. 棉花学报, 2014, 26(4): 334−341 doi: 10.3969/j.issn.1002-7807.2014.04.008ZHANG D S, HAN S, WANG Q, et al. Effect of plant density on photosynthesis characters and yield of cotton in the jujube-cotton intercropping systems[J]. Cotton Science, 2014, 26(4): 334−341 doi: 10.3969/j.issn.1002-7807.2014.04.008 [33] SPERLING O, LAZAROVITCH N, SCHWARTZ A, et al. Effects of high salinity irrigation on growth, gas-exchange, and photoprotection in date palms (Phoenix dactylifera L., cv. Medjool)[J]. Environmental and Experimental Botany, 2014, 99: 100−109 doi: 10.1016/j.envexpbot.2013.10.014 [34] 王日明, 王志强, 向佐湘. γ-氨基丁酸对高温胁迫下黑麦草光合特性及碳水化合物代谢的影响[J]. 草业学报, 2019, 28(2): 168−178 doi: 10.11686/cyxb2018167WANG R M, WANG Z Q, XIANG Z X. Effect of γ-aminobutyric acid on photosynthetic characteristics and carbohydrate metabolism under high temperature stress in perennial ryegrass[J]. Acta Prataculturae Sinica, 2019, 28(2): 168−178 doi: 10.11686/cyxb2018167 [35] 史彦江, 罗青红, 宋锋惠, 等. 高温胁迫对新疆榛光合参数和叶绿素荧光特性的影响[J]. 应用生态学报, 2012, 23(9): 2477−2482SHI Y J, LUO Q H, SONG F H, et al. Effects of high temperature stress on photosynthetic parameters and chlorophyll fluorescence characteristics of Xinjiang hybrid hazels[J]. Chinese Journal of Applied Ecology, 2012, 23(9): 2477−2482 [36] 邵宇航, 石祖梁, 张姗, 等. 高温胁迫下镁对小麦旗叶光合特性及产量的影响[J]. 麦类作物学报, 2018, 38(7): 802−808 doi: 10.7606/j.issn.1009-1041.2018.07.07SHAO Y H, SHI Z L, ZHANG S, et al. Effect of magnesium rates on photosynthetic characteristics of flag leaf and grain yield in winter wheat under heat stress[J]. Journal of Triticeae Crops, 2018, 38(7): 802−808 doi: 10.7606/j.issn.1009-1041.2018.07.07 [37] HERAUD P, BEARDALL J. Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes[J]. Photosynthesis Research, 2004, 63: 123−134 [38] CHAFFIN J D, BRIDGEMAN T B, HECKATHORN S A, et al. Role of suspended sediments and mixing in reducing photoinhibition in the bloom-forming cyanobacterium Microcystis[J]. Journal of Water Resource and Protection, 2012, 4(12): 1029−1041 doi: 10.4236/jwarp.2012.412119 [39] KUSAMA Y, INOUE S, JIMBO H, et al. Zeaxanthin and echinenone protect the repair of photosystem Ⅱ from inhibition by singlet oxygen in Synechocystis sp. PCC 6803[J]. Plant and Cell Physiology, 2015, 56(5): 906−916 doi: 10.1093/pcp/pcv018 [40] 李恺, 张丽丽, 邵长勇, 等. 亚高温下冷等离子体处理番茄种子对幼苗生长和光能利用的影响[J]. 园艺学报, 2021, 48(11): 2286−2298LI K, ZHANG L L, SHAO C Y, et al. Effects of cold plasma seed treatment on tomato seedling growth and light energy utilization under daytime sub-high temperature environment[J]. Acta Horticulturae Sinica, 2021, 48(11): 2286−2298 [41] SUN C X, YUAN F, ZHANG Y L, et al. Unintended effects of genetic transformation on photosynthetic gas exchange, leaf reflectance and plant growth properties in barley (Hordeum vulgare L.)[J]. Photosynthetica, 2013, 51(1): 22−32 doi: 10.1007/s11099-013-0002-9 [42] 王军, 赵桂琴, 柴继宽, 等. 大麦黄矮病毒侵染对燕麦光合及叶绿素荧光参数的影响[J]. 草地学报, 2020, 28(4): 923−931WANG J, ZHAO G Q, CHAI J K, et al. Effect of barley yellow dwarf virus infection on photosynthesis and chlorophyll fluorescence parameters of oat[J]. Acta Agrestia Sinica, 2020, 28(4): 923−931 [43] DEMMIG-ADAMS B, COHU C M, MULLER O, et al. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons[J]. Photosynthesis Research, 2012, 113(1/2/3): 75−88 [44] HALLIK L, NIINEMETS, KULL O. Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field[J]. Plant Biology, 2012, 14(1): 88−99 -