环境因素对植物导水率影响的研究综述

杨启良, 张富仓, 刘小刚, 张楠, 戈振扬

杨启良, 张富仓, 刘小刚, 张楠, 戈振扬. 环境因素对植物导水率影响的研究综述[J]. 中国生态农业学报(中英文), 2011, 19(2): 456-461. DOI: 10.3724/SP.J.1011.2011.00456
引用本文: 杨启良, 张富仓, 刘小刚, 张楠, 戈振扬. 环境因素对植物导水率影响的研究综述[J]. 中国生态农业学报(中英文), 2011, 19(2): 456-461. DOI: 10.3724/SP.J.1011.2011.00456
YANG Qi-Liang, ZHANG Fu-Cang, LIU Xiao-Gang, ZHANG Nan, GE Zhen-Yang. Research progress in plant hydraulic conductance under different environmental factors[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 456-461. DOI: 10.3724/SP.J.1011.2011.00456
Citation: YANG Qi-Liang, ZHANG Fu-Cang, LIU Xiao-Gang, ZHANG Nan, GE Zhen-Yang. Research progress in plant hydraulic conductance under different environmental factors[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 456-461. DOI: 10.3724/SP.J.1011.2011.00456
杨启良, 张富仓, 刘小刚, 张楠, 戈振扬. 环境因素对植物导水率影响的研究综述[J]. 中国生态农业学报(中英文), 2011, 19(2): 456-461. CSTR: 32371.14.SP.J.1011.2011.00456
引用本文: 杨启良, 张富仓, 刘小刚, 张楠, 戈振扬. 环境因素对植物导水率影响的研究综述[J]. 中国生态农业学报(中英文), 2011, 19(2): 456-461. CSTR: 32371.14.SP.J.1011.2011.00456
YANG Qi-Liang, ZHANG Fu-Cang, LIU Xiao-Gang, ZHANG Nan, GE Zhen-Yang. Research progress in plant hydraulic conductance under different environmental factors[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 456-461. CSTR: 32371.14.SP.J.1011.2011.00456
Citation: YANG Qi-Liang, ZHANG Fu-Cang, LIU Xiao-Gang, ZHANG Nan, GE Zhen-Yang. Research progress in plant hydraulic conductance under different environmental factors[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 456-461. CSTR: 32371.14.SP.J.1011.2011.00456

环境因素对植物导水率影响的研究综述

基金项目: 国家自然科学基金项目(51009073, 50579066, 50879073)、云南省应用基础研究面上项目(2010ZC042, 2010ZC043)和昆明理工大学学生课外学术科技创新基金课题(2010BA132)资助

Research progress in plant hydraulic conductance under different environmental factors

  • 摘要: 植物的导水率表示单位压力梯度植物传导水分的通量, 是根系吸收及传导水分能力大小的一个重要生理生态指标。植物导水率受内在和外在因素的影响而发生明显变化。本文重点概述了包括根区土壤水分、养分、盐分、温度和灌溉方式等外在因素对植物导水率影响的研究进展。深入阐明不同环境因素下的植物导水率, 不仅可充实SPAC 系统水分传输理论, 而且有助于明确植物对环境的适应机制和高效用水的潜力。
    Abstract: Plant hydraulic conductance (K) refers to the rate of water flow (kg·s-?) per unit pressure drop (MPa), which drives flow through the plant or plant organ systems. It is an important eco-physiology index for measuring root water absorption and transmission capacity. Both internal and external factors could significantly change plant hydraulic conductance. This article summarized main research progress on the effects of environmental factors on plant hydraulic conductance. Environmental factors such as root zone soil moisture, nutrient, salinity, temperature and irrigation modes were analyzed. The paper threw further light on plant hydraulic conductance under different environmental factors. This had an important function in strengthening SPAC water transport theories and defining plant adaptive mechanisms to environmental conditions and high water use potential.
  • [1] Martre P, North G B, Nobel P S. Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting[J]. Plant Physiology, 2001, 126(1): 352-362
    [2] Lovelock C E, Ball M C, Feller I C, et al. Variation in hydraulic conductivity of mangroves: Influence of species, salinity, and nitrogen and phosphorus availability[J]. Physiologia Plantarum, 2006, 127(3): 457-464
    [3] Veselova S V, Farhutdinov R G, Veselov S Y, et al. The effect of root cooling on hormone content, leaf conductance and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.)[J]. Journal of Plant Physiology, 2005, 162(1): 21-26
    [4] 李凤民, 王俊, 郭安红. 供水方式对春小麦根源信号和水分利用效率的影响[J]. 水利学报, 2000(1): 23-27
    [5] Scholander P F, Hammel H T, Bradstreet E D, et al. Sap pressure in vascular plants[J]. Science, 1965, 148(3668): 339-346
    [6] Cohen Y, Fuchs M, Cohen S. Resistance to water uptake in a mature citrus tree[J]. Journal of Experimental Botany, 1983, 34(4): 451-460
    [7] Steudle E. Water transport across roots[J]. Plant Soil, 1994, 167: 79-90
    [8] Sperry J S, Donnelly J R, Tyree M T. A method for measuring hydraulic conductivity and embolism in xylem[J]. Plant Cell Environment, 1998, 11(1): 35-40
    [9] 刘晚苟, 山仑, 邓西平. 压力室测定根系导水率方法探讨[J]. 西北植物学报, 2001, 21(4): 761-765
    [10] Granier A, Breda N, Claustres J P, et a1. Variation of hydraulic conductance of some adult conifers under natural conditions[J]. Ann Sci For, 1989, 46: 357-360
    [11] Tyree M T, Sinclair B, Lu P, et a1. Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter[J]. Ann Sci For, 1993, 50(5): 417-423
    [12] 亓立云, 马履一, 张迎辉, 等. 六个木本植物木质部栓塞脆弱性及其水容调节作用的研究[J]. 山东农业大学学报: 自然科学版, 2005, 36(4): 495-500
    [13] Running S W. Field estimates of root and xylem resistance in Pinus contorta using root excision[J]. Journal of Experimental Botany, 1980, 31(2): 555-569
    [14] Kramer P J, Boyer J S. Water relation of plant and soils[M]. Orlando: Academic Press, 1995
    [15] Passioura J B, Tanner C B. Oscillations in apparent hydraulic conductance of cotton plants[J]. Australian Journal of Plant Physiology, 1985, 12(5): 455-461
    [16] Fiscus E L. The interaction between osmotic-and pressureinduced water flow in plant roots[J]. Plant Physiology, 1975, 55(5): 917-922
    [17] Steudle E. Water flow in plants and its coupling to other processes: An overview[J]. Methods Enzymology, 1989, 174: 183-225
    [18] Daniels M J, Mirkov T E, Chrispeels M J. The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homologue of the tonoplast water channel protein TIP[J]. Plant Physiology, 1994, 106(4): 1325-1333
    [19] Tyerman S D, Bohnert H J, Maurel C, et al. Plant aquaporins: Their molecular biololgy, biophysics and significance for plant water relations[J]. Journal of Experimental Botany, 1999, 50(Special Issue): 1055-1071
    [20] Passioura J B. Root signals control leaf expansion in wheat seedlings growing in drying soil[J]. Australian Journal of Plant Physiolgy, 1988, 15(5): 687-693
    [21] Munns R, Passioura J B, Milborrow B V, et al. Stored xylem sap from wheat and barley in drying soil contains a transpiration inhibitor with a large molecular size[J]. Plant, Cell and Environment, 1993, 16(7): 867-872
    [22] Beck E, Wagner B M. Quantification of the daily cytokinin transport from the root to the shoot of Urtica dioica L.[J]. Botanica Acata, 1994, 107(5): 342-348
    [23] Hose E, Hartung W. The effect of abscise acid on water transport through maize roots[J]. Journal of Experimental Botany, 1999, 50(supplement): 40-51
    [24] 康绍忠. 土壤-植物-大气连续体水流阻力分布规律的研究[J]. 生态学报, 1993, 13(2): 157-163
    [25] Philip J R. Plant water relations: Some physical aspects[J]. Annual Review of Plant Physiology, 1966, 17: 245-268
    [26] Lo Gullo M A, Nardini A, Salleo S, et al. Changes in root hydraulic conductance (KR) of Olea oleaster seedlings following drought stress and irrigation[J]. New Phytologist, 1998, 140(1): 25-31
    [27] 刘晚苟, 山仑. 土壤机械阻力对玉米根系导水率的影响[J]. 水利学报, 2004(4): 114-117
    [28] 刘晚苟, 山仑, 邓西平. 干湿条件下土壤容重对玉米根系导水率的影响[J]. 土壤学报, 2003, 40(5): 779-782
    [29] Rieger M, Litvin P. Root system hydraulic conductivity in species with contrasting root anatomy[J]. Journal of Experimental Botany, 1999, 50(331): 201-209
    [30] North G B, Nobel P S. Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of Agave deserti (agavaceae)[J]. American Journal of Botany, 1991, 78(7): 906-915
    [31] Zhang J H, Zhang X P, Liang J S. Exudation rate and hydraulic conductivity of maize roots are enhanced by soil drying and abscisic acid treatment[J]. New Phytologist, 1995, 131(3): 329-336
    [32] North G B, Nobel P S. Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica[J]. New Phytologist, 1992, 120(1): 9-19
    [33] Carvajal M, Cooke D T, Clarkson D T. Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function[J]. Planta, 1996, 199(3): 372-381
    [34] Quintero J M, Fournier J M, Benlloch M. Water transport in sunflower root system: Effects of ABA, Ca2+ status and HgCl2[J]. Journal of Experimental Botany, 1999, 50(339): 1607-1612
    [35] 慕自新, 张岁岐, 杨晓青, 等. 氮磷亏缺对玉米根系水流导度的影响[J]. 植物生理与分子生物学学报, 2003, 29(1): 45-51
    [36] 沈玉芳, 曲东, 王保莉, 等. 干旱胁迫下磷营养对不同作物苗期根系导水率的影响[J]. 作物学报, 2005, 31(2): 214-218
    [37] 谭勇, 梁宗锁, 王渭玲, 等. 氮、磷、钾营养胁迫对黄芪幼苗根系活力及根系导水率的影响[J]. 中国生态农业学报, 2007, 15(6): 69-72
    [38] Karmoker J L, Clarkson D T, Saker L R, et al. Sulphate deprivation depresses the transport of nitrogen to the xylem and the hydraulic conductivity of barley (Hordeum vulgare L.) roots[J]. Planta, 1991, 185(2): 269-278
    [39] Radin J W, Matthews M A. Water transport properties of cortical cells in roots of nitrogen-and phosphrus-deficient cotton seedlings[J]. Plant Physiology, 1989, 89(1): 264-268
    [40] Guo S, Brück H, Sattelmacher B. Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plants[J]. Plant and Soil, 2002, 239(2): 267-275
    [41] Apostol K G, Zwiazek J J, MacKinnon M D. Naphthenic acids affect plant water conductance but do not alter shoot Na+ and Cl? concentrations in jack pine (Pinus banksiana) seedlings[J]. Plant and Soil, 2004, 263(1): 183-190
    [42] Suárez N, Sobrado M A. Adjustments in leaf water relations of mangrove (Avicennia germinans) seedlings grown in a salinity gradient[J]. Tree Physiol, 2000, 20(4): 227-282
    [43] Sobrado M A. Leaf photosynthesis of the mangrove Avicennia germinans as affected by NaCl[J]. Photosynthetica, 1999, 36(4): 547-555
    [44] Martínez-Ballesta M C, Aparicio F, Carvajal M, et al. Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis[J]. Plant Physiol, 2003, 160(6): 689-697
    [45] Czerniawska-Kusza I, Kusza G, Du?yński M. Effect of deicing salts on urban soils and health status of roadside trees in the Opole region[J]. Environmental Toxicol, 2004, 19(4): 296-301
    [46] Franklin J A, Zwiazek J J. Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulfate[J]. Physiol Plant, 2004, 120(3): 482-490
    [47] Barrett-Lennard E G. The interaction between waterlogging and salinity in higher plants: Causes, consequences and implications[J]. Plant and Soil, 2003, 253(1): 35-54
    [48] Redfield E, Croser C, Zwiazek J J, et al. Responses of red-osier dogwood (Cornus stolonifera) to oil sands tailings treated with gypsum and aluminum[J]. Journal of Environment Quality, 2003, 32(3): 1008-1014
    [49] Haeussler S, Kabzems R. Aspen plant community response to organic matter removal and soil compaction[J]. Candian Journal of Forest Research, 2006, 35(8): 2030-2044
    [50] Mariani L, Chang S X, Kabzems R. Effects of tree harvesting, forest floor removal, and compaction on soil microbial biomass, microbial respiration, and N availability in a boreal aspen forest in British Columbia[J]. Soil Biology Biochemistry, 2006, 38(7): 1734-1774
    [51] Zhang W H, Tyerman S D. Effect of low O2 concentration and azide on hydraulic conductivity and osmotic volume of the cortical cells of wheat roots[J]. Australian Journal of Plant Physiolgy, 1991, 18: 603-613
    [52] Salim M. Effects of salinity and relative humidity on growth and ionic relations of plants[J]. New Phytologist, 1989, 113(1): 13-20
    [53] Apostol K G, Zwiazek J J. Hypoxia affects root sodium and chloride concentrations and alters water conductance in salttreated jack pine (Pinus banksiana) seedlings[J]. Trees, 2003, 17(3): 251-257
    [54] Mansour M M F. Cell permeability under salt stress[M]//Jaiwal P K, Singh R P, Gulati A. Strategies for improving salt tolerance in higher plants. Science Publishers, Inc, 1997: 87-110
    [55] Verkman A S, van Hoek A N, Ma T H, et al. Water transport across mammalian cell membranes[J]. American Journal of Physiol, 1996, 270(1): 12-30
    [56] Maurel C. Aquaporins and water permeability of plant membranes[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 399-429
    [57] Kammerloher W, Fischer U, Piechottka G P, et al. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system[J]. Plant Journal, 1994, 6(2): 187-199
    [58] Maggio A, Joly R J. Effects of mercuric chloride on the hydraulic conductivity of tomato root systems[J]. Plant Physiol, 1995, 109(1): 331-335
    [59] Jiang Y W, Huang B R. Effects of calcium on antioxidant activities and water relations with heat tolerance in two cool-season grasses[J]. J Exp Bot, 2001, 52(355): 341-349
    [60] Shabala S N. Leaf temperature kinetics measure plant adaptation to extreme high temperature[J]. Aust J Plant Physiol, 1996, 23(4): 445-452
    [61] BassiriRad H, Radin J W. Temperature-dependent water and ion transport properties of barley and sorghum roots. II. Effects of abscisic acid[J]. Plant Physiol, 1992, 99(1): 34-37
    [62] 康绍忠, 张建华. 不同土壤水分与温度条件下土根系统中水分传导的变化及其相对重要性[J]. 农业工程学报, 1997, 13(2): 76-81
    [63] Cochard H, Martin R, Gross P, et al. Temperature effects on hydraulic conductance and water relation of Quercus robur L.[J]. Journal of Experimental Botany, 2000, 51(348): 1255-1259
    [64] Morales D, Rodríguez P, Dell’Amico J, et al. High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato[J]. Biologia Plantarum, 2003, 47(2): 203-208
    [65] 胡田田, 康绍忠. 局部灌水方式对玉米不同根区土-根系统水分传导的影响[J]. 农业工程学报, 2007, 23(2): 11-16
    [66] 杨启良, 张富仓, 刘小刚, 等. 不同滴灌方式和NaCl 处理对苹果幼树生长和水分传导的影响[J]. 植物生态学报, 2009, 33(4): 824-832
    [67] 杨启良, 张富仓. 根区不同灌溉方式对苹果幼苗水流阻力的影响[J]. 应用生态学报, 2009, 20(1): 128-134
    [68] 王燕, 蔡焕杰, 陈新明, 等. 不同灌水方式下番茄节水高产机理研究[J]. 中国生态农业学报, 2009, 17(2): 261-265
计量
  • 文章访问数:  2517
  • HTML全文浏览量:  78
  • PDF下载量:  2403
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-27
  • 修回日期:  2010-10-27
  • 刊出日期:  2011-02-28

目录

    /

    返回文章
    返回