留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外源硫化氢调控盐碱胁迫下裸燕麦叶片糖和酚酸代谢反应

刘建新 刘瑞瑞 刘秀丽 贾海燕 卜婷 李娜

刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢调控盐碱胁迫下裸燕麦叶片糖和酚酸代谢反应[J]. 中国生态农业学报 (中英文), 2023, 31(3): 463−477 doi: 10.12357/cjea.20220649
引用本文: 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢调控盐碱胁迫下裸燕麦叶片糖和酚酸代谢反应[J]. 中国生态农业学报 (中英文), 2023, 31(3): 463−477 doi: 10.12357/cjea.20220649
LIU J X, LIU R R, LIU X L, JIA H Y, BU T, LI N. Exogenous hydrogen sulfide modulates metabolic responses of sugar and phenolic acid in naked oat leaves under saline-alkali stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 463−477 doi: 10.12357/cjea.20220649
Citation: LIU J X, LIU R R, LIU X L, JIA H Y, BU T, LI N. Exogenous hydrogen sulfide modulates metabolic responses of sugar and phenolic acid in naked oat leaves under saline-alkali stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 463−477 doi: 10.12357/cjea.20220649

外源硫化氢调控盐碱胁迫下裸燕麦叶片糖和酚酸代谢反应

doi: 10.12357/cjea.20220649
基金项目: 国家自然科学基金项目(31960375)和甘肃省自然科学基金项目(20JR5RA491)资助
详细信息
    通讯作者:

    刘建新, 主要从事植物逆境生理生态研究。E-mail: liujx1964@163.com

  • 中图分类号: S512.6

Exogenous hydrogen sulfide modulates metabolic responses of sugar and phenolic acid in naked oat leaves under saline-alkali stress

Funds: This work was supported by the National Natural Science Foundation of China (31960375) and the Natural Science Foundation of Gansu Province (20JR5RA491).
More Information
  • 摘要: 为明确硫化氢信号对盐碱胁迫下植物代谢组的调控作用, 揭示其增强植物耐盐碱性的机理, 以裸燕麦(Avena nuda L.)为材料进行盆栽土培试验, 设置不添加盐碱和添加3.00 g·kg−1盐碱(摩尔比NaCl∶Na2SO4∶Na2CO3∶NaHCO3=12∶8∶1∶9)与裸燕麦抽穗期叶面喷施蒸馏水和50 µmol·L−1硫化氢供体硫氢化钠溶液交叉共4组处理, 利用超高效液相色谱-串联质谱技术结合正交偏最小二乘判别分析方法, 研究外源硫化氢对盐碱胁迫下裸燕麦叶片糖分解代谢产物水平、氧化还原平衡、酚酸含量和产量性状的影响。结果表明: 1)非盐碱条件下, 喷施硫氢化钠对裸燕麦叶片还原型谷胱甘肽/氧化型谷胱甘肽、还原型辅酶Ⅱ/氧化型辅酶Ⅱ、腺苷三磷酸含量和产量性状的影响微弱, 但显著上调柠檬酸、琥珀酸和6-磷酸葡萄糖酯含量, 显著下调葡萄糖-6-磷酸、丙酮酸、乳酸、α-酮戊二酸、谷氨酸、天冬酰胺、赤藓糖-4-磷酸、景天庚酮糖-7-磷酸含量; 盐碱胁迫导致裸燕麦叶片葡萄糖、葡萄糖-6-磷酸、果糖-6-磷酸、果糖-1,6-二磷酸、3-磷酸甘油醛、3-磷酸甘油酸、丙酮酸、乳酸、α-酮戊二酸、谷氨酸、谷氨酰胺、天冬酰胺、赤藓糖-4-磷酸、景天庚酮糖-7-磷酸、核糖-5-磷酸等糖酵解、三羧酸循环和戊糖磷酸途径中间代谢物及还原型谷胱甘肽、氧化型谷胱甘肽、还原型辅酶Ⅱ、氧化型辅酶Ⅱ含量显著降低, 而还原型谷胱甘肽/氧化型谷胱甘肽显著提高; 喷施硫氢化钠显著提高盐碱胁迫下裸燕麦叶片葡萄糖、果糖-6-磷酸、3-磷酸甘油酸、乳酸、α-酮戊二酸、延胡索酸、苹果酸、谷氨酰胺、6-磷酸葡萄糖酯、景天庚酮糖-7-磷酸含量, 显著降低天冬酰胺含量。2)喷施硫氢化钠显著下调非盐碱条件下裸燕麦叶片反式肉桂酸和丁香醛含量; 盐碱胁迫导致裸燕麦叶片反式肉桂酸含量显著降低, 而苯甲酸、对香豆酸和反式阿魏酸含量显著提高; 喷施硫氢化钠显著提高盐碱胁迫下裸燕麦叶片4-羟基苯甲酸和香草醛含量, 显著降低水杨酸、芥子酸含量。3)喷施硫氢化钠对盐碱胁迫造成的裸燕麦穗粒数量和籽粒产量下降具有显著缓解作用, 但对穗数量、穗铃数量、千粒重量和生物学产量的影响不显著。由此表明, 外源硫化氢参与裸燕麦糖分解代谢和酚酸水平调控, 能够增强裸燕麦耐受盐碱胁迫的能力, 它对糖分解途径有机酸水平的提升作用和酚酸独特的调节效应可能在其增强裸燕麦耐盐碱性中发挥着重要作用。
  • 图  1  不同外源硫化氢喷施和盐碱胁迫处理下裸燕麦叶片糖分解代谢物聚类热图分析

    CK: 无盐碱胁迫下喷水; SA: 盐碱胁迫下喷水; SA+NaHS: 盐碱胁迫下喷NaHS; NaHS: 无盐碱胁迫下喷NaHS。Citrate: 柠檬酸; Asn: 天冬酰胺; Fructose: 果糖; Fumarate: 延胡索酸; Malate: 苹果酸; 6PG: 6-磷酸葡萄糖酯; Succinate: 琥珀酸; S7P: 景天庚酮糖-7-磷酸; Pyruvate: 丙酮酸; Asp: 天冬氨酸; G6P: 葡萄糖-6-磷酸; R5P: 核糖-5-磷酸; FBP: 果糖-1,6-二磷酸; Lactate: 乳酸; E4P: 赤藓糖-4-磷酸; Glu: 谷氨酸; F6P: 果糖-6-磷酸; Gln: 谷氨酰胺; α-KG: α-酮戊二酸; Glucose: 葡萄糖; GAP: 3-磷酸甘油醛; PEP: 磷酸烯醇式丙酮酸; DHAP: 磷酸二羟丙酮; 3PG: 3-磷酸甘油酸。

    Figure  1.  Hierarchical cluster analysis-heat map of sugar catabolites in leaves of naked oat under different treatments of saline-alkali stress and NaHS spraying

    CK: no salt-alkali stress and no NaHS; SA: salt-alkali stress and no NaHS; SA+NaHS: NaHS spraying under salt-alkali stress; NaHS: NaHS spraying under no salt-alkali stress. Asn: asparagine; 6PG: 6-phosphogluconolactone; S7P: sedoheptulose-7-phosphate; Asp: asparate; G6P: glucose-6-phosphate; R5P: ribose-5-phosphate; FBP: fructose-1,6-diphosphate; E4P: erythrose-4-phosphate; Glu: glutamate; F6P: fructose-6-phosphate; Gln: glutamine; α-KG: α-ketoglutaric acid; GAP: 3-phosphate glyceraldehyde; PEP: enolphosphopyruvate; DHAP: phosphate dihydroxyacetone; 3PG: 3-phosphoglyceric acid.

    图  2  不同外源硫化氢喷施和盐碱胁迫处理下裸燕麦叶片糖分解代谢物PLS-DA得分图(a)及200次模型的置换检验(b)

    CK: 无盐碱胁迫下喷水; SA: 盐碱胁迫下喷水; SA+NaHS: 盐碱胁迫下喷NaHS; NaHS: 无盐碱胁迫下喷NaHS。CK: no salt-alkali stress and no NaHS; SA: salt-alkali stress and no NaHS; SA+NaHS: NaHS spraying under salt-alkali stress; NaHS: NaHS spraying under no salt-alkali stress.

    Figure  2.  PLS-DA score plot (a) and 200 permutation test of the model (b) of sugar catabolites in naked oat leaves under different treatments of saline-alkali stress and NaHS spraying

    图  3  不同外源硫化氢喷施和盐碱胁迫处理下裸燕麦叶片糖分解代谢物OPLS-DA得分图(a: CK vs. SA; b: SA vs. SA+NaHS; c: CK vs. NaHS)、S形图(d: CK vs. SA; e: SA vs. SA+NaHS; f: CK vs. NaHS)和VIP图(g: CK vs. SA; h: SA vs. SA+NaHS; i: CK vs. NaHS)

    CK: 无盐碱胁迫下喷水; SA: 盐碱胁迫下喷水; SA+NaHS: 盐碱胁迫下喷NaHS; NaHS: 无盐碱胁迫下喷NaHS。VIP: 变量投射重要度; 各变量名称解释说明见图1。CK: no salt-alkali stress and no NaHS; SA: salt-alkali stress and no NaHS; SA+NaHS: NaHS spraying under salt-alkali stress; NaHS: NaHS spraying under no salt-alkali stress. VIP: variable importance for the projection. The explainaiton of each variable is shown in the Figure 1.

    Figure  3.  OPLS-DA score plots (a: CK vs. SA; b: SA vs. SA+NaHS; c: CK vs. NaHS), S-plots (d: CK vs. SA; e: SA vs. SA+NaHS; f: CK vs. NaHS) and VIP plots (g: CK vs. SA; h: SA vs. SA+NaHS; i: CK vs. NaHS) of sugar catabolites in naked oat leaves under different treatments of saline-alkali stress and NaHS spraying

    图  4  不同外源硫化氢喷施和盐碱胁迫处理下裸燕麦叶片酚酸PLS-DA得分图(a)及200次模型的置换检验(b)

    CK: 无盐碱胁迫下喷水; SA: 盐碱胁迫下喷水; SA+NaHS: 盐碱胁迫下喷NaHS; NaHS: 无盐碱胁迫下喷NaHS。CK: no salt-alkali stress and no NaHS; SA: salt-alkali stress and no NaHS; SA+NaHS: NaHS spraying under salt-alkali stress; NaHS: NaHS spraying under no salt-alkali stress.

    Figure  4.  PLS-DA score plot (a) and 200 permutation test of the model (b) of phenolic acids in naked oat leaves under different treatments of saline-alkali stress and NaHS spraying

    图  5  不同外源硫化氢喷施和盐碱胁迫处理下裸燕麦叶片酚酸OPLS-DA得分图(a: CK vs. SA; b: SA vs. SA+NaHSl; c: CK vs. NaHS), S形图(d: CK vs. SA; e: SA vs. SA+NaHS; f: CK vs. NaHS)和VIP图(g: CK vs. SA; h: SA vs. SA+NaHS; i: CK vs. NaHS)

    CK: 无盐碱胁迫下喷水; SA: 盐碱胁迫下喷水; SA+NaHS: 盐碱胁迫下喷NaHS; NaHS: 无盐碱胁迫下喷NaHS。VIP: 变量投射重要度; GA: 没食子酸; Phe: 苯丙氨酸; DBA:原儿茶酸; PCH: 原儿茶醛; CTC: 儿茶素; VA: 香草酸; CA: 咖啡酸; SGA:丁香酸; Epi: 表儿茶素; p-HCA: 对香豆酸; 4-HBZA: 4-羟基苯甲酸; VNL: 香草醛; SGH: 丁香醛; 4-HDCA: 芥子酸; tFA: 反式阿魏酸; SA: 水杨酸; BZA: 苯甲酸; HCA: 氢化肉桂酸; tCA: 反式肉桂酸。CK: no salt-alkali stress and no NaHS; SA: salt-alkali stress and no NaHS; SA+NaHS: NaHS spraying under salt-alkali stress; NaHS: NaHS spraying under no salt-alkali stress. VIP: variable importance for the projection; GA: Gallic acid; Phe: Phenylalanine; DBA: 3,4-Dihydroxybenzoic acid; PCH: Protocatechualdehyde; CTC: Catechin; VA: Vanillic acid; CA: Caffeic acid; SGA: Syringic acid; Epi: Epicatechin; p-HCA: p-Hydroxycinnamic acid; 4-HBZA: 4-Hydroxybenzoic acid; VNL: Vanillin; SGH: Syringaldehyde; 4-HDCA: 4-Hydroxy-3,5-dimethoxycinnamic acid; tFA: Trans-Ferulic acid; SA: Salicylic acid; BZA: Benzoic acid; HCA: Hydrocinnamic acid; tCA: Trans-Cinnamic acid.

    Figure  5.  PLS-DA score plots (a: CK vs. SA; b: SA vs. SA+NaHS; c: CK vs. NaHS), S-plots (d: CK vs. SA; e: SA vs. SA+NaHS; f: CK vs. NaHS) and VIP plots (g: CK vs. SA; h: SA vs. SA+NaHS; i: CK vs. NaHS) of phenolic acids in naked oat leaves under different treatments of saline-alkali stress and NaHS spraying

    图  6  OPLS-DA分析得出的外源硫化氢调控盐碱胁迫下裸燕麦叶片糖和酚酸代谢途径网络变化图

    CK: 无盐碱胁迫下喷水; SA: 盐碱胁迫下喷水; SA+NaHS: 盐碱胁迫下喷NaHS; NaHS: 无盐碱胁迫下喷NaHS。CK: no salt-alkali stress and no NaHS; SA: salt-alkali stress and no NaHS; SA+NaHS: NaHS spraying under salt-alkali stress; NaHS: NaHS spraying under no salt-alkali stress.

    Figure  6.  Proposed metabolic pathway network changes of sugars and phenolic acids in naked oat leaves under saline-alkali stress regulated by exogenous H2S obtained from OPLS-DA analysis

    表  1  外源硫化氢对盐碱胁迫下裸燕麦叶片糖代谢物含量的影响

    Table  1.   Effects of exogenous H2S on the contents of sugar metabolites in leaves of naked oat under saline-alkali stress

    µmol∙g−1 
    代谢路径
    Metabolic pathway
    代谢物
    Metabolite
    处理 Treatment
    CKSASA+NaHSNaHS
    糖酵解
    Glycolysis
    葡萄糖 Glucose26 014.73±5023.43a16 239.66±1357.08b22 714.71±1929.09a25 710.15±2980.95a
    果糖 Fructose54 486.51±8760.76a57 984.30±8750.24a68 690.81±8393.35a69 090.74±17 291.12a
    葡萄糖-6-磷酸 Glucose-6-phosphate298.49±61.90a145.73±15.64b140.35±24.96b162.36±38.80b
    果糖-6-磷酸 Fructose-6-phosphate65.57±8.75a22.55±3.00c36.69±1.84b70.18±9.96a
    果糖-1,6-二磷酸 Fructose-1,6-diphosphate37.83±7.59a25.02±4.23b28.37±2.94b30.82±6.73ab
    3-磷酸甘油醛 3-Phosphate glyceraldehyde22.27±3.39a16.50±2.33b19.17±2.80ab19.96±3.75ab
    磷酸二羟丙酮 Phosphate dihydroxyacetone33.01±5.64a25.81±3.32a28.54±0.81a30.38±8.13a
    3-磷酸甘油酸 3-Phosphoglyceric acid49.56±5.38a34.95±3.03c41.99±1.01b45.83±3.06ab
    磷酸烯醇式丙酮酸 Enolphosphopyruvate32.86±6.05a24.55±3.77b28.26±3.62ab28.98±5.20ab
    丙酮酸 Pyruvate3186.10±291.05a1467.18±255.22c1518.68±221.93c2417.37±375.22b
    乳酸 Lactate71.27±7.54a27.33±1.68d37.62±8.58c48.65±9.30b
    戊糖磷酸途径
    Pentose phosphate pathway (PPP)
    6-磷酸葡萄糖酯 6-Phosphogluconolactone45.67±7.56bc41.20±6.81c52.62±6.27ab58.05±4.69a
    核糖-5-磷酸 Ribose-5-phosphate60.80±14.18a39.61±2.77b42.90±7.03ab49.72±9.33ab
    赤藓糖-4-磷酸 Erythrose-4-phosphate304.45±19.96a181.31±42.78b210.11±20.75b220.39±14.22b
    景天庚酮糖-7-磷酸
    Sedoheptulose-7-phosphate
    46.39±5.87a34.93±4.28b47.89±5.29a37.21±2.07b
    三羧酸循环及相关氨基酸
    Tricarboxylic acid cycle and related amino acid (TCA)
    柠檬酸 Citrate1650.71±245.77b2218.46±287.21a2317.69±288.41a2467.26±282.27a
    α-酮戊二酸 α-Ketoglutaric acid63.48±2.78a24.25±2.95d54.14±2.01b48.74±4.82c
    琥珀酸 Succinate875.27±30.09a823.95±56.74a939.18±144.02a1013.98±94.26a
    延胡索酸 Fumarate445.85±104.85a368.98±36.48a505.78±121.97a524.09±94.66a
    苹果酸 Malic acid3544.86±924.13a2933.51±351.98a3924.18±942.21a4039.05±620.36a
    谷氨酸 Glutamate276.07±10.66a130.63±11.95b144.73±38.71b174.53±24.16b
    谷氨酰胺 Glutamine1400.46±244.50ab592.36±129.80c1086.11±64.60b1850.98±531.38a
    天冬氨酸 Asparate3802.91±319.93a3419.40±319.93a4124.16±319.93a3874.08±319.93a
    天冬酰胺 Asparagine31.63±1.21a35.69±1.04a35.25±1.43a39.46±2.60a
      CK: 非盐碱胁迫下喷水; SA: 盐碱胁迫下喷水; SA+NaHS: 盐碱胁迫下喷NaHS; NaHS: 非盐碱胁迫下喷NaHS。表中数据为平均值±标准差, 同行不同字母表示处理间在P<0.05水平差异显著。CK: no saline-alkali stress and no NaHS; SA: saline-alkali stress and no NaHS; SA+NaHS: NaHS spraying under saline-alkali stress; NaHS: NaHS spraying under no saline-alkali stress. Data are means±S.D. Different letters in the same row indicate significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  2  外源硫化氢对盐碱胁迫下裸燕麦叶片还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)、还原型辅酶Ⅱ(NADPH)、氧化型辅酶Ⅱ(NADP)含量及比值和腺苷三磷酸(ATP)含量的影响

    Table  2.   Effects of exogenous H2S on the contents and ratios of reduced glutathione (GSH), oxidized glutathione (GSSG), reduced coenzyme Ⅱ (NADPH), oxidized coenzyme Ⅱ (NADP) and adenosine triphosphate (ATP) content in naked oat leaves under saline-alkali stress

    处理 TreatmentGSH (µmol·g−1)GSSG (µmol·g−1)GSH/GSSGNADPH (µmol·g−1)NADP (µmol·g−1)NADPH/NADPATP (µmol·g−1)
    CK27.56±5.28a103.80±15.36a0.268±0.048b26.27±4.64a14.03±2.75a1.878±0.039a12.22±3.05a
    SA19.95±3.01b53.81±9.86b0.378±0.073a19.47±2.81b9.94±0.46b1.961±0.281a13.76±1.13a
    SA+NaHS22.92±3.54ab58.97±5.55b0.387±0.028a21.96±2.51b11.37±1.43ab1.934±0.037a14.89±1.34a
    NaHS23.50±3.86ab68.27±6.27b0.345±0.059ab22.05±3.24b12.08±1.97ab1.843±0.258a14.80±2.47a
      CK: 无盐碱胁迫下喷水; SA: 盐碱胁迫下喷水; SA+NaHS: 盐碱胁迫下喷NaHS; NaHS: 无盐碱胁迫下喷NaHS。表中数据为平均值±标准差, 同列不同字母表示处理间在P<0.05水平差异显著。CK: no salt-alkali stress and no NaHS; SA: salt-alkali stress and no NaHS; SA+NaHS: NaHS spraying under salt-alkali stress; NaHS: NaHS spraying under no salt-alkali stress. Data are means±S.D. Different letters in the same column indicate significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  3  外源硫化氢对盐碱胁迫下裸燕麦叶片酚酸含量的影响

    Table  3.   Effects of exogenous H2S on the contents of phenolic acids in leaves of naked oat under saline-alkali stress µg·g−1

    酚酸 Phenolic acid处理 Treatment
    CKSASA+NaHSNaHS
    没食子酸 Gallic acid0.031±0.009b0.043±0.015a0.043±0.005a0.033±0.006ab
    苯丙氨酸 Phenylalanine0.013±0.003a0.013±0.003a0.010±0.001a0.013±0.006a
    原儿茶酸 3,4-Dihydroxybenzoic acid0.238±0.053b0.278±0.060b0.354±0.083a0.280±0.041b
    原儿茶醛 Protocatechualdehyde1.767±0.192c2.018±0.131b2.282±0.427a1.654±0.141c
    儿茶素 Catechin0.001±0.000a0.001±0.000a0.001±0.000a0.001±0.000a
    香草酸 Vanillic acid10.327±0.890a10.714±0.633a10.883±0.901a10.168±0.582a
    咖啡酸 Caffeic acid1.860±0.629a1.795±0.523a1.784±0.566a1.882±0.502a
    丁香酸 Syringic acid4.475±0.286b4.801±0.266a4.643±0.235ab4.453±0.325b
    表儿茶素 Epicatechin0.001±0.001a0.001±0.000a0.001±0.001a0.001±0.001a
    对香豆酸 p-Hydroxycinnamic acid80.049±8.481b85.333±3.229ab86.691±7.315a80.550±4.960b
    4-羟基苯甲酸 4-Hydroxybenzoic acid17.332±1.125ab17.719±1.052a18.230±0.727a16.709±0.866b
    香草醛 Vanillin19.411±1.214b19.943±1.382ab20.686±1.004a18.757±1.020b
    丁香醛 Syringaldehyde3.557±0.743a2.947±0.510ab2.700±1.176b3.072±0.516ab
    芥子酸 4-Hydroxy-3,5-dimethoxycinnamic acid12.034±1.507a11.444±1.071a10.066±1.977a11.759±2.360a
    反式阿魏酸 Trans-Ferulic acid162.599±11.015b173.123±5.836a177.174±14.843a163.635±9.689b
    水杨酸 Salicylic acid0.579±0.115a0.615±0.090a0.520±0.075a0.534±0.099a
    苯甲酸 Benzoic acid12.399±1.117bc14.236±1.479a13.401±1.321ab11.900±1.361c
    氢化肉桂酸 Hydrocinnamic acid0.008±0.005a0.005±0.002ab0.005±0.002ab0.004±0.001b
    反式肉桂酸 Trans-Cinnamic acid0.201±0.065a0.145±0.018b0.168±0.022ab0.135±0.021b
    酚酸总量 Total phenolic acid content326.882±20.816b345.170±9.309a349.951±20.613a325.538±13.128b
      CK: 无盐碱胁迫下喷水; SA: 盐碱胁迫下喷水; SA+NaHS: 盐碱胁迫下喷施NaHS; NaHS: 无盐碱胁迫下喷施NaHS。表中数据为平均值±标准差, 同行不同字母表示处理间在P<0.05水平差异显著。CK: no salt-alkali stress and no NaHS; SA: salt-alkali stress and no NaHS; SA+NaHS: NaHS spraying under salt-alkali stress; NaHS: NaHS spraying under no salt-alkali stress. Data are means±S.D. Different letters in the same row indicate significant differences among treatments at P<0.05 level.
    下载: 导出CSV

    表  4  外源硫化氢对盐碱胁迫下裸燕麦产量性状的影响(平均值±标准差)

    Table  4.   Effects of exogenous H2S on the yield traits of naked oat under saline-alkaline stress

    处理
    Treatment
    穗数量
    Number of spike
    per plant
    穗铃数量
    Number of bolls
    per spike
    穗粒数量
    Number of grains
    per spike
    千粒重量
    1000-grain weigh
    (g)
    单株籽粒产量
    Grain yield per plant
    (g)
    单株生物学产量
    Biological yield per plant
    (g)
    CK6.33±0.49a14.11±4.65a17.73±4.37a15.62±0.76a1.79±0.40a23.41±3.96a
    SA5.86±1.41a13.01±0.88a11.05±3.03b15.22±2.16a1.01±0.19b21.08±2.60a
    SA+NaHS5.98±1.08a13.96±1.74a17.07±3.84a14.32±0.52a1.54±0.38a23.10±6.25a
    NaHS6.44±1.70a16.84±2.48a22.58±3.63a13.76±1.15a1.91±0.18a24.14±2.86a
      CK: 无盐碱胁迫下喷水; SA: 盐碱胁迫下喷水; SA+NaHS: 盐碱胁迫下喷NaHS; NaHS: 无盐碱胁迫下喷NaHS。表中数据为平均值±标准差, 同列不同字母表示处理间在P<0.05水平差异显著。CK: no salt-alkali stress and no NaHS; SA: salt-alkali stress and no NaHS; SA+NaHS: NaHS spraying under salt-alkali stress; NaHS: NaHS spraying under no salt-alkali stress. Data are means±S.D. Different letters in the same column indicate significant differences among treatments at P<0.05 level.
    下载: 导出CSV
  • [1] LI Y Y, ZHAO K, REN J H, et al. Analysis of the Dielectric constant of saline-alkali soils and the effect on radar backscattering coefficient: a case study of soda alkaline saline soils in Western Jilin Province using RADARSAT-2 data[J]. Scientific World Journal, 2014. DOI: 10.1155/2014/563015
    [2] 张毅, 石玉, 胡晓辉, 等. 外源Spd对盐碱胁迫下番茄幼苗氮代谢及主要矿质元素含量的影响[J]. 应用生态学报, 2013, 24(5): 1401−1408

    ZHANG Y, SHI Y, HU X H, et al. Effects of exogenous spermidine on the nitrogen metabolism and main mineral elements contents of tomato seedlings under saline-alkali stress[J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1401−1408
    [3] 付寅生, 崔继哲, 陈广东, 等. 盐碱胁迫下碱地肤Na+/H+逆向转运蛋白基因KsNHX1表达分析[J]. 应用生态学报, 2012, 23(6): 1629−1634

    FU Y S, CUI J Z, CHEN G D, et al. Expression of Na+/H+ antiporter gene KsNHX1 in Kochia sieversiana under saline-alkali stress[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1629−1634
    [4] 闫永庆, 王文杰, 朱虹, 等. 混合盐碱胁迫对青山杨渗透调节物质及活性氧代谢的影响[J]. 应用生态学报, 2009, 20(9): 2085−2091

    YAN Y Q, WANG W J, ZHU H, et al. Effects of salt-alkali stress on osmoregulation substance and active oxygen metabolism of Qingshan poplar (Populus pseudo cathayana × P. deltoides)[J]. Chinese Journal of Applied Ecology, 2009, 20(9): 2085−2091
    [5] 刘建新, 刘瑞瑞, 贾海燕, 等. 外源H2S对盐碱胁迫下裸燕麦幼苗叶片渗透胁迫的调节作用[J]. 生态学杂志, 2020, 39(12): 3989−3997

    LIU J X, LIU R R, JIA H Y, et al. Regulation of exogenous hydrogen sulfide on osmotic stress in leaves of naked oat seedlings under saline-alkali mixed stress[J]. Chinese Journal of Ecology, 2020, 39(12): 3989−3997
    [6] LI H W, ZANG B S, DENG X W, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta, 2011, 234: 1007−1018 doi: 10.1007/s00425-011-1458-0
    [7] 郭瑞, 周际, 杨帆, 等. 小麦根系在碱胁迫下的生理代谢反应[J]. 植物生态学报, 2017, 41(6): 683−692 doi: 10.17521/cjpe.2016.0136

    GUO R, ZHOU J, YANG F, et al. Metabolic responses of wheat roots to alkaline stress[J]. Chinese Journal of Plant Ecology, 2017, 41(6): 683−692 doi: 10.17521/cjpe.2016.0136
    [8] 郭家鑫, 鲁晓宇, 陶一凡, 等. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100−2114

    GUO J X, LU X Y, TAO Y F, et al. Analysis of metabolites and pathways in cotton under salt and alkali stresses[J]. Acta Agronomica Sinica, 2022, 48(8): 2100−2114
    [9] 赵琦, 包玉英. 混合盐碱胁迫下丛枝菌根真菌对紫花苜蓿生长及2种酚酸含量的影响[J]. 西北植物学报, 2015, 35(9): 1829−1836 doi: 10.7606/j.issn.1000-4025.2015.09.1829

    ZHAO Q, BAO Y Y. Effect of arbuscular mycorrhizal fungion growth and two phenolic acids of Medicago sativa under various mixed salt-alkaline stresses[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(9): 1829−1836 doi: 10.7606/j.issn.1000-4025.2015.09.1829
    [10] KAUR H, BHARDWAJ R D, GREWAL S K. Mitigation of salinity-induced oxidative damage in wheat (Triticum aestivum L.) seedlings by exogenous application of phenolic acids[J]. Acta Physiologiae Plantarum, 2017, 39(10): 221 doi: 10.1007/s11738-017-2521-7
    [11] MA S Q, LV L, MENG C, et al. Integrative analysis of the metabolome and transcriptome of Sorghum bicolor reveals dynamic changes in flavonoids accumulation under saline-alkali stress[J]. Journal of Agricultural and Food Chemistry, 2020, 68: 14781−14789 doi: 10.1021/acs.jafc.0c06249
    [12] GENG G, LV C H, STEVANATO P, et al. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet[J]. International Journal of Molecular Sciences, 2019, 20: 5910−5928 doi: 10.3390/ijms20235910
    [13] GUO R, SHI L X, YAN C R, et al. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings[J]. BMC Plant Biology, 2017, 17: 41−53 doi: 10.1186/s12870-017-0994-6
    [14] GUO R, YANG Z Z, LI F, et al. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress[J]. BMC Plant Biology, 2015, 15: 170−182 doi: 10.1186/s12870-015-0546-x
    [15] 刘建新, 刘瑞瑞, 贾海燕, 等. 硫化氢对盐碱胁迫下裸燕麦叶片抗坏血酸-谷胱甘肽循环的调控效应[J]. 应用生态学报, 2021, 32(11): 3988−3996

    LIU J X, LIU R R, JIA H Y, et al. Regulation effects of hydrogen sulfide on ascorbate-glutathione cycle in naked oat leaves under saline-alkali stress[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 3988−3996
    [16] LAI D W, MAO Y, ZHOU H, et al. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa[J]. Plant Science, 2014, 225: 117−129 doi: 10.1016/j.plantsci.2014.06.006
    [17] SUN Y P, MA C, KANG X, et al. Hydrogen sulfide and nitric oxide are involved in melatonin-induced salt tolerance in cucumber[J]. Plant Physiology and Biochemistry, 2021, 167: 101−112 doi: 10.1016/j.plaphy.2021.07.023
    [18] CHEN J, WANG W H, WU F H, et al. Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots[J]. Scientific Reports, 2015, 5: 12516 doi: 10.1038/srep12516
    [19] MOSTOFA M G, SAEGUSA D, FUJITA M, et al. Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress[J]. Frontiers in Plant Science, 2015, 6: 1055 doi: 10.3389/fpls.2015.01055
    [20] 黄菡, 郭莎莎, 陈良超, 等. 外源硫化氢对盐胁迫下茶树抗氧化特性的影响[J]. 植物生理学报, 2017, 53(3): 497−504

    HUANG H, GUO S S, CHEN L C, et al. Effects of exogenous hydrogen sulfide on the antioxidant characteristics of tea plant (Camellia sinensis) under salt stress[J]. Plant Physiology Journal, 2017, 53(3): 497−504
    [21] SHAN C, LIU H, ZHAO L, et al. Effects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stress[J]. Biologia Plantarum, 2014, 58(1): 169−173 doi: 10.1007/s10535-013-0366-5
    [22] 郑州元, 林海荣, 崔辉梅. 外源硫化氢对盐胁迫下加工番茄幼苗光合参数及叶绿素荧光特性的影响[J]. 核农学报, 2017, 31(7): 1426−1435

    ZHENG Z Y, LIN H R, CUI H M. Effect of exogenous hydrogen sulfide on photosynthesis parameters and chlorophyll fluorescence characteristics of processing tomato (Lycopersicon esculentum Mill ssp. subspontaneum Brezh) seedlings under NaCl stress[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(7): 1426−1435
    [23] MONTESINOS-PEREIRA D, DE LA TORRE-GONZÁLEZ A, BLASCO B, et al. Hydrogen sulphide increase the tolerance to alkalinity stress in cabbage plants (Brassica oleracea L. ʻBroncoʼ)[J]. Scientia Horticulturae, 2018, 235: 349−356 doi: 10.1016/j.scienta.2018.03.021
    [24] 郑殿升, 张宗文. 大粒裸燕麦(莜麦) (Avena nuda L.)起源及分类问题的探讨[J]. 植物遗传资源学报, 2011, 12(5): 667−670

    ZHENG D S, ZHANG Z W. Discussion on the origin and taxonomy of naked oat (Avena nuda L.)[J]. Journal of Plant Genetic Resources, 2011, 12(5): 667−670
    [25] GAO W Y, FENG Z, BAI Q Q, et al. Melatonin-mediated regulation of growth and antioxidant capacity in salt-tolerant naked oat under salt stress[J]. International Journal of Molecular Sciences, 2019, 20(5): 1176 doi: 10.3390/ijms20051176
    [26] 刘建新, 刘瑞瑞, 刘秀丽, 等. 不同时期喷施NaHS对盐碱胁迫下裸燕麦叶片渗透调节物质和抗氧化活性的影响[J]. 生态学杂志, 2021, 40(11): 3620−3632

    LIU J X, LIU R R, LIU X L, et al. Effects of spraying NaHS at different growth stages on osmotic adjustment substance and antioxidant activity in leaves of naked oat under saline-alkali stress[J]. Chinese Journal of Ecology, 2021, 40(11): 3620−3632
    [27] 高龙飞, 贾斌, 张卫华, 等. 盐胁迫下蓝莓叶片生理特性与代谢组学分析[J]. 植物生理学报, 2022, 58(1): 155−164 doi: 10.13592/j.cnki.ppj.2021.0287

    GAO L F, JIA B, ZHANG W H, et al. Physiological characteristics and metabonomics analysis of blueberry leaves under salt stress[J]. Plant Physiology Journal, 2022, 58(1): 155−164 doi: 10.13592/j.cnki.ppj.2021.0287
    [28] 陈晓晶, 徐忠山, 赵宝平, 等. 盐胁迫对燕麦根系呼吸代谢、抗氧化酶活性及产量的影响[J]. 生态学杂志, 2021, 40(9): 2773−2782 doi: 10.13292/j.1000-4890.202109.036

    CHEN X J, XÜ Z S, ZHAO B P, et al. Effects of salt stress on root respiratory metabolism, antioxidant enzyme activities, and yield of oats[J]. Chinese Journal of Ecology, 2021, 40(9): 2773−2782 doi: 10.13292/j.1000-4890.202109.036
    [29] LIU H, WANG J C, LIU J H, et al. Hydrogen sulfide (H2S) signaling in plant development and stress responses[J]. Abiotech, 2021, 2: 32−63 doi: 10.1007/s42994-021-00035-4
    [30] WEI M Y, LIU J Y, LI H, et al. Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings[J]. Nitric Oxide, 2021, 111/112: 14−30 doi: 10.1016/j.niox.2021.04.002
    [31] JIANG J L, REN X M, LI L, et al. H2S Regulation of metabolism in cucumber in response to salt-stress through transcriptome and proteome analysis[J]. Frontiers in Plant Science, 2020, 11: 1283 doi: 10.3389/fpls.2020.01283
    [32] KOVÁCS Z, SIMON-SARKADI L, SOVÁNY C, et al. Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat[J]. Plant Science, 2011, 180(1): 61−68 doi: 10.1016/j.plantsci.2010.08.010
    [33] ZHAO Y, XU J Y, HE L, et al. Sugar-induced tolerance to the salt stress in maize seedlings by balancing redox homeostasis[J]. Agriculture Forestry and Fisheries, 2016, 5(4): 126−134 doi: 10.11648/j.aff.20160504.15
    [34] 孙晓莉, 田寿乐, 沈广宁, 等. 干旱胁迫下H2S对板栗幼苗根系抗氧化特性及呼吸相关酶活性的影响[J]. 核农学报, 2019, 33(5): 1024−1031

    SUN X L, TIAN S L, SHEN G N, et al. Effect of exogenous hydrogen sulfide on antioxidant characteristics and respiratory related enzymes in root of chestnut seedlings under drought stress[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 1024−1031
    [35] LINIĆ I, ŠAMEC D, GRÚZ J, et al. Involvement of phenolic acids in short-term adaptation to salinity stress is species-specific among Brassicaceae[J]. Plants, 2019, 8(6): 155 doi: 10.3390/plants8060155
    [36] BANIK N, BHATTACHARJEE S. Complementation of ROS scavenging secondary metabolites with enzymatic antioxidant defense system augments redox-regulation property under salinity stress in rice[J]. Physiology and Molecular Biology of Plants, 2020, 26(8): 1623−1633 doi: 10.1007/s12298-020-00844-9
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  55
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 录用日期:  2022-11-26
  • 网络出版日期:  2023-02-10
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回