Effects of returning gramineous green manure to cotton field on soil carbon and nitrogen in saline alkali soil
-
摘要: 为探讨绿肥还田对盐碱地棉田土壤碳氮和微生物量碳氮的影响, 于2018—2019年选取黑麦草‘冬牧70’和大麦‘驻大麦4号’ 2种耐低温耐盐碱的禾本科绿肥进行原位还田试验, 设置冬闲农田-棉花(T1)、黑麦草-棉花(T2)和大麦-棉花(T3) 3个处理, 测定不同处理和绿肥还田后不同时期(15 d、50 d、110 d和180 d)棉田土壤有机碳(SOC)、土壤全氮(TN)、土壤微生物量碳(SMBC)和微生物量氮(SMBN)的含量, 并计算土壤微生物熵(SMQ)和土壤微生物量碳氮比(SMBC/SMBN)值。结果表明, T2和T3均能显著增加SOC、TN含量, 并在180 d时达最大值9.50 g∙kg−1、798.84 mg∙kg−1和9.91g∙kg−1、759.34 mg∙kg−1, 分别显著高于T1处理。T2和T3的SMBC、SMBN含量在整个还田期的变化动态基本一致, 呈前期稳定增长且显著高于T1, 后期有所降低且在110 d时略低于T1的变化动态; 并且均在50 d时达最大值, 此时较T1分别高出81.46%、47.76%和77.33%、43.13%; 同时还田后T2处理不同时期的SMBC和SMBN含量均高于T3。SMQ不同处理的变化趋势与SMBC一致, 2种绿肥处理除110 d外均高于T1处理, T2在15 d时达到最大值2.82%, 而T3在50 d时达到最大值2.98%。各处理SMBC/SMBN值均在4~7之间变化, 由此可判断绿肥还田后土壤中微生物群落以细菌为主; 同T1相比, 除110 d外T2和T3均表现出较高的SMBC/SMBN值。综上所述, 在盐碱地冬闲农田种植绿肥并还田可以显著提高棉田土壤碳氮和土壤微生物量碳氮含量, 改善土壤微生物群落组成和提高土壤微生物固碳效应, 为后茬作物生长提供养分。研究结果对盐碱地冬闲田的合理利用具有指导意义。Abstract: To explore the effect of gramineous green manure on soil carbon and nitrogen contents in saline alkali cotton fields, two low-temperature- and saline alkali-tolerant gramineous green manures, ryegrass ‘Dongmu 70’ and barley ‘Zhudamai No.4’ were selected for in situ returning experiments from 2018 to 2019. Three treatments were set up: winter fallow farmland-cotton (T1), ryegrass-cotton (T2), and barley-cotton (T3). The contents of soil organic carbon (SOC), soil total nitrogen (TN), soil microbial biomass carbon (SMBC), and soil microbial biomass nitrogen (SMBN) were measured in different treatments at different periods (15, 50, 110, and 180 d) after returning green manure to field. The soil microbial quotient (SMQ) and ratio of soil microbial biomass carbon to nitrogen (SMBC/SMBN) were calculated. The results showed that both T2 and T3 significantly increased the contents of SOC and TN, and reached maximum values of 9.50 g∙kg−1 and 798.84 mg∙kg−1 (T2) and 9.91g∙kg−1 and 759.34 mg∙kg−1 (T3) at 180 d after returning green manure, respectively, and they were significantly higher than those of T1 treatment by 29.60% and 27.85% (T2) and 35.20% and 25.13% (T3), respectively. The variation dynamics of SMBC and SMBN contents in T2 and T3 were basically similar throughout the returning period, indicating a trend of stable growth in the early stage and significantly higher contents than those in T1, and a decrease in the latter stage and slightly lower contents than those in T1 at 110 d. The maximum values of SMBC and SMBN were 217.84 mg∙kg−1 and 34.51 mg∙kg−1 for T2, and 212.88 mg∙kg−1 and 33.43 mg∙kg−1 for T3 at 50 d and were higher than T1 by 81.46% and 47.76%, and 77.33% and 43.13%, respectively. In addition, the contents of SMBC and SMBN at different periods after returning to the field demonstrated that T2 was higher than T3. The change trend in SMQ in different treatments was consistent with that of SMBC. The two green manure treatments showed higher SMQ except for 110 d. T2 reached a maximum value of 2.82% at 15 d, while T3 reached a maximum value of 2.98% at 50 d. The SMBC/SMBN values of each treatment varied from 4 to 7; therefore, the microbial community in the soil was concluded to be mainly bacteria after returning the green manure to the field. T2 and T3 showed higher SMBC/SMBN values compared with T1, except at 110 d. In conclusion, the planting and return to the field of gramineous green manure in winter fallow farmland in saline alkali soil can significantly improve soil carbon and nitrogen contents in cotton fields, ameliorate the composition of soil microbial communities, improve the effect of soil microbial carbon sequestration, and provide nutrients for the growth of subsequent crops. The research results have guiding significance for the rational utilization of winter fallow farmlands in saline-alkali soils.
-
图 1 禾本科绿肥还田后土壤有机碳(A)和土壤全氮(B)含量的变化
T1: 冬闲农田-棉花; T2: 黑麦草-棉花; T3: 大麦-棉花。不同小写字母表示相同时间不同处理间差异显著(P<0.05), 不同大写字母表示相同处理不同时间之间差异显著(P<0.05)。 T1: winter fallow farmland-cotton; T2: ryegrass-cotton; T3: barley-cotton. Different lowercase letters indicate significant differences among treatments in the same time (P<0.05), and different capital letters indicate significant differences among different times of the same treatment (P<0.05).
Figure 1. Dynamics of soil organic carbon (A) and soil total nitrogen (B) contents after returning Graminaceous green manure to field
图 2 禾本科绿肥还田后土壤微生物量碳(A)和微生物量氮(B)含量的变化
T1: 冬闲农田-棉花; T2: 黑麦草-棉花; T3: 大麦-棉花。不同小写字母表示相同时间不同处理间差异显著(P<0.05), 不同大写字母表示相同处理不同时间之间差异显著(P<0.05)。 T1: winter fallow farmland-cotton; T2: ryegrass-cotton; T3: barley-cotton. Different lowercase letters indicate significant differences among treatments in the same time (P<0.05), and different capital letters indicate significant differences among different times of the same treatment (P<0.05).
Figure 2. Dynamics of soil microbial biomass carbon (A) and nitrogen (B) contents after returning Graminaceous green manure to field
图 3 禾本科绿肥还田后土壤微生物熵的变化
T1: 冬闲农田-棉花; T2: 黑麦草-棉花; T3: 大麦-棉花。不同小写字母表示相同时间不同处理间差异显著(P<0.05), 不同大写字母表示相同处理不同时间之间差异显著(P<0.05)。T1: winter fallow farmland-cotton; T2: ryegrass-cotton; T3: barley-cotton. Different lowercase letters indicate significant differences among treatments in the same time (P<0.05), and different capital letters indicate significant differences among different times of the same treatment (P<0.05).
Figure 3. Dynamics of soil microbial quotient after returning Graminaceous green manure to field
表 1 土壤碳氮各指标间的相关性
Table 1. Correlation among soil carbon and nitrogen indexes
SOC TN SMBC SMBN SMQ SMBC/SMBN SOC 1.000 TN 0.850** 1.000 SMBC 0.190 0.472 1.000 SMBN 0.093 0.405 0.984** 1.000 SMQ −0.233 0.099 0.908** 0.936** 1.000 SMBC/SMBN 0.385 0.539 0.889** 0.797** 0.712** 1.000 SOC: 土壤有机碳; TN: 土壤全氮; SMBC: 土壤微生物量碳; SMBN: 土壤微生物量氮; SMQ: 土壤微生物熵。 SOC: soil organic carbon; TN: soil total nitrogen; SMBC: soil microbial biomass carbon; SMBN: soil microbial biomass nitrogen; SMQ: soil microbial quotient. **: P<0.01. -
[1] 董红云, 朱振林, 李新华, 等. 山东省盐碱地分布、改良利用现状与治理成效潜力分析[J]. 山东农业科学, 2017, 49(5): 134−139 doi: 10.14083/j.issn.1001-4942.2017.05.029DONG H Y, ZHU Z L, LI X H, et al. Analysis on distribution, utilization status and governance effect of saline-alkali soil in Shandong Province[J]. Shandong Agricultural Sciences, 2017, 49(5): 134−139 doi: 10.14083/j.issn.1001-4942.2017.05.029 [2] 张乃丹, 宋付朋, 张喜琦, 等. 速缓效氮肥配施有机肥对滨海盐渍土供氮能力及小麦产量的影响[J]. 水土保持学报, 2020, 34(6): 337−344ZHANG N D, SONG F P, ZHANG X Q, et al. Effect of available and slow-released nitrogen fertilizer combined with organic fertilizer on soil nitrogen supply capacity and wheat yield in coastal saline soil[J]. Journal of Soil and Water Conservation, 2020, 34(6): 337−344 [3] 赵英, 王丽, 赵惠丽, 等. 滨海盐碱地改良研究现状及展望[J]. 中国农学通报, 2022, 38(3): 67−74 doi: 10.11924/j.issn.1000-6850.casb2021-0255ZHAO Y, WANG L, ZHAO H L, et al. Research status and prospects of saline-alkali land amelioration in the coastal region of China[J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 67−74 doi: 10.11924/j.issn.1000-6850.casb2021-0255 [4] 张志强, 王晓宇, 王黎梅, 等. 不同牧草品种用作绿肥对盐碱地土壤养分的影响[J]. 畜牧与饲料科学, 2020, 41(3): 35−41 doi: 10.12160/j.issn.1672-5190.2020.03.007ZHANG Z Q, WANG X Y, WANG L M, et al. Effects of different forage varieties used as green manure on saline-alkali soil nutrients[J]. Animal Husbandry and Feed Science, 2020, 41(3): 35−41 doi: 10.12160/j.issn.1672-5190.2020.03.007 [5] 向小. 翻压绿肥和减施化肥对小麦/玉米体系作物产量、养分吸收及土壤特性的影响[D]. 雅安: 四川农业大学, 2012XIANG X. Effect of green manure and chemical fertilizer application on crop yield, nutrient uptake and soil properties in wheat/maize system[D]. Ya’an: Sichuan Agricultural University, 2012 [6] 曾彩霞, 龙家仁. 利用冬闲田种植绿肥在黔东南州农业中的作用及对策[J]. 耕作与栽培, 2018(3): 50−52 doi: 10.13605/j.cnki.52-1065/s.2018.03.020ZENG C X, LONG J R. Discussion on the role and countermeasure of planting green manure in winter leisure field in agriculture of Qiandongnan[J]. Tillage and Cultivation, 2018(3): 50−52 doi: 10.13605/j.cnki.52-1065/s.2018.03.020 [7] SELVI R V, KALPANA R. Potentials of green manure in integrated nutrient management for rice— A review[J]. Agricultural Reviews, 2009, 30: 40−47 [8] 谭英爱, 赵秋, 田秀平, 等. 冬绿肥覆盖翻压对土壤碳、氮含量的影响[J]. 河南农业科学, 2020, 49(5): 81−87 doi: 10.15933/j.cnki.1004-3268.2020.05.010TAN Y A, ZHAO Q, TIAN X P, et al. Effect of winter green manure overturning on soil carbon and nitrogen content[J]. Journal of Henan Agricultural Sciences, 2020, 49(5): 81−87 doi: 10.15933/j.cnki.1004-3268.2020.05.010 [9] 杜威, 王紫泉, 和文祥, 等. 豆科绿肥对渭北旱塬土壤养分及生态化学计量学特征影响[J]. 土壤学报, 2017, 54(4): 999−1008DU W, WANG Z Q, HE W X, et al. Effects of leguminous green manure on soil nutrients and their ecological stoichiometry characteristics in Weibei rainfed highland[J]. Acta Pedologica Sinica, 2017, 54(4): 999−1008 [10] 张达斌, 姚鹏伟, 李婧, 等. 豆科绿肥及施氮量对旱地麦田土壤主要肥力性状的影响[J]. 生态学报, 2013, 33(7): 2272−2281 doi: 10.5846/stxb201112261981ZHANG D B, YAO P W, LI J, et al. Effects of two years’ incorporation of leguminous green manure on soil properties of a wheat field in dryland conditions[J]. Acta Ecologica Sinica, 2013, 33(7): 2272−2281 doi: 10.5846/stxb201112261981 [11] BALOTA E L, COLOZZI-FILHO A, ANDRADE D S, et al. Microbial biomass in soils under different tillage and crop rotation systems[J]. Biology and Fertility of Soils, 2003, 38(1): 15−20 doi: 10.1007/s00374-003-0590-9 [12] 韩梅. 青海高原复种绿肥毛叶苕子对土壤微生物生物量碳、氮的影响[J]. 微生物学杂志, 2019, 39(4): 34−39 doi: 10.3969/j.issn.1005-7021.2019.04.006HAN M. Effects of green manure hairy vetch (Vicia villosa) on soil microbial biomass carbon and nitrogen in Qinghai Plateau[J]. Journal of Microbiology, 2019, 39(4): 34−39 doi: 10.3969/j.issn.1005-7021.2019.04.006 [13] 马艳芹, 黄国勤. 紫云英还田配施氮肥对稻田土壤碳库的影响[J]. 生态学杂志, 2019, 38(1): 129−135 doi: 10.13292/j.1000-4890.201901.016MA Y Q, HUANG G Q. Effects of combined application of Chinese milk vetch (Astragalus sinicus L.) and nitrogen fertilizer on paddy soil carbon pool[J]. Chinese Journal of Ecology, 2019, 38(1): 129−135 doi: 10.13292/j.1000-4890.201901.016 [14] 朱小梅, 王甫同, 邢锦城, 等. 田菁翻压还田对滩涂土壤碳氮及微生物生物量的影响[J]. 土壤, 2021, 53(3): 529−536ZHU X M, WANG F T, XING J C, et al. Effects of overturning Sesbania cannabina on soil carbon, nitrogen and microbiological biomass in coastal area[J]. Soils, 2021, 53(3): 529−536 [15] 郑佳舜, 胡钧铭, 韦翔华, 等. 绿肥压青对粉垄稻田土壤微生物量碳和有机碳累积矿化量的影响[J]. 中国生态农业学报(中英文), 2021, 29(4): 691−703ZHENG J S, HU J M, WEI X H, et al. Effects of green manure returning on soil microbial biomass carbon and mineralization of organic carbon in smash ridging paddy field[J]. Chinese Journal of Eco-Agriculture, 2021, 29(4): 691−703 [16] 高嵩涓, 曹卫东, 白金顺, 等. 长期冬种绿肥改变红壤稻田土壤微生物生物量特性[J]. 土壤学报, 2015, 52(4): 902−910 doi: 10.11766/trxb201408190410GAO S J, CAO W D, BAI J S, et al. Long-term application of winter green manures changed the soil microbial biomass properties in red paddy soil[J]. Acta Pedologica Sinica, 2015, 52(4): 902−910 doi: 10.11766/trxb201408190410 [17] CHEN L, ZHANG J B, ZHAO B Z, et al. Effects of straw amendment and moisture on microbial communities in Chinese fluvo-aquic soil[J]. Journal of Soils and Sediments, 2014, 14(11): 1829−1840 doi: 10.1007/s11368-014-0924-2 [18] 郭策, 赵兴敏, 王楠, 等. 秸秆还田配施氮肥对黑钙土有机碳及微生物量碳氮的影响[J]. 河南农业大学学报, 2022, 56(1): 21−30 doi: 10.16445/j.cnki.1000-2340.20210902.003GUO C, ZHAO X M, WANG N, et al. Effect of straw returning with nitrogen on organic carbon and microbial biomass carbon and nitrogen in chernozem[J]. Journal of Henan Agricultural University, 2022, 56(1): 21−30 doi: 10.16445/j.cnki.1000-2340.20210902.003 [19] 赵炯平, 邓小华, 江智敏, 等. 不同绿肥翻压还土后植烟土壤主要养分动态变化[J]. 作物研究, 2015, 29(2): 161−165 doi: 10.3969/j.issn.1001-5280.2015.02.12ZHAO J P, DENG X H, JIANG Z M, et al. Dynamic changes of main nutrients in tobacco-planting soil under different green manure application[J]. Crop Research, 2015, 29(2): 161−165 doi: 10.3969/j.issn.1001-5280.2015.02.12 [20] 刘冲, 邢锦城, 魏福友, 等. 黄河故道地区绿肥种植及翻压对土壤养分的影响[J]. 湖南农业科学, 2020(1): 45−48LIU C, XING J C, WEI F Y, et al. Effects of planting and turning of green manure on soil nutrients in the ancient canal region of Yellow River[J]. Hunan Agricultural Sciences, 2020(1): 45−48 [21] 安晨, 丁海荣, 谭海运, 等. 3种绿肥翻压对浇灌沼液后土壤质量的影响[J]. 畜牧与饲料科学, 2022, 43(2): 105−110 doi: 10.12160/j.issn.1672-5190.2022.02.017AN C, DING H R, TAN H Y, et al. Effects of overturning three varieties of green manures on soil quality after biogas slurry irrigation[J]. Animal Husbandry and Feed Science, 2022, 43(2): 105−110 doi: 10.12160/j.issn.1672-5190.2022.02.017 [22] 贾祥, 陈盼盼, 王艳琳, 等. 4种豆科牧草种子萌发期对低温胁迫的响应[J]. 高原农业, 2020, 4(2): 137−142JIA X, CHEN P P, WANG Y L, et al. Response of four legume species to cold stress during seed germination[J]. Journal of Plateau Agriculture, 2020, 4(2): 137−142 [23] 潘香逾, 李瑜婷, 刘立军, 等. 盐胁迫下14种绿肥植物种子萌发特性及耐盐性评价[J]. 草原与草坪, 2019, 39(3): 98−105 doi: 10.3969/j.issn.1009-5500.2019.03.014PAN X Y, LI Y T, LIU L J, et al. Germination characteristics and evaluation of 14 green manure plants under salt stress[J]. Grassland and Turf, 2019, 39(3): 98−105 doi: 10.3969/j.issn.1009-5500.2019.03.014 [24] 郭耀东, 程曼, 赵秀峰, 等. 轮作绿肥对盐碱地土壤性质、后作青贮玉米产量 及品质的影响[J]. 中国生态农业学报, 2018, 26(6): 856−864GUO Y D, CHENG M, ZHAO X F, et al. Effects of green manure rotation on soil properties and yield and quality of silage maize in saline-alkali soils[J]. Chinese Journal of Eco-Agriculture, 2018, 26(6): 856−864 [25] JESUS SOUZA B, CARMO D L, SANTOS R H S, et al. Residual contribution of green manure to humic fractions and soil fertility[J]. Journal of Soil Science and Plant Nutrition, 2019, 19(4): 878−886 doi: 10.1007/s42729-019-00086-z [26] 王丹英, 彭建, 徐春梅, 等. 油菜作绿肥还田的培肥效应及对水稻生长的影响[J]. 中国水稻科学, 2012, 26(1): 85−91 doi: 10.3969/j.issn.1001-7216.2012.01.014WANG D Y, PENG J, XU C M, et al. Effects of rape straw manuring on soil fertility and rice growth[J]. Chinese Journal of Rice Science, 2012, 26(1): 85−91 doi: 10.3969/j.issn.1001-7216.2012.01.014 [27] SUBAEDAH S, ALADIN A, NIRWANA. Fertilization of nitrogen, phosphor and application of green manure of Crotalaria juncea in increasing yield of maize in marginal dry land[J]. Agriculture and Agricultural Science Procedia, 2016, 9: 20−25 doi: 10.1016/j.aaspro.2016.02.114 [28] 李帅, 王艳, 贾龙, 等. 山东省冬闲农田种植冬牧70压青后腐解及养分动态[J]. 生态环境学报, 2019, 28(11): 2239−2244LI S, WANG Y, JIA L, et al. Dynamics of nutrients and decomposition of Dongmu 70 cultivated in winter fallow period in Shandong Province[J]. Ecology and Environmental Sciences, 2019, 28(11): 2239−2244 [29] 张奇, 陈粲, 陈效民, 等. 不同深度秸秆还田对黄棕壤氮素和微生物生物量碳氮的影响[J]. 水土保持通报, 2019, 39(2): 56−61ZHANG Q, CHEN C, CHEN X M, et al. Effects of straw returning to different soil depths on soil nitrogen and microbial biomass carbon and nitrogen in yellow brown soil[J]. Bulletin of Soil and Water Conservation, 2019, 39(2): 56−61 [30] 王晓婷, 陈瑞蕊, 井忠旺, 等. 水稻和小麦根际效应及细菌群落特征的比较研究[J]. 土壤学报, 2019, 56(2): 443−453 doi: 10.11766/trxb201806020042WANG X T, CHEN R R, JING Z W, et al. Comparative study on rhizosphere effects and bacterial communities in the rhizospheres of rice and wheat[J]. Acta Pedologica Sinica, 2019, 56(2): 443−453 doi: 10.11766/trxb201806020042 [31] PROSSER J I. Molecular and functional diversity in soil microorganisms[J]. Plant and Soil, 2002, 244(1/2): 9−17 [32] 张帆, 黄凤球, 肖小平, 等. 冬季作物对稻田土壤微生物量碳、氮和微生物熵的短期影响[J]. 生态学报, 2009, 29(2): 734−739 doi: 10.3321/j.issn:1000-0933.2009.02.023ZHANG F, HUANG F Q, XIAO X P, et al. Short-term influences of winter crops on microbial biomass carbon, microbial iomass nitrogen and Cmic-to-Corg in a paddy soil[J]. Acta Ecologica Sinica, 2009, 29(2): 734−739 doi: 10.3321/j.issn:1000-0933.2009.02.023 [33] 刘守龙, 苏以荣, 黄道友, 等. 微生物商对亚热带地区土地利用及施肥制度的响应[J]. 中国农业科学, 2006, 39(7): 1411−1418 doi: 10.3321/j.issn:0578-1752.2006.07.016LIU S L, SU Y R, HUANG D Y, et al. Response of Cmic-to-Corg to land use and fertilization in subtropical region of China[J]. Scientia Agricultura Sinica, 2006, 39(7): 1411−1418 doi: 10.3321/j.issn:0578-1752.2006.07.016 [34] VRIES F T D, HOFFLANG E, EEKEREN N V, et al. Fungal/bacterial ratios in grasslands with contrasting nitrogen management[J]. Soil Biology and Biochemistry, 2006, 38(8): 2092−2103 doi: 10.1016/j.soilbio.2006.01.008 [35] 肖新, 朱伟, 杜超, 等. 轮作与施肥对滁菊连作土壤微生物特性的影响[J]. 应用生态学报, 2015, 26(6): 1779−1784 doi: 10.13287/j.1001-9332.20150413.007XIAO X, ZHU W, DU C, et al. Effects of crop rotation and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1779−1784 doi: 10.13287/j.1001-9332.20150413.007 [36] 马想, 黄晶, 赵惠丽, 等. 秸秆与氮肥不同配比对红壤微生物量碳氮的影响[J]. 植物营养与肥料学报, 2018, 24(6): 1574−1580 doi: 10.11674/zwyf.18163MA X, HUANG J, ZHAO H L, et al. Straw and nitrogen fertilizer ratios influence microbial biomass carbon and nitrogen in red soil[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1574−1580 doi: 10.11674/zwyf.18163 -