Effects of earthworm mucus and straw charcoal on heavy metals during domestic sludge co-composting
-
摘要: 生活污泥中富含的重金属限制其资源化利用, 为钝化重金属活性, 降低污泥毒害效果和提高其利用价值, 以40 mL蚯蚓粘液和2%、4%、6%、8%秸秆炭为添加剂对2 kg污泥进行堆肥, 研究粘液、粘液协同秸秆炭添加对污泥堆肥后重金属变化的影响。结果显示, 与对照组污泥堆肥相比, 粘液堆肥污泥后pH升高1.42%, 总氮、总磷含量降低7.87%、14.18% (P<0.05); 而粘液协同秸秆炭堆肥污泥后, 污泥逐渐呈碱性, 电导率提升5.71%~9.58% (P<0.05), 有机质含量升高7.71%~24.60% (P<0.05), 丰富了堆体中可溶性离子和有机物含量, 但总氮、总钾含量分别降低19.10%~30.95%、7.87%~14.31%。在添加粘液对污泥堆肥后, 重金属总量均表现出下降趋势, Ni、Zn、Pb的较活泼形态向难以降解的残渣态转化, 使残渣态所占比例较CK处理分别升高61.81%、120.19%、72.51%; 当添加粘液和秸秆炭对污泥堆肥后, 重金属总量继续表现出下降趋势, 碳酸盐结合态Ni和Pb、铁锰结合态Pb、可交换态Zn逐步向稳定的残渣态转化, 而有机结合态Cu却向可交换态和残渣态转化, 钝化了堆肥污泥中Ni、Zn、Pb, 活化了Cu。最后根据分析得出结论, 粘液协同秸秆炭改变污泥中pH来影响重金属Ni、Zn、Pb、Cu有效态, 粘液+8%秸秆炭处理对污泥重金属的影响较为理想。Abstract: Heavy metals restrict the reuse of municipal sludge. To passivate the activity of heavy metals, reduce sludge toxicity, and create new value, 2 kg of sludge was composted with 40 mL earthworm mucus and 2%, 4%, 6%, and 8% straw charcoal, to investigate changes in the heavy metal mobility in sewage sludge. The results showed that, compared with the control sludge compost (CK), the pH increased by 1.42% (P<0.05) and the total nitrogen and total phosphorus decreased by 7.87% and 14.18%, respectively (P<0.05), after the addition of the mucus to the sludge. After adding both the mucus and straw charcoal to the sludge compost, the sludge gradually became alkaline; furthermore, its electrical conductivity value increased by 5.71%−9.58% (P<0.05), and organic matter content increased by 7.71%−24.60% (P<0.05). Although this enriched the content of soluble ions and available organic matter in the compost, the total nitrogen and potassium contents decreased by 19.10%–30.95% and 7.87%–14.31%, respectively, resulting in the loss of plant nutrients. By adding mucus to the sludge compost, different total heavy metal contents showed different declining trends; these included Cd, Cu, Ni, Zn, and Pb, which decreased by 3.59%, 7.03%, 10.93%, 8.39%, and 5.11% (P<0.05, except Ni), compared to the CK treatment group. The more active forms of Ni, Zn, and Pb were transformed into an unavailable residue form that was difficult to degrade; therefore, the proportion of residual forms increased by 61.81%, 120.19%, and 72.51%, respectively, compared with the CK treatment. When the mucus and different proportions of straw charcoal were added to the sludge, the total heavy metal contents decreased further. The total amount of Cd, Pb, Cu, Ni, and Zn decreased by 37.18%, 67.36%, 6.07%, 59.59%, and 31.82%, respectively, in the mucus plus 8% straw charcoal treatment group (P<0.05). The Ni and Pb associated with the carbonate, Pb associated with iron-manganese, and exchangeable Zn were gradually shifted to the residue form, so that the available contents of Ni, Pb, and Zn were significantly decreased by 28.08%, 42.00%, and 28.31%, respectively, in the mucus plus 8% straw charcoal treatment group, which passivated Ni, Zn, and Pb in the composted sludge. In contrast, organic form of Cu was converted into exchangeable and residual forms. Its available content was increased by 89.82 % (P<0.05) in the mucus plus 8% straw charcoal treatment group, and Cu was activated in the sludge during composting. In the analysis of the effect of mucus and different ratios of straw charcoal on the availability of heavy metals after composting, it was found that the correlation coefficients of straw charcoal addition with the available forms of heavy metals Cu, Zn, Pb, and Ni reached significant levels of 0.906, −0.909, −0.847, and −0.639 (P<0.05), respectively, while the correlation coefficients with Cd were lower. Finally, based on the principal component analysis and stepwise regression equations, mucus in combination with straw charcoal influenced the pH of the sludge compost, affecting the mobility of Ni, Zn, Pb, and Cu. Therefore, mucus plus 8% straw charcoal is an effective approach for treating the heavy metals in the sludge.
-
图 1 粘液和秸秆炭添加与污泥堆肥重金属含量的关系
CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting.
Figure 1. Relationship between applying earthworm mucus and straw charcoal and heavy metal contents of sludge compost
图 2 蚯蚓粘液-秸秆炭共同作用对污泥堆肥后重金属有效态分布的影响
CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2% 秸秆炭堆肥; S2: 污泥+粘液+4% 秸秆炭堆肥; S3: 污泥+粘液+6% 秸秆炭堆肥; S4: 污泥+粘液+8% 秸秆炭堆肥。F1: 可交换态; F2: 碳酸盐结合态; F3: 铁锰结合态; F4: 有机结合态; F5: 残渣态。
Figure 2. Effects of applying earthworm mucus and straw charcoal on distribution of available forms of heavy metals during sludge composting
CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. F1: exchange form; F2: carbonate bound form; F3: iron-manganese bound form; F4: organic form; F5: residual.
表 1 供试材料的基本理化性质
Table 1. Basic physiochemical properties of the testes raw materials
性质 Property 污泥 Sludge 蚯蚓粘液 Earthworm mucus 秸秆炭 Straw charcoal 电导率 Electrical conductivity (ms∙cm−1) 1.11±0.03 0.05±0.00 0.86±0.05 pH 6.70±0.02 6.89±0.20 8.87±0.09 含水率 Moisture content (%) 76.67±0.05 — 8.42±0.02 有机质 Organic matter (%) 16.65±0.89 0.37±0.03 17.61±0.63 总氮 Total nitrogen (g∙kg−1) 27.82±0.82 0.15±0.01 0.63±0.05 总磷 Total phosphorus (g∙kg−1) 8.88±0.32 0.007±0.00 2.82±0.10 总钾 Total potassium (g∙kg−1) 13.24±1.55 0.023±0.00 15.90±0.70 总锌 Total Zn (mg∙kg−1) 737.00±44.55 — 79.50±2.12 总铅 Total Pb (mg∙kg−1) 14.73±2.09 — — 总铜 Total Cu (mg∙kg−1) 60.43±5.27 72.90±1.78 19.37±0.66 总镍 Total Ni (mg∙kg−1) 32.40±5.06 — 2.45±0.07 总镉 Total Cd (mg∙kg−1) 1.62±0.11 — 0.05±0.00 “—”为未检出。“—” means not detected. 表 2 蚯蚓粘液-秸秆炭共同作用对污泥堆肥理化性质和营养物质的影响
Table 2. Effects of applying earthworm mucus and straw charcoal on the selected physical and chemical properties and nutrients of sludge compost
处理
TreatmentpH 电导率
Electrical conductivity
(mS∙cm−1)有机质
Organic matter
(%)总氮
Total nitrogen总磷
Total phosphorus总钾
Total potassium(g∙kg−1) CK 6.92±0.04e 1.34±0.01d 15.65±0.50d 32.31±0.31a 21.37±0.31a 15.14±0.16a S0 7.02±0.06d 1.38±0.03d 15.45±0.15d 29.77±0.70b 18.34±0.12b 15.31±0.32a S1 7.25±0.02c 1.46±0.02c 16.85±0.30c 25.56±0.32c 23.05±1.80a 13.95±0.96a S2 7.30±0.04c 1.51±0.02bc 17.53±0.28b 26.14±0.26c 22.81±0.50a 12.98±2.53a S3 7.47±0.08b 1.54±0.08ab 17.22±0.27bc 21.64±0.65d 17.57±1.90b 13.66±1.40a S4 7.61±0.05a 1.60±0.01a 19.50±0.26a 22.31±0.60d 17.13±1.15b 13.32±1.65a CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥; 同列不同字母表示不同处理间差异显著(P<0.05)。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. Different letters in the same column show significant differences among different treatments (P<0.05). 表 3 蚯蚓粘液-秸秆炭共同作用的污泥堆肥后重金属含量
Table 3. Effect of applying earthworm mucus and straw charcoal on heavy metal contents of sludge compost
处理 Treatment 镉 Cd 铅 Pb 铜 Cu 镍 Ni 锌 Zn mg∙kg−1 CK 1.95±0.02a 18.00±0.05a 65.85±3.90a 82.78±4.15a 858.00±39.09a S0 1.88±0.08a 17.08±4.25a 61.22±4.79ab 73.73±6.38b 786.00±0.30a S1 1.65±0.05b 11.78±1.48b 59.67±0.98ab 44.40±1.98c 783.00±7.50a S2 1.53±0.08b 8.83±1.45bc 61.68±1.78ab 41.91±0.44cd 676.50±18.00b S3 1.15±0.15c 6.37±1.70c 61.75±0.43ab 35.05±1.33de 645.00±7.50bc S4 1.23±0.23c 5.88±1.48c 61.85±1.95ab 33.45±5.96e 585.00±29.25c GB 4284—2018 (A) <3 <300 <500 <100 <1200 欧盟 European Union 20~40 750~1200 1000~1750 300~400 2500~4000 CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥; 同列不同字母表示不同处理间差异显著(P<0.05)。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. Different letters in the same column show significant differences among different treatments (P<0.05). 表 4 蚯蚓粘液-秸秆炭共同作用对污泥堆肥后重金属有效态含量的影响
Table 4. Effects of applying earthworm mucus and straw charcoal on contents of available heavy metals of sludge compost
mg∙kg−1 处理
Treatment有效态镉
Available Cd有效态铅
Available Pb有效态铜
Available Cu有效态镍
Available Ni有效态锌
Available ZnCK 0.39±0.05a 7.43±0.00a 3.10±0.24d 5.17±0.10a 8.41±0.10a S0 0.28±0.01d 6.60±0.29a 3.05±0.47d 4.58±0.09ab 8.29±0.14a S1 0.24±0.04d 5.56±0.82b 4.70±0.10c 4.63±0.68ab 7.67±0.45b S2 0.34±0.03bc 5.21±0.31bc 5.19±0.30bc 4.17±0.37bc 6.74±0.31c S3 0.36±0.01ab 4.85±0.54bc 5.69±0.29ab 4.14±0.18bc 5.79±0.31d S4 0.29±0.02cd 4.31±0.54c 5.88±0.10a 3.72±0.59c 6.03±0.46d CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥; 同列不同字母表示不同处理间差异显著(P<0.05)。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. Different letters in the same column show significant differences among different treatments (P<0.05). 表 5 污泥堆肥中重金属有效态含量与理化性质的相关关系
Table 5. Correlationships between contents of available forms of heavy metals with physical and chemical properties of sludge compost
重金属
Heavy metal理化性质 Physicochemical property pH 电导率
Electrical conductivity有机质
Organic matter总氮
Total nitrogen总磷
Total phosporus总钾
Total potassium镍 Ni −0.776** −0.734** −0.666** 0.727** 0.551* 0.238 铅 Pb −0.906** −0.872** −0.820** 0.903** 0.337 0.465 锌 Zn −0.906** −0.854** −0.796** 0.905** 0.431 0.388 镉 Cd −0.229 −0.202 −0.194 0.271 0.049 −0.044 铜 Cu 0.944** 0.932** 0.866** −0.937** −0.239 −0.565* **和*分别表示在 P<0.01和P<0.05水平显著相关。** and * indicate significant correlation at P<0.01 and P<0.05 levels, respectively. 表 6 污泥堆肥中重金属有效态含量与理化性质的回归方程
Table 6. Regression equations between contents of available forms of heavy metals with physical and chemical properties of sludge compost
重金属 Heavy metal 逐步回归方程 Stepwise regression analysis 拟合指数 R2 显著性 P 锌 Zn y=35.939−3.965xpH 0.81 <0.01 镍 Ni y=17.474−1.801xpH 0.58 <0.01 铜 Cu y=−32.766+4.901xpH+0.089xTP 0.92 <0.01 铅 Pb y=36.106−4.194xpH 0.81 <0.01 镉 Cd — — — xpH为污泥堆肥的pH, xTP为污泥堆肥的总磷含量。“—”为未检出。xpH is the pH of the sludge compost, xTP is the total phosphorus content of the sludge compost. “—” means not detected. -
[1] 中华人民共和国住房和城乡建设部. 中国城乡建设统计年鉴—2020[M]. 北京: 中国统计出版社, 2021Ministry of Housing and Urban-Rural Development, P.R. China. China Urban-Rural Construction Statistical Yearbook−2020[M]. Beijing: China Statistics Press, 2021 [2] NGUYEN M K, LIN C, HOANG H G, et al. Evaluate the role of biochar during the organic waste composting process: a critical review[J]. Chemosphere, 2022, 299: 134488 doi: 10.1016/j.chemosphere.2022.134488 [3] LI Y S, SUN B, DENG T Y, et al. Safety and efficiency of sewage sludge and garden waste compost as a soil amendment based on the field application in woodland[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112497 doi: 10.1016/j.ecoenv.2021.112497 [4] 李雪怡, 梁远, 方小锋, 等. 北京市污泥处理处置现状总结分析[J]. 中国给水排水, 2021, 37(22): 38−42 doi: 10.19853/j.zgjsps.1000-4602.2021.22.006LI X Y, LIANG Y, FANG X F, et al. Summarization and analysis of sludge treatment and disposal in Beijing[J]. China Water & Wastewater, 2021, 37(22): 38−42 doi: 10.19853/j.zgjsps.1000-4602.2021.22.006 [5] 黄俊熙, 严兴, 雷芳, 等. 添加辅料对污泥堆肥产品的生物肥效的影响[J]. 环境工程, 2021, 39(3): 142−147 doi: 10.13205/j.hjgc.202103020HUANG J X, YAN X, LEI F, et al. Improvement of biological fertilizer efficiency of sludge compost products by adding auxiliary materials[J]. Environmental Engineering, 2021, 39(3): 142−147 doi: 10.13205/j.hjgc.202103020 [6] 舒增年, 黄健. 蒙脱石对污泥好氧堆肥过程中重金属钝化效果[J]. 矿物学报, 2017, 37(S1): 53−60SHU Z N, HUANG J. Passivating effect of montmorillonite on heavy metals during sewage sludge composting[J]. Acta Mineralogica Sinica, 2017, 37(S1): 53−60 [7] WANG L M, ZHANG Y M, LIAN J J, et al. Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting[J]. Bioresource Technology, 2013, 136: 281−287 doi: 10.1016/j.biortech.2013.03.039 [8] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247−1253 [9] LIU L, YE Q Y, WU Q, et al. Effect of biochar addition on sludge aerobic composting and greenbelt utilization[J]. Environmental Technology & Innovation, 2021, 21: 101279 [10] MALINOWSKI M, WOLNY-KOŁADKA K, VAVERKOVÁ M D. Effect of biochar addition on the OFMSW composting process under real conditions[J]. Waste Management, 2019, 84: 364−372 doi: 10.1016/j.wasman.2018.12.011 [11] GUHRA T, STOLZE K, SCHWEIZER S, et al. Earthworm mucus contributes to the formation of organo-mineral associations in soil[J]. Soil Biology and Biochemistry, 2020, 145: 107785 doi: 10.1016/j.soilbio.2020.107785 [12] PAN X L, SONG W J, ZHANG D Y. Earthworms (Eiseniafoetida Savigny) mucus as complexing ligand for imidacloprid[J]. Biology and Fertility of Soils, 2010, 46(8): 845−850 doi: 10.1007/s00374-010-0494-4 [13] PLAVŠIN I, VELKI M, EČIMOVIĆ S, et al. Inhibitory effect of earthworm coelomic fluid on growth of the plant parasitic fungus Fusarium oxysporum[J]. European Journal of Soil Biology, 2017, 78: 1−6 doi: 10.1016/j.ejsobi.2016.11.004 [14] HUANG K, XIA H. Role of earthworms’ mucus in vermicomposting system: biodegradation tests based on humification and microbial activity[J]. Science of the Total Environment, 2018, 610/611: 703−708 doi: 10.1016/j.scitotenv.2017.08.104 [15] SIZMUR T, WATTS M J, BROWN G D, et al. Impact of gut passage and mucus secretion by the earthworm Lumbricus terrestris on mobility and speciation of arsenic in contaminated soil[J]. Journal of Hazardous Materials, 2011, 197: 169−175 doi: 10.1016/j.jhazmat.2011.09.071 [16] ZHANG S J, HU F, LI H X, et al. Influence of earthworm mucus and amino acids on tomato seedling growth and cadmium accumulation[J]. Environmental Pollution, 2009, 157(10): 2737−2742 doi: 10.1016/j.envpol.2009.04.027 [17] ALLEGRETTA I, PORFIDO C, PANZARINO O, et al. Determination of as concentration in earthworm coelomic fluid extracts by total-reflection X-ray fluorescence spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 130: 21−25 doi: 10.1016/j.sab.2017.02.003 [18] 陈玉香, 赵婷婷, 姚月, 等. 蚯蚓黏液促进玉米秸秆分解及其机理分析[J]. 农业工程学报, 2019, 35(15): 234−240 doi: 10.11975/j.issn.1002-6819.2019.15.029CHEN Y X, ZHAO T T, YAO Y, et al. Earthworm mucus improving decomposition of maize stover and its mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(15): 234−240 doi: 10.11975/j.issn.1002-6819.2019.15.029 [19] 程焱, 余亚伟, 张成, 等. 污泥堆肥及其利用过程汞的变化特征[J]. 环境化学, 2021, 40(7): 2226−2233 doi: 10.7524/j.issn.0254-6108.2020031201CHENG Y, YU Y W, ZHANG C, et al. Variation characteristics of mercury during municipal sludge composting and its land use[J]. Environmental Chemistry, 2021, 40(7): 2226−2233 doi: 10.7524/j.issn.0254-6108.2020031201 [20] 郇辉辉, 王兴明, 储昭霞, 等. 蚯蚓黏液联合竹炭堆肥对污泥中重金属的影响[J]. 农业环境科学学报, 2022, 41(5): 1077−1085 doi: 10.11654/jaes.2021-1378HUAN H H, WANG X M, CHU Z X, et al. Effects of earthworm mucus combined with bamboo charcoal on heavy metals in sludge[J]. Journal of Agro-Environment Science, 2022, 41(5): 1077−1085 doi: 10.11654/jaes.2021-1378 [21] 周鑫, 王兴明, 储昭霞, 等. 蚯蚓-稻壳炭联合堆肥对工业污泥中重金属的影响研究[J]. 生态环境学报, 2020, 29(2): 378−387ZHOU X, WANG X M, CHU Z X, et al. Effects of earthworm and rice husk charcoal composting on heavy metals in industrial sludge[J]. Ecology and Environmental Sciences, 2020, 29(2): 378−387 [22] ZAINUDIN M H, MUSTAPHA N A, MAEDA T, et al. Biochar enhanced the nitrifying and denitrifying bacterial communities during the composting of poultry manure and rice straw[J]. Waste Management, 2020, 106: 240−249 doi: 10.1016/j.wasman.2020.03.029 [23] WEI Y Q, WANG J, CHANG R X, et al. Composting with biochar or woody peat addition reduces phosphorus bioavailability[J]. The Science of the Total Environment, 2021, 764: 142841 doi: 10.1016/j.scitotenv.2020.142841 [24] 张贺飞, 徐燕, 曾正中, 等. 国外城市污泥处理处置方式研究及对我国的启示[J]. 环境工程, 2010, 28(S1): 434−438 doi: 10.13205/j.hjgc.2010.s1.101ZHANG H F, XU Y, ZENG Z Z, et al. Municipal sludge treatment way overseas and its enlightenment to China[J]. Environmental Engineering, 2010, 28(S1): 434−438 doi: 10.13205/j.hjgc.2010.s1.101 [25] 王兴明, 王运敏, 储昭霞, 等. 煤矸石对铜尾矿中重金属(Zn, Pb, Cd, Cr和Cu)形态及生物有效性的影响[J]. 煤炭学报, 2017, 42(10): 2688−2697WANG X M, WANG Y M, CHU Z X, et al. Effects of coal gangue addition on the chemical fraction and bioavailability of heavy metals (Zn, Pb, Cd, Cr and Cu) in copper mine tailings[J]. Journal of China Coal Society, 2017, 42(10): 2688−2697 [26] LI H B, DONG X L, DA SILVA E B, et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466−478 [27] ZHAO S, FENG C H, WANG D X, et al. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciation[J]. Chemosphere, 2013, 91(7): 977−984 doi: 10.1016/j.chemosphere.2013.02.001 [28] ZHOU H B, MENG H B, ZHAO L X, et al. Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting[J]. Bioresource Technology, 2018, 258: 279−286 doi: 10.1016/j.biortech.2018.02.086 [29] KULIKOWSKA D. Kinetics of organic matter removal and humification progress during sewage sludge composting[J]. Waste Management, 2016, 49: 196−203 doi: 10.1016/j.wasman.2016.01.005 [30] 史志明, 马丽丽, 胡飞龙, 等. 蚯蚓黏液对黑麦草幼苗生长及其对菲吸收的影响[J]. 土壤, 2013, 45(6): 1091−1096 doi: 10.13758/j.cnki.tr.2013.06.020SHI Z M, MA L L, HU F L, et al. Influence of earthworm mucus on ryegrass seedling growth and phenanthrene uptake[J]. Soils, 2013, 45(6): 1091−1096 doi: 10.13758/j.cnki.tr.2013.06.020 [31] AHMAD M, LEE S S, DOU X M, et al. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water[J]. Bioresource Technology, 2012, 118: 536−544 doi: 10.1016/j.biortech.2012.05.042 [32] DUAN Y M, YANG J F, GUO Y R, et al. Pollution control in biochar-driven clean composting: emphasize on heavy metal passivation and gaseous emissions mitigation[J]. Journal of Hazardous Materials, 2021, 420: 126635 doi: 10.1016/j.jhazmat.2021.126635 [33] GUO X X, LIU H T, ZHANG J. The role of biochar in organic waste composting and soil improvement: a review[J]. Waste Management, 2020, 102: 884−899 doi: 10.1016/j.wasman.2019.12.003 [34] HUA L, WU W X, LIU Y X, et al. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment[J]. Environmental Science and Pollution Research, 2009, 16(1): 1−9 doi: 10.1007/s11356-008-0041-0 [35] ZHANG J N, LÜ F, SHAO L M, et al. The use of biochar-amended composting to improve the humification and degradation of sewage sludge[J]. Bioresource Technology, 2014, 168: 252−258 doi: 10.1016/j.biortech.2014.02.080 [36] GHORBANI M, AMIRAHMADI E. Effect of rice husk biochar (RHB) on some of chemical properties of an acidic soil and the absorption of some nutrients[J]. Journal of Applied Sciences and Environmental Management, 2018, 22(3): 313 [37] LIANG J, YANG Z X, TANG L, et al. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost[J]. Chemosphere, 2017, 181: 281−288 doi: 10.1016/j.chemosphere.2017.04.081 [38] WANG Q, WANG Z, AWASTHI M K, et al. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting[J]. Bioresource Technology, 2016, 220: 297−304 doi: 10.1016/j.biortech.2016.08.081 [39] GIGLIOTTI G, PROIETTI P, SAID-PULLICINO D, et al. Co-composting of olive husks with high moisture contents: organic matter dynamics and compost quality[J]. International Biodeterioration & Biodegradation, 2012, 67: 8−14 [40] DIAS B O, SILVA C A, HIGASHIKAWA F S, et al. Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification[J]. Bioresource Technology, 2010, 101(4): 1239−1246 [41] HSU J H, LO S L. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure[J]. Environmental Pollution, 1999, 104(2): 189−196 doi: 10.1016/S0269-7491(98)00193-6 [42] AMERY F, DEGRYSE F, DEGELING W, et al. The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedures[J]. Environmental Science & Technology, 2007, 41(7): 2277−2281 [43] XUE Y W, GAO B, YAO Y, et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests[J]. Chemical Engineering Journal, 2012, 200/201/202: 673−680 [44] YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488−3497 doi: 10.1016/j.biortech.2010.11.018 [45] ZHENG G D, GAO D, CHEN T B, et al. Stabilization of nickel and chromium in sewage sludge during aerobic composting[J]. Journal of Hazardous Materials, 2007, 142(1/2): 216−221 [46] MARTı́NEZ C E, MOTTO H L. Solubility of lead, zinc and copper added to mineral soils[J]. Environmental Pollution, 2000, 107(1): 153−158 doi: 10.1016/S0269-7491(99)00111-6 -