Effects of different salt and alkali stress on absorption, transportation, and metabolism of nutrient elements in cotton
-
摘要: 新疆盐碱地类型多且积盐严重, 因此, 探讨不同盐碱胁迫对棉花养分吸收转运和代谢的影响, 揭示棉花对不同盐碱胁迫的耐受机制, 可为新疆不同盐碱地类型棉花栽培提供一定的理论基础。本研究设置对照(CK)、氯化钠(NaCl)盐胁迫(CS)、硫酸钠(Na2SO4)盐胁迫(SS)和碱(NaHCO3+Na2CO3)胁迫(AS) 4个处理, 通过离子组和代谢组学的方法, 探究不同盐碱胁迫对棉花根和叶中营养元素含量以及代谢的影响。结果表明, 盐碱胁迫显著抑制棉花生长, 与CK相比, CS、SS和AS处理的棉花总生物量分别显著(P<0.05, 下同)降低51.7%、47.8%和52.3%, CS处理叶片N含量显著增加, P、K、Ca、Mg和S含量显著降低, 茎中N、P、K、Ca、Mg和S含量均显著降低, 根中N、Ca和Mg含量显著降低, P含量显著增加; SS处理叶中P、Ca和Mg含量显著降低, S含量显著增加, 茎中P、Ca和Mg含量显著降低, S含量显著增加, 根中P和Ca含量显著降低, Mg和S含量显著增加; AS处理叶中P、K、Ca、Mg和S含量显著降低, 茎中N、P、Ca、Mg和S含量显著降低, 根中N、P和S含量显著降低, Mg含量显著增加。CS处理下棉花叶片和根系中分别筛选出7条差异代谢通路, SS处理下棉花叶片和根系中分别筛选出16和29条差异代谢通路, AS处理下棉花叶片和根系中分别筛选出8条和18条差异代谢通路。氯化钠胁迫抑制棉花P、Ca、Mg和S的转运能力, 但是对代谢的影响相对较小; 硫酸钠胁迫下棉花体内积累的S促进了氨基酸类代谢; 碱胁迫抑制了P、K、Ca、Mg和S的转运能力, 根部有机酸代谢增强且有机酸显著积累, 叶片中亚油酸显著积累。Abstract: There are many types of saline-alkali land in Xinjiang, and salt accumulation is a serious problem. Therefore, this study aimed to explore the effects of different saline-alkali stresses on the absorption, transportation, and metabolism of cotton nutrients and to reveal the tolerance mechanism of cotton to different salt and alkali stresses to provide a theoretical basis for cotton cultivation on different types of saline-alkali land in Xinjiang. Four treatments were used in this study: control (CK), NaCl stress (CS), Na2SO4 stress (SS), and alkali (NaHCO3+Na2CO3) stress (AS). The effects of different salt and alkali stresses on the content and metabolism of nutrient elements in cotton roots and leaves were explored using ionomics and metabonomics. Compared with CK, the total biomass of CS, SS, and AS treatments decreased significantly (P<0.05) by 51.7%, 47.8%, and 52.3%, respectively. Compared with CK, CS treatment significantly (P<0.05) increased the content of N in leaves and the content of P in roots; significantly (P<0.05) decreased the contents of P, K, Ca, Mg, and S in leaves; the contents of N, P, K, Ca, Mg, and S in stems; the content of N, Ca, and Mg in roots. Under AS treatment, the contents of P, K, Ca, Mg and S in leaves; the contents of N, P, Ca, Mg and S in stems; and the contents of N, P and S in roots significantly (P<0.05) decreased, while Mg content in roots significantly (P<0.05) increased over the CK treatment. Seven differential metabolic pathways were screened from cotton leaves and roots under the CS treatment; 16 and 29 differential metabolic pathways were screened from cotton leaves and roots under the SS treatment; and eight and 18 differential metabolic pathways were screened from cotton leaves and roots under the AS treatment. NaCl stress inhibited the transport of P, Ca, Mg, S, and N uptake in cotton but promoted the transport of N and K; NaCl stress had relatively little effect on metabolism, only the accumulation of amino acids and organic acids. Na2SO4 stress did not significantly inhibit the absorption and transport of N and K but promoted the absorption of Mg and S. However, it inhibited the absorption and transport of Ca and Mg in cotton. Na2SO4 stress had a significant impact on metabolism. The significant accumulation of S incotton promotes the metabolism of amino acids, and the enhancement of amino acid metabolism also indirectly promotes the intensity of other metabolic pathways, making cotton more tolerant to Na2SO4. Alkali (NaHCO3+Na2CO3) stress inhibited N and S uptake and P, K, Ca, Mg, and S transport but increased Mg uptake, which significantly changed the metabolism of organic acids in cotton, enhanced the metabolism of organic acids in roots, significantly accumulated organic acids, and significantly accumulated linoleic acid in leaves.
-
Key words:
- Cotton /
- NaCl stress /
- Na2SO4 stress /
- Alkali stress /
- Nutrient elements /
- Metabolomics
-
表 1 不同处理土壤盐碱类型及盐碱化程度
Table 1. Type and degree of saline and alkaline in soil of different treatments
处理
Treatment盐碱类型
Saline alkali type含盐量
Salt content (g∙kg−1)电导率
Electrical conductivity (EC1:5, dS∙m−1)pH
(1∶2.5)CK 非盐(碱)化 Control (non salting/alkalization) 0.53 0.17 8.16 CS 氯化钠盐胁迫 NaCl stress 4.43 1.39 8.43 SS 硫酸钠盐胁迫 Na2SO4 stress 6.43 2.01 8.19 AS 碱胁迫 Na2CO3+NaHCO3 stress 2.03 0.63 9.92 表 2 不同盐碱胁迫对棉花生物量的影响
Table 2. Effects of different salt and alkaline stresses on cotton biomass
处理
Treatment生物量 Biomass (g∙plant−1) 叶 Leaf 茎 Stem 根 Root 总 Total CK 1.44±0.01a 1.69±0.02a 0.93±0.01a 4.05±0.04a CS 0.75±0.00b 0.58±0.02d 0.63±0.01b 1.96±0.02c SS 0.77±0.01b 0.83±0.01b 0.52±0.02c 2.11±0.02b AS 0.57±0.01c 0.72±0.03c 0.65±0.02b 1.93±0.03c 各处理说明见表1。同列不同小写字母表示不同处理间差异显著(P<0.05)。The description of each treatment is shown in Table 1. Different lowercase letters in the same column indicate significant differences among treatments (P<0.05). 表 3 不同盐碱胁迫对棉花养分吸收和分配的影响
Table 3. Effects of different saline alkali stresses on nutrient uptake and distribution in cotton
处理
Treatment含量 Content (g∙kg−1) 器官分配比 Distribution ratio of organ N P K Ca Mg S N P K Ca Mg S 叶
LeavesCK 38.91±0.82b 2.77±0.08a 26.73±0.56a 56.67±1.23a 11.72±0.40a 21.02±0.33b 0.55b 0.45a 0.45b 0.75c 0.59b 0.84b CS 44.33±0.58a 2.22±0.09c 22.25±0.72c 44.54±0.58b 9.48±0.23c 18.02±0.64c 0.64a 0.44ab 0.51a 0.80a 0.65a 0.86a SS 38.19±0.11b 2.06±0.03d 27.50±0.26a 41.91±0.14c 10.14±0.06b 27.82±0.46a 0.55b 0.46a 0.47b 0.77b 0.60b 0.86a AS 37.86±0.44b 2.38±0.08b 23.88±0.56b 33.99±0.41d 8.52±0.15d 17.33±0.36c 0.55b 0.43b 0.38c 0.67d 0.48d 0.81c 茎
StemCK 19.86±0.41a 2.09±0.01a 21.70±0.11a 14.15±0.16a 5.93±0.03a 2.83±0.02b 0.33a 0.40a 0.44a 0.22b 0.35b 0.13a CS 18.63±0.43b 1.92±0.04b 16.62±0.23b 10.41±0.21b 4.70±0.09d 2.56±0.04c 0.21c 0.30c 0.30c 0.15d 0.25d 0.10d SS 20.29±0.59a 1.57±0.04d 21.75±0.27a 9.36±0.32d 4.91±0.02c 3.33±0.07a 0.32b 0.38b 0.40b 0.19c 0.31c 0.11b AS 18.02±0.19b 1.74±0.01c 21.53±0.15a 9.91±0.07c 5.34±0.08b 2.43±0.05d 0.33ab 0.39ab 0.43a 0.25a 0.38a 0.14a 根
RootsCK 12.88±0.15a 1.36±0.04b 10.20±0.43ab 3.80±0.08a 1.69±0.03d 1.18±0.04b 0.12c 0.14c 0.11b 0.03d 0.06d 0.03b CS 12.38±0.25b 1.52±0.04a 9.82±0.06b 3.26±0.06b 1.78±0.01c 1.21±0.05b 0.15a 0.26a 0.19a 0.05b 0.10b 0.05a SS 13.16±0.22a 1.06±0.02c 10.63±0.25a 3.08±0.04c 2.11±0.03b 1.42±0.05a 0.13b 0.16b 0.13b 0.04c 0.09c 0.03b AS 7.73±0.31c 0.90±0.01d 10.65±0.03a 3.76±0.08a 2.30±0.04a 0.96±0.01c 0.12bc 0.18b 0.19a 0.08a 0.14a 0.05a 各处理说明见表1。同列不同小写字母表示不同处理间差异显著(P<0.05)。The description of each treatment is shown in Table 1. Different lowercase letters in the same column indicate significant differences among treatments (P<0.05). 表 4 NaCl胁迫下棉花根差异代谢通路和差异代谢物
Table 4. Differential metabolic pathways and metabolites in cotton roots under NaCl stress
编号
No.代谢通路
Metabolic pathway差异代谢物
Differential metabolite变化倍数
Fold change1 丙氨酸、天冬氨酸和谷氨酸代谢
Alanine, aspartate and glutamate metabolismL-谷氨酰胺 L-Glutamine 1.26 琥珀酸半醛 Succinic semialdehyde 1.28 2 丁酸代谢
Butanoate metabolism琥珀酸半醛 Succinic semialdehyde 1.28 3 泛酸和辅酶A生物合成
Pantothenate and CoA biosynthesis泛酸 Pantothenate 1.35 二氢尿嘧啶 Dihydrouracil 1.32 4 精氨酸生物合成
Arginine biosynthesisL-谷氨酰胺 L-Glutamine 1.26 5 半乳糖代谢
Galactose metabolism肌醇 myo-Inositol 1.39 蔗糖 Sucrose 1.40 UDP-D-半乳糖 UDP-D-Galactose 1.13 6 精氨酸和脯氨酸代谢
Arginine and proline metabolism4-乙酰氨基丁酸酯 4-acetamidobutanoate 0.74 7 磷酸肌醇代谢
Inositol phosphate metabolism肌醇 myo-Inositol 1.39 表 5 Na2SO4胁迫下棉花根差异代谢通路和差异代谢物
Table 5. Differential metabolic pathways and metabolites in cotton roots under Na2SO4 stress
编号
No.代谢通路
Metabolic pathway差异代谢物
Differential metabolite变化倍数
Fold change1 异喹啉生物碱的生物合成
Isoquinoline alkaloid biosynthesisL-酪氨酸 L-Tyrosine 1.35 多巴胺 Dopamine 1.36 2 丙氨酸、天冬氨酸和谷氨酸代谢
Alanine, aspartate and glutamate metabolismL-丙氨酸 L-Alanine 2.85 L-天冬酰胺 L-Asparagine 1.27 丙酮酸 Pyruvate 1.49 L-谷氨酰胺 L-Glutamine 1.37 L-谷氨酸 L-Glutamate 1.79 琥珀酸 Succinate 2.10 琥珀酸半醛 Succinic semialdehyde 1.74 3 牛磺酸和低牛磺酸代谢
Taurine and hypotaurine metabolism牛磺酸 Taurine 1.57 4 C5支化二元酸代谢
C5-Branched dibasic acid metabolism柠檬酸 Citraconic acid 1.34 丙酮酸 Pyruvate 1.49 5 苯丙氨酸代谢
Phenylalanine metabolism苯丙氨酸 L-Phenylalanine 1.54 6 甘油磷脂代谢
Glycerophospholipid metabolism甘油磷酸胆碱 Glycerophosphocholine 0.62 磷酰胆碱 Phosphorylcholine 1.33 7 精氨酸生物合成
Arginine biosynthesisL-谷氨酸 L-Glutamate 1.79 N-乙酰-L-谷氨酸 N-Acetyl-L-glutamate 0.75 L-瓜氨酸 L-Citrulline 3.58 L-谷氨酰胺 L-Glutamine 1.37 N2-乙酰-L-鸟氨酸 N2-Acetyl-L-ornithine 0.47 8 淀粉和蔗糖代谢
Starch and sucrose metabolism蔗糖 Sucrose 1.49 D-麦芽糖 D-Maltose 2.33 D-葡萄糖6-磷酸 D-Glucose 6-phosphate 1.81 α, α-海藻糖 Alpha, alpha-Trehalose 1.80 9 甘氨酸、丝氨酸和苏氨酸代谢
Glycine, serine and threonine metabolismL-苏氨酸 L-Threonine 0.79 L-丝氨酸 L-Serine 1.57 丙酮酸 Pyruvate 1.49 10 丙酮酸代谢
Pyruvate metabolism丙酮酸 Pyruvate 1.49 L-苹果酸 L-Malic acid 2.76 11 乙醛酸和二羧酸代谢
Glyoxylate and dicarboxylate metabolismD-核酮糖1,5-二磷酸 D-Ribulose 1,5-bisphosphate 1.46 顺乌头酸 Cis-Aconitate 2.10 L-苹果酸 L-Malic acid 2.76 琥珀酸 Succinate 2.10 磷酸乙醇酸 Phosphoglycolic acid 0.68 L-谷氨酸 L-Glutamate 1.79 L-丝氨酸 L-Serine 1.57 L-谷氨酰胺 L-Glutamine 1.37 甘油酸 Glyceric acid 1.44 12 半乳糖代谢
Galactose metabolismUDP-D-半乳糖 UDP-D-Galactose 1.22 水苏糖 Stachyose 2.92 棉子糖 Raffinose 2.32 肌醇 Myo-Inositol 1.61 蔗糖 Sucrose 1.49 甘油 Glycerol 5.50 13 戊糖磷酸途径
Pentose phosphate pathwayD-核糖 D-Ribose 2.39 D-核糖5-磷酸 D-Ribose 5-phosphate 0.38 14 丁酸代谢
Butanoate metabolismL-谷氨酸 L-Glutamate 1.79 丙酮酸 Pyruvate 1.49 琥珀酸半醛 Succinic semialdehyde 1.74 琥珀酸 Succinate 2.10 15 柠檬酸循环(TCA循环)
Citrate cycle (TCA cycle)L-苹果酸 L-Malic acid 2.76 琥珀酸 Succinate 2.10 顺乌头酸 Cis-Aconitate 2.10 丙酮酸 Pyruvate 1.49 16 光合生物的固碳作用
Carbon fixation in photosynthetic organismsL-苹果酸 L-Malic acid 2.76 丙酮酸 Pyruvate 1.49 L-丙氨酸 L-Alanine 2.85 D-核糖5-磷酸 D-Ribose 5-phosphate 0.38 D-核酮糖1,5-二磷酸
D-Ribulose 1,5-bisphosphate1.46 17 谷胱甘肽代谢
Glutathione metabolism谷胱甘肽二硫化物 Glutathione disulfide 1.93 L-谷氨酸 L-Glutamate 1.79 γ-谷氨酰半胱氨酸 Gamma-Glutamylcysteine 1.85 L-焦谷氨酸 L-Pyroglutamic acid 2.46 18 精氨酸和脯氨酸代谢
Arginine and proline metabolism脯氨酸 Proline 1.43 4-胍基丁酸 4-Guanidinobutyric acid 1.22 4-乙酰氨基丁酸酯 4-acetamidobutanoate 0.70 L-谷氨酸 L-Glutamate 1.79 19 氨基糖和核苷酸糖代谢
Amino sugar and nucleotide sugar metabolismUDP-D-半乳糖 UDP-D-Galactose 1.22 UDP-N-乙酰葡糖胺 UDP-N-acetylglucosamine 1.57 20 缬氨酸、亮氨酸和异亮氨酸生物合成
Valine, leucine and isoleucine biosynthesisL-亮氨酸 L-Leucine 0.83 柠檬酸 Citraconic acid 1.34 L-苏氨酸 L-Threonine 0.79 丙酮酸 Pyruvate 1.49 L-异亮氨酸 L-Isoleucine 0.44 21 泛酸和辅酶A生物合成
Pantothenate and CoA biosynthesis丙酮酸 Pyruvate 1.49 尿嘧啶 Uracil 1.83 泛酸 Pantothenate 1.50 22 角质、木栓碱和蜡的生物合成
Cutin, suberine and wax biosynthesis油酸 Oleic acid 0.68 苯甲酸 Behenic acid 1.96 23 类黄酮生物合成
Flavonoid biosynthesis柚皮素 Naringenin 0.80 24 糖酵解/糖异生
Glycolysis / Gluconeogenesis丙酮酸 Pyruvate 1.49 25 酪氨酸代谢
Tyrosine metabolismL-酪氨酸 L-Tyrosine 1.35 多巴胺 Dopamine 1.36 丙酮酸 Pyruvate 1.49 26 氨酰tRNA生物合成
Aminoacyl-tRNA biosynthesisL-天冬酰胺 L-Asparagine 1.27 L-组氨酸 L-Histidine 0.75 苯丙氨酸 L-Phenylalanine 1.54 L-谷氨酰胺 L-Glutamine 1.37 L-丝氨酸 L-Serine 1.57 L-丙氨酸 L-Alanine 2.85 L-异亮氨酸 L-Isoleucine 0.44 L-亮氨酸 L-Leucine 0.83 L-苏氨酸 L-Threonine 0.79 L-酪氨酸 L-Tyrosine 1.35 L-脯氨酸 L-Proline 1.44 L-谷氨酸 L-Glutamate 1.79 27 硫代谢
Sulfur metabolismL-丝氨酸 L-Serine 1.57 O-乙酰-L-丝氨酸 O-Acetyl-L-serine 3.34 琥珀酸 Succinate 2.10 28 苯丙氨酸、酪氨酸和色氨酸生物合成
Phenylalanine, tyrosine and tryptophan biosynthesis预苯酸 Prephenate 1.69 L-苯丙氨酸 L-Phenylalanine 1.54 L-酪氨酸 L-Tyrosine 1.35 29 肌醇磷酸代谢
Inositol phosphate metabolism肌醇 Myo-Inositol 1.61 D-葡萄糖6-磷酸 D-Glucose 6-phosphate 1.81 表 6 Na2CO3+NaHCO3胁迫下棉花根差异代谢通路和差异代谢物
Table 6. Differential metabolic pathways and metabolites in cotton roots under Na2CO3+NaHCO3 stress
编号
No.代谢通路
Metabolic pathway差异代谢物
Differential metabolite变化倍数
Fold change1 异喹啉生物碱的生物合成
Isoquinoline alkaloid biosynthesisL-酪氨酸 L-Tyrosine 1.30 多巴胺 Dopamine 1.33 2 丙氨酸、天冬氨酸和谷氨酸代谢
Alanine, aspartate and glutamate metabolismL-天冬酰胺 L-Asparagine 1.23 L-丙氨酸 L-Alanine 3.29 L-谷氨酰胺 L-Glutamine 0.72 L-谷氨酸 L-Glutamate 2.00 琥珀酸 Succinate 2.91 4-氨基丁酸 4-Aminobutyric acid 1.16 琥珀酸半醛 Succinic semialdehyde 1.58 琥珀酸 Succinate 2.91 3 维生素B6代谢
Vitamin B6 metabolism吡哆醇 Pyridoxine 2.62 5’-磷酸吡哆醛 Pyridoxal 5’-phosphate 0.76 4 精氨酸生物合成
Arginine biosynthesisL-谷氨酸 L-Glutamate 2.00 N-乙酰-L-谷氨酸 N-Acetyl-L-glutamate 0.28 L-瓜氨酸 L-Citrulline 2.86 L-谷氨酰胺 L-Glutamine 0.72 5 丁酸代谢
Butanoate metabolismL-谷氨酸 L-Glutamate 2.00 琥珀酸 Succinate 2.91 4-氨基丁酸 4-Aminobutyric acid 1.16 琥珀酸半醛 Succinic semialdehyde 1.58 6 乙醛酸和二羧酸代谢
Glyoxylate and dicarboxylate metabolism顺乌头酸 Cis-Aconitate 1.27 琥珀酸 Succinate 2.91 L-谷氨酸 L-Glutamate 2.00 L-谷氨酰胺 L-Glutamine 0.72 磷酸乙醇酸 Phosphoglycolic acid 0.47 L-苹果酸 L-Malic acid 4.20 7 戊糖磷酸途径
Pentose phosphate pathwayD-核糖 D-Ribose 2.49 D-核糖5-磷酸 D-Ribose 5-phosphate 0.15 8 淀粉和蔗糖代谢
Starch and sucrose metabolism蔗糖 Sucrose 1.34 麦芽糖 Maltose 2.45 9 柠檬酸循环(TCA循环)
Citrate cycle (TCA cycle)琥珀酸 Succinate 2.91 顺乌头酸 Cis-Aconitate 1.27 L-苹果酸 L-Malic acid 4.20 10 甘油磷脂代谢
Glycerophospholipid metabolism胆碱 Choline 1.27 甘油磷酸胆碱 Glycerophosphocholine 0.45 11 丙酮酸代谢
Pyruvate metabolismL-苹果酸 L-Malic acid 4.20 12 半乳糖代谢
Galactose metabolism水苏糖 Stachyose 4.37 棉子糖 Raffinose 2.29 肌醇 Myo-Inositol 1.59 蔗糖 Sucrose 1.34 13 谷胱甘肽代谢
Glutathione metabolismL-谷氨酸盐 L-Glutamate 2.00 谷胱甘肽二硫化物 Glutathione disulfide 1.62 γ-谷氨酰半胱氨酸 Gamma-Glutamylcysteine 2.73 14 甘氨酸、丝氨酸和苏氨酸代谢
Glycine, serine and threonine metabolism胆碱 Choline 1.27 L-苏氨酸 L-Threonine 0.66 甘油酸 Glyceric acid 2.23 15 泛酸和辅酶A生物合成
Pantothenate and CoA biosynthesis泛酸 Pantothenate 2.03 16 角质、木栓碱和蜡的生物合成
Cutin, suberine and wax biosynthesis油酸 Oleic acid 0.47 17 酪氨酸代谢
Tyrosine metabolismL-酪氨酸 L-Tyrosine 1.30 多巴胺 Dopamine 1.33 18 肌醇磷酸代谢
Inositol phosphate metabolism肌醇 Myo-Inositol 1.59 表 7 NaCl胁迫下棉花叶差异代谢通路和差异代谢物
Table 7. Differential metabolic pathways and metabolites in cotton leaves under NaCl stress
编号
No.代谢通路
Metabolic pathway差异代谢物
Differential metabolite变化倍数
Fold change1 异喹啉生物碱生物合成
Isoquinoline alkaloid biosynthesisL-酪氨酸
L-Tyrosine1.53 2 丙酮酸代谢
Pyruvate metabolismL-苹果酸
L-Malic acid1.43 3 芪类、二芳基庚烷类和姜酚的生物合成
Stilbenoid, diarylheptanoid and gingerol biosynthesis绿原酸
Chlorogenic acid1.64 4 氰基氨基酸代谢
Cyanoamino acid metabolism野樱皮甙
Prunasin1.26 5 磷酸戊糖途径
Pentose phosphate pathway6-磷酸-D-葡萄糖酸
6-Phospho-D-gluconate1.22 6 酪氨酸代谢
Tyrosine metabolismL-酪氨酸
L-Tyrosine1.54 7 萜类骨架生物合成
Terpenoid backbone biosynthesis1-脱氧-D-木酮糖5-磷酸 1-Deoxy-D-xylulose 5-phosphate 1.82 (R)-5-磷酸甲羟戊酸 (R)-mevalonic acid 5-Phosphate 1.75 表 8 Na2SO4胁迫下棉花叶差异代谢通路和差异代谢物
Table 8. Differential metabolic pathways and metabolites in cotton leaves under Na2SO4 stress
编号
No.代谢通路
Metabolic pathway差异代谢物
Differential metabolite变化倍数
Fold change1 亚油酸代谢
Linoleic acid metabolism亚油酸 Linoleic acid 4.24 2 丙氨酸、天冬氨酸和谷氨酸代谢
Alanine, aspartate and glutamate metabolismL-天冬氨酸 L-Aspartate 2.17 L-天门冬酰胺 L-Asparagine 0.65 丙酮酸 Pyruvate 1.34 氧戊二酸 Oxoglutaric acid 1.48 L-谷氨酰胺 L-Glutamine 0.79 L-谷氨酸 L-Glutamate 1.79 琥珀酸 Succinate 1.42 3 黄酮和黄酮醇的生物合成
Flavone and flavonol biosynthesis山奈酚 Kaempferol 1.47 4 戊糖磷酸途径
Pentose phosphate pathway6-磷酸-D-葡萄糖酸 6-Phospho-D-gluconate 1.23 D-核糖5-磷酸 D-Ribose 5-phosphate 1.52 5 色氨酸代谢
Tryptophan metabolism2-氧代辛酸 2-Oxoadipic acid 0.51 L-色氨酸 L-Tryptophan 0.27 N-乙酰血清素 N-Acetylserotonin 3.14 吲哚乙酸 Indoleacetic acid 0.4 6 柠檬酸循环(TCA 循环)
Citrate cycle (TCA cycle)琥珀酸 Succinate 1.42 柠檬酸 Citrate 6.14 顺乌头酸 Cis-Aconitate 1.39 丙酮酸 Pyruvate 1.34 2-氧代辛酸 2-Oxoadipic acid 0.51 7 赖氨酸降解
Lysine degradation2-氧代辛酸 2-Oxoadipic acid 0.51 糖苷 Saccharopine 0.52 8 苯丙氨酸代谢
Phenylalanine metabolism苯乙酸 Phenylacetic acid 1.15 苯乙胺 Phenylethylamine 0.68 反式肉桂酸酯 Trans-cinnamate 1.20 9 精氨酸生物合成
Arginine biosynthesis2-氧代辛酸 2-Oxoadipic acid 0.51 L-谷氨酸 L-Glutamate 1.79 L-谷氨酰胺 L-Glutamine 0.79 L-天冬氨酸 L-Aspartate 2.17 N2-乙酰-L-鸟氨酸 N2-Acetyl-L-ornithine 0.57 10 半乳糖代谢
Galactose metabolismα-D-葡萄糖 Alpha-D-Glucose 0.64 水苏糖 Stachyose 0.74 棉子糖 Raffinose 2.67 蔗糖 Sucrose 1.21 11 乙醛酸和二羧酸代谢
Glyoxylate and dicarboxylate metabolism顺乌头酸 Cis-Aconitate 1.39 柠檬酸 Citrate 6.14 琥珀酸 Succinate 1.42 L-谷氨酸 L-Glutamate 1.79 L-谷氨酰胺 L-Glutamine 0.79 2-氧代辛酸 2-Oxoadipic acid 0.51 甘油酸 Glyceric acid 1.28 12 丙酮酸代谢
Pyruvate metabolism丙酮酸 Pyruvate 1.34 13 甘氨酸、丝氨酸和苏氨酸代谢
Glycine, serine and threonine metabolismL-天冬氨酸 L-Aspartate 2.17 甘油酸 Glyceric acid 1.28 L-苏氨酸 L-Threonine 1.52 L-色氨酸 L-Tryptophan 0.27 丙酮酸 Pyruvate 1.34 14 芪类、二芳基庚烷类和姜辣素生物合成
Stilbenoid, diarylheptanoid and gingerol biosynthesis绿原酸
Chlorogenic acid1.79 15 糖酵解/糖异生
Glycolysis / Gluconeogenesisα-D-葡萄糖 Alpha-D-Glucose 0.64 丙酮酸 Pyruvate 1.34 16 缬氨酸、亮氨酸和异亮氨酸的生物合成
Valine, leucine and isoleucine biosynthesisL-苏氨酸 L-Threonine 1.52 丙酮酸 Pyruvate 1.34 表 9 Na2CO3+NaHCO3胁迫下棉花叶差异代谢通路和差异代谢物
Table 9. Differential metabolic pathways and metabolites in cotton leaves under Na2CO3+NaHCO3 stress
编号
No.代谢通路
Metabolic pathway差异代谢物
Differential metabolite变化倍数
Fold change1 亚油酸代谢 Linoleic acid metabolism 亚油酸 Linoleic acid 3.47 2 黄酮和黄酮醇生物合成 Flavone and flavonol biosynthesis 山奈酚 Kaempferol 2.87 3 戊糖磷酸途径 Pentose phosphate pathway 6-磷酸-D-葡萄糖酸 6-Phospho-D-gluconate 0.58 D-核糖5-磷酸 D-Ribose 5-phosphate 1.50 4 丙氨酸、天冬氨酸和谷氨酸代谢
Alanine, aspartate and glutamate metabolismL-天冬氨酸 L-Aspartate 1.95 L-谷氨酰胺 L-Glutamine 0.57 琥珀酸 Succinate 0.35 5 硫胺素代谢 Thiamine metabolism 一磷酸硫胺素 Thiamine monophosphate 0.36 6 赖氨酸降解 Lysine degradation 2-氧代辛酸 2-Oxoadipic acid 0.35 糖苷 Saccharopine 0.59 7 精氨酸和脯氨酸代谢
Arginine and proline metabolismL-精氨酸 L-Arginine 2.59 羟脯氨酸 Hydroxyproline 1.83 腐胺 Putrescine 1.58 8 色氨酸代谢
Tryptophan metabolism2-氧代辛酸 2-Oxoadipic acid 0.35 N-乙酰血清素 N-Acetylserotonin 8.23 吲哚乙酸 Indoleacetic acid 0.36 -
[1] ROLLY N K, IMRAN Q M, LEE I J, et al. Salinity stress-mediated suppression of expression of salt overly sensitive signaling pathway genes suggests negative regulation by AtbZIP62 transcription factor in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2020, 21(5): 1726 doi: 10.3390/ijms21051726 [2] YANG H C, WANG J Y, ZHANG F H. Soil aggregation and aggregate-associated carbon under four typical halophyte communities in an arid area[J]. Environmental Science and Pollution Research, 2016, 23(23): 23920−23929 doi: 10.1007/s11356-016-7583-3 [3] ELKELISH A A, ALHAITHLOUL H A S, QARI S H, et al. Pretreatment with Trichoderma harzianum alleviates waterlogging-induced growth alterations in tomato seedlings by modulating physiological, biochemical, and molecular mechanisms[J]. Environmental and Experimental Botany, 2020, 171: 103946 doi: 10.1016/j.envexpbot.2019.103946 [4] ELSAKHAWY T, ALKAHTANI M D F, SHARSHAR A, et al. Efficacy of mushroom metabolites (Pleurotus ostreatus) as a natural product for the suppression of broomrape growth (Orobanche crenata Forsk) in Faba bean plants[J]. Plants, 2020, 9(1): 1265−1282 [5] ABBASI G H, AKHTAR J, ANWAR-UL-HAQ M, et al. Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids[J]. Pakistan Journal of Botany, 2014, 46(1): 135−146 [6] CARILLO P, CIRILLO C, DE MICCO V, et al. Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. trained to different canopy shapes[J]. Agricultural Water Management, 2019, 212: 12−22 doi: 10.1016/j.agwat.2018.08.037 [7] AHANGER M A, AZIZ U, ALSAHLI A A, et al. Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis[J]. Biomolecules, 2019, 10(1): E42 doi: 10.3390/biom10010042 [8] ALAM P, ALBALAWI T H, ALTALAYAN F H, et al. 24-epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-regulating antioxidant system, ascorbate-glutathione cycle, and glyoxalase system[J]. Biomolecules, 2019, 9(11): 640 doi: 10.3390/biom9110640 [9] DE LACERDA C F, CAMBRAIA J, OLIVA M A, et al. Solute accumulation and distribution during shoot and leaf development in two Sorghum genotypes under salt stress[J]. Environmental and Experimental Botany, 2003, 49(2): 107−120 doi: 10.1016/S0098-8472(02)00064-3 [10] CHRYSARGYRIS A, PAPAKYRIAKOU E, PETROPOULOS S A, et al. The combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plants[J]. Journal of Hazardous Materials, 2019, 368: 584−593 doi: 10.1016/j.jhazmat.2019.01.058 [11] SHELDON A R, DALAL R C, KIRCHHOF G, et al. The effect of salinity on plant-available water[J]. Plant and Soil, 2017, 418(1/2): 477−491 [12] WIN K T, TANAKA F, OKAZAKI K, et al. The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants[J]. Plant Physiology and Biochemistry, 2018, 127: 599−607 doi: 10.1016/j.plaphy.2018.04.038 [13] MORENO-IZAGUIRRE E, OJEDA-BARRIOS D, AVILA-QUEZADA G, et al. Sodium sulfate exposure slows growth of native pecan seedlings[J]. Phyton, 2015, 84(1): 80−85 doi: 10.32604/phyton.2015.84.080 [14] AGHAJANZADEH T, REICH M, KOPRIVA S, et al. Impact of chloride (NaCl, KCl) and sulphate (Na2SO4, K2SO4) salinity on glucosinolate metabolism in Brassica rapa[J]. Journal of Agronomy and Crop Science, 2018, 204: 137−146 doi: 10.1111/jac.12243 [15] DAVIDIAN J C, KOPRIVA S. Regulation of sulfate uptake and assimilation — the same or not the same?[J]. Molecular Plant, 2010, 3(2): 314−325 doi: 10.1093/mp/ssq001 [16] TAKAHASHI H, KOPRIVA S, GIORDANO M, et al. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes[J]. Annual Review of Plant Biology, 2011, 62: 157−184 doi: 10.1146/annurev-arplant-042110-103921 [17] GUO K W, XU Z S, HUO Y Z, et al. Effects of salt concentration, pH, and their interaction on plant growth, nutrient uptake, and photochemistry of alfalfa (Medicago sativa) leaves[J]. Plant Signaling & Behavior, 2020, 15(12): 1832373 [18] 刘高峰. NO和钙信使系统在草酸诱导黄瓜叶片抗霜霉病中的作用[J]. 西北植物学报, 2012, 32(5): 969−974LIU G F. Role of nitric oxide and calcium signaling in oxalate-induced resistance of cucumber leaves to Pseudoperonospora cubensis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(5): 969−974 [19] XIANG G Q, MA W Y, GAO S W, et al. Transcriptomic and phosphoproteomic profiling and metabolite analyses reveal the mechanism of NaHCO3-induced organic acid secretion in grapevine roots[J]. BMC Plant Biology, 2019, 19(1): 383 doi: 10.1186/s12870-019-1990-9 [20] GUO S H, NIU Y J, ZHAI H, et al. Effects of alkaline stress on organic acid metabolism in roots of grape hybrid rootstocks[J]. Scientia Horticulturae, 2018, 227: 255−260 doi: 10.1016/j.scienta.2017.09.051 [21] HAN L, XIAO C X, XIAO B B, et al. Proteomic profiling sheds light on alkali tolerance of common wheat (Triticum aestivum L.)[J]. Plant Physiology and Biochemistry: PPB, 2019, 138: 58−64 doi: 10.1016/j.plaphy.2019.02.024 [22] PANG Q Y, ZHANG A Q, ZANG W, et al. Integrated proteomics and metabolomics for dissecting the mechanism of global responses to salt and alkali stress in Suaeda corniculate[J]. Plant and Soil, 2016, 402(1/2): 379−394 doi: 10.1007/s11104-015-2774-0 [23] ZHANG J, YANG D S, LI M X, et al. Metabolic profiles reveal changes in wild and cultivated soybean seedling leaves under salt stress[J]. Plos One, 2016, 11(7): e0159622 doi: 10.1371/journal.pone.0159622 [24] XIAO C, CUI X, LU H, et al. Comparative adaptive strategies of old and young leaves to alkali-stress in hexaploid wheat[J]. Environmental and Experimental Botany, 2020, 171: 103955−103979 doi: 10.1016/j.envexpbot.2019.103955 [25] PORCEL R, AROCA R, RUIZ-LOZANO J M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review[J]. Agronomy for Sustainable Development, 2012, 32(1): 181−200 doi: 10.1007/s13593-011-0029-x [26] RAHNAMA A, JAMES R, POUSTINI K, et al. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil[J]. Functional Plant Biology, 2010, 37: 255−263 doi: 10.1071/FP09148 [27] SAIED A S, KEUTGEN A J, NOGA G. The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’ and ‘Korona’[J]. Scientia Horticulturae, 2005, 103(3): 289−303 doi: 10.1016/j.scienta.2004.06.015 [28] SIROHI G, PANDEY B K, DEVESHWAR P, et al. Emerging trends in epigenetic regulation of nutrient deficiency response in plants[J]. Molecular Biotechnology, 2016, 58(3): 159−171 doi: 10.1007/s12033-016-9919-0 [29] FAROOQ M, HUSSAIN M, WAKEEL A, et al. Salt stress in maize: effects, resistance mechanisms, and management. A review[J]. Agronomy for Sustainable Development, 2015, 35(2): 461−481 doi: 10.1007/s13593-015-0287-0 [30] AHANGER M A, ALYEMENI M N, WIJAYA L, et al. Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system[J]. PLoS One, 2018, 13(9): e0202175 doi: 10.1371/journal.pone.0202175 [31] AHMAD P, AHANGER M A, ALAM P, et al. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes[J]. Journal of Plant Growth Regulation, 2019, 38(1): 70−82 doi: 10.1007/s00344-018-9810-2 [32] 邢英英, 张富仓, 张燕, 等. 膜下滴灌水肥耦合促进番茄养分吸收及生长[J]. 农业工程学报, 2014, 30(21): 70−80 doi: 10.3969/j.issn.1002-6819.2014.21.010XING Y Y, ZHANG F C, ZHANG Y, et al. Irrigation and fertilization coupling of drip irrigation under plastic film promotes tomato’s nutrient uptake and growth[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21): 70−80 doi: 10.3969/j.issn.1002-6819.2014.21.010 [33] CRAWFORD N M, GLASS A D M. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends in Plant Science, 1998, 3(10): 389−395 [34] GARNETT T, CONN V, KAISER B N. Root based approaches to improving nitrogen use efficiency in plants[J]. Plant, Cell & Environment, 2009, 32(9): 1272−1283 doi: 1272 [35] 武文明, 陈洪俭, 李金才, 等. 氮肥运筹对孕穗期受渍冬小麦旗叶叶绿素荧光与籽粒灌浆特性的影响[J]. 作物学报, 2012, 38(6): 1088−1096WU W M, CHEN H J, LI J C, et al. Effects of nitrogen fertilization on chlorophyll fluorescence parameters of flag leaf and grain filling in winter wheat suffered waterlogging at booting stage[J]. Acta Agronomica Sinica, 2012, 38(6): 1088−1096 [36] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651−681 doi: 10.1146/annurev.arplant.59.032607.092911 [37] LAMBERS H, COLMER T D. Root physiology — from gene to function[J]. Plant and Soil, 2005, 274(1/2): vii−xv [38] GIRI B, KAPOOR R, MUKERJI K G. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis[J]. Biology and Fertility of Soils, 2003, 38(3): 170−175 doi: 10.1007/s00374-003-0636-z [39] EVELIN H, KAPOOR R, GIRI B. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review[J]. Annals of Botany, 2009, 104(7): 1263−1280 doi: 10.1093/aob/mcp251 [40] 王树凤, 胡韵雪, 李志兰, 等. 盐胁迫对弗吉尼亚栎生长及矿质离子吸收、运输和分配的影响[J]. 生态学报, 2010, 30(17): 4609−4616WANG S F, HU Y X, LI Z L, et al. Effects of NaCl stress on growth and mineral ion uptake, transportation and distribution of Quercus virginiana[J]. Acta Ecologica Sinica, 2010, 30(17): 4609−4616 [41] KOTULA L, KHAN H A, QUEALY J, et al. Salt sensitivity in chickpea (Cicer arietinum L.): ions in reproductive tissues and yield components in contrasting genotypes[J]. Plant, Cell & Environment, 2015, 38(8): 1565−1577 [42] 胡静, 胡小柯, 尉秋实, 等. 植物内整流K+通道AKT1的研究进展[J]. 草业科学, 2017, 34(4): 813−822 doi: 10.11829/j.issn.1001-0629.2016-0295HU J, HU X K, YU Q S, et al. Study advances of plant inward rectifying K+ channel AKT1[J]. Pratacultural Science, 2017, 34(4): 813−822 doi: 10.11829/j.issn.1001-0629.2016-0295 [43] CHA-UM S, SINGH H, SAMPHUMPHUANG T, et al. Calcium-alleviated salt tolerance in indica rice (Oryza sativa L. spp. ‘indica’): physiological and morphological changes[J]. Australian Journal of Crop Science, 2012, 6: 176−182 [44] LIU A L, XIAO Z X, LI M W, et al. Transcriptomic reprogramming in soybean seedlings under salt stress[J]. Plant, Cell & Environment, 2019, 42(1): 98−114 [45] PORCEL R, AROCA R, AZCON R, et al. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution[J]. Mycorrhiza, 2016, 26(7): 673−684 doi: 10.1007/s00572-016-0704-5 [46] ALMEIDA D M, OLIVEIRA M M, SAIBO N J M. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants[J]. Genetics and Molecular Biology, 2017, 40(1 suppl 1): 326–345 [47] SGRIGNANI J, MAGISTRATO A. The structural role of Mg2+ ions in a class I RNA polymerase ribozyme: a molecular simulation study[J]. The Journal of Physical Chemistry B, 2012, 116(7): 2259−2268 doi: 10.1021/jp206475d [48] ZHAO D Y, GAO S, ZHANG X L, et al. Impact of saline stress on the uptake of various macro and micronutrients and their associations with plant biomass and root traits in wheat[J]. Plant Soil and Environment, 2021, 67: 61−70 doi: 10.17221/467/2020-PSE [49] APSE M P, BLUMWALD E. Na+ transport in plants[J]. FEBS Letters, 2007, 581(12): 2247−2254 doi: 10.1016/j.febslet.2007.04.014 [50] HAWKESFORD M J, DE KOK L J. Managing sulphur metabolism in plants[J]. Plant, Cell & Environment, 2006, 29(3): 382−395 [51] YANG C, GUO W, SHI D. Physiological roles of organic acids in alkali‐tolerance of the alkali‐tolerant halophyte Chloris virgata[J]. Agronomy journal, 2010, 102(4): 1081−1089 doi: 10.2134/agronj2009.0471 [52] HE X J, CHEN T P, ZHU J K. Regulation and function of DNA methylation in plants and animals[J]. Cell Research, 2011, 21(3): 442−465 doi: 10.1038/cr.2011.23 [53] YANG G H. Alkali stress induced the accumulation and secretion of organic acids in wheat[J]. African Journal of Agricultural Research, 2012, 7(18): 2844−2852 [54] XU J, LI L H, ZHU J H, et al. Insights into fatty acids β-oxidation in plant[J]. Letters in Biotechnology, 2008, 1: 141−144 [55] BADRI D, VIVANCO J. Regulation and function of root exudates[J]. Plant, Cell & Environment, 2009, 32(6): 666−681 [56] SUN J K, HE L, LI T. Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress[J]. PLoS One, 2019, 14(7): e0220340 doi: 10.1371/journal.pone.0220340 [57] ZHANG L, ZHANG Z J, FANG S Z, et al. Metabolome and transcriptome analyses unravel the molecular regulatory mechanisms involved in photosynthesis of Cyclocarya paliurus under salt stress[J]. International Journal of Molecular Sciences, 2022, 23(3): 1161 doi: 10.3390/ijms23031161 -

计量
- 文章访问数: 202
- HTML全文浏览量: 126
- PDF下载量: 47
- 被引次数: 0