基于HYDRUS模型的华北平原小麦种植区水盐运移模拟

李琦, 李发东, 张秋英, 乔云峰, 杜锟, 朱农, 杨广, 李俊峰, 何新林

李琦, 李发东, 张秋英, 乔云峰, 杜锟, 朱农, 杨广, 李俊峰, 何新林. 基于HYDRUS模型的华北平原小麦种植区水盐运移模拟[J]. 中国生态农业学报(中英文), 2021, 29(6): 1085-1094. DOI: 10.13930/j.cnki.cjea.200828
引用本文: 李琦, 李发东, 张秋英, 乔云峰, 杜锟, 朱农, 杨广, 李俊峰, 何新林. 基于HYDRUS模型的华北平原小麦种植区水盐运移模拟[J]. 中国生态农业学报(中英文), 2021, 29(6): 1085-1094. DOI: 10.13930/j.cnki.cjea.200828
LI Qi, LI Fadong, ZHANG Qiuying, QIAO Yunfeng, DU Kun, ZHU Nong, YANG Guang, LI Junfeng, HE Xinlin. Water and salt transport simulation in the wheat growing area of the North China Plain based on HYDRUS model[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1085-1094. DOI: 10.13930/j.cnki.cjea.200828
Citation: LI Qi, LI Fadong, ZHANG Qiuying, QIAO Yunfeng, DU Kun, ZHU Nong, YANG Guang, LI Junfeng, HE Xinlin. Water and salt transport simulation in the wheat growing area of the North China Plain based on HYDRUS model[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1085-1094. DOI: 10.13930/j.cnki.cjea.200828
李琦, 李发东, 张秋英, 乔云峰, 杜锟, 朱农, 杨广, 李俊峰, 何新林. 基于HYDRUS模型的华北平原小麦种植区水盐运移模拟[J]. 中国生态农业学报(中英文), 2021, 29(6): 1085-1094. CSTR: 32371.14.j.cnki.cjea.200828
引用本文: 李琦, 李发东, 张秋英, 乔云峰, 杜锟, 朱农, 杨广, 李俊峰, 何新林. 基于HYDRUS模型的华北平原小麦种植区水盐运移模拟[J]. 中国生态农业学报(中英文), 2021, 29(6): 1085-1094. CSTR: 32371.14.j.cnki.cjea.200828
LI Qi, LI Fadong, ZHANG Qiuying, QIAO Yunfeng, DU Kun, ZHU Nong, YANG Guang, LI Junfeng, HE Xinlin. Water and salt transport simulation in the wheat growing area of the North China Plain based on HYDRUS model[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1085-1094. CSTR: 32371.14.j.cnki.cjea.200828
Citation: LI Qi, LI Fadong, ZHANG Qiuying, QIAO Yunfeng, DU Kun, ZHU Nong, YANG Guang, LI Junfeng, HE Xinlin. Water and salt transport simulation in the wheat growing area of the North China Plain based on HYDRUS model[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1085-1094. CSTR: 32371.14.j.cnki.cjea.200828

基于HYDRUS模型的华北平原小麦种植区水盐运移模拟

基金项目: 

国家重点研发计划项目 2016YFC0500101

国家重点研发计划项目 2018YFC1801801

国家自然科学基金项目 41771292

国家自然科学基金重点项目-山东联合基金项目 U1906219

国家自然科学基金重点项目-新疆联合基金项目 U1803244

新疆建设兵团重点领域科技攻关计划项目 2019AB035

详细信息
    作者简介:

    李琦, 主要从事土壤水盐动态模拟研究。E-mail: liqiyr@yeah.net

    通讯作者:

    李发东, 主要从事农业生态水文水环境与环境氮污染研究。E-mail: lifadong@igsnrr.ac.cn

  • 中图分类号: S277.5;S274.3

Water and salt transport simulation in the wheat growing area of the North China Plain based on HYDRUS model

Funds: 

the National Key Research and Development Program of China 2016YFC0500101

the National Key Research and Development Program of China 2018YFC1801801

the National Natural Science Foundation of China 41771292

the Key Project of National Natural Science Foundation of China - Shandong Joint Fund Project U1906219

the Key Project of National Natural Science Foundation of China - Xinjiang Joint Fund Project U1803244

the Key Science and Technology Research Program of Xinjiang Construction Corps 2019AB035

More Information
  • 摘要: 土壤中水分和盐分是影响作物生长的两个关键因素,揭示水盐运移机制对阐明作物利用土壤水过程具有重要意义。本研究以华北平原典型农田——中国科学院禹城综合试验站为试验地,基于试验站内冬小麦种植地的长期土壤水分观测数据及室内土柱试验,应用HYDRUS-1D模型分别阐明土壤水分及盐分变化规律及分布特征,探究影响水盐运移的驱动因素,并评价HYDRUS-1D模型对研究区水盐运移模拟的适用性。水分运移模拟结果表明:浅层土壤水分运移模拟因受外界因素的剧烈影响而较深层土壤产生更大的误差,10 cm、20 cm、30 cm、40 cm和60 cm处水分运移模拟结果的均方根误差分别为0.0348 cm3·cm-3、0.0179 cm3·cm-3、0.0179 cm3·cm-3、0.0122 cm3·cm-3和0.0053 cm3·cm-3;水分运移模拟的纳什效率系数平均值为0.826,变异系数为0.0560,表明模拟结果与实测土壤水分变化过程一致性较好。土柱试验结果显示:灌水8 L,入渗12 h、24 h、40 h、45 h和48 h后,各时刻土壤盐分含量在垂向上整体呈现先增大后减少的分布规律,均方根误差分别为0.181 g·kg-1、0.131 g·kg-1、0.120 g·kg-1、0.034 g·kg-1和0.027 g·kg-1,平均误差的平均值为0.174 g·kg-1。受蒸发、耕作、根系等影响,理化性质变异性较大导致浅层土壤盐分运移模拟值与实测值偏差增大,纳什效率系数的变异系数达9.71。灌水8 L、16 L、24 L,入渗48 h后分别在土壤23 cm、26 cm、29 cm处出现盐分含量峰值,表明增加灌水量可加强盐分淋洗效果。此研究可为深入探究华北平原冬小麦土壤水盐运移规律、优化农田水资源管理、提高水资源利用效率提供一定理论基础。
    Abstract: Soil moisture and salinity are key factors that affect crop growth. Thus, it is important to investigate the mechanisms of water and salt transport to further clarify the process of soil water utilization in crops. The HYDRUS-1D model was applied to examine the spatial distribution and vertical variation in soil water and salinity and to explore the factors influencing water and salt transport. The model incorporated long-term soil moisture observation data and the results of indoor soil column experiments at the Yucheng Comprehensive Experimental Station, Chinese Academy of Sciences, a typical farmland in the North China Plain. Moreover, the applicability of the HYDRUS-1D model to the study area was evaluated. The results showed that the simulation of water transport in shallow soil had greater errors than that in deep soil, owing to the influence of external factors. The root mean square errors (RMSEs) of the water transport simulation results were 0.0348 cm3·cm-3, 0.0179 cm3·cm-3, 0.0179 cm3·cm-3, 0.0122 cm3·cm-3, and 0.0053 cm3·cm-3 at 10 cm, 20 cm, 30 cm, 40 cm, and 60 cm, respectively. The mean value of the Nash-Sutcliffe efficiency (NSE) coefficient was 0.826, and the coefficient of variation was 0.0560, indicating that the simulations of water transport were stable and consistent with the measured values. The soil column experiment results showed that after irrigation with 8 L water, salt salinity in the vertical direction first increased and then decreased; the RMSEs of the simulation results of salt transport were 0.181 g·kg-1, 0.131 g·kg-1, 0.120 g·kg-1, 0.034 g·kg-1, and 0.027 g·kg-1 after 12 h, 24 h, 40 h, 45 h, and 48 h, respectively. The mean error was 0.174 g·kg-1, which was in good agreement with the measured values, indicating that the model was suitable for the simulation of water and salt transport in the study area. However, owing to the influence of evaporation, tillage, and crop root system, large variations in physical and chemical properties resulted in large deviations between the simulated and measured values of salt transport in shallow soil, and the NSE coefficient reached 9.71. After 48 h of infiltration, the soil salinity peaked at 23 cm, 26 cm, and 29 cm depth with 8 L, 16 L, and 24 L irrigation quotas, respectively. These results showed that increased irrigation quotas can enhance salt leaching. This study confirmed that the HYDRUS-1D model could be used for theoretical studies of water and salt transport in the study area. This study also provides a theoretical basis for further exploration of water and salt transport in winter wheat, optimizing farmland water resource management, and improving the water resource utilization efficiency in the North China Plain.
  • 图  1   土壤盐分运移试验装置示意图

    Figure  1.   Schematic diagram of soil salt transport experimental device

    图  2   土壤含盐量(Q)与电导率(EC)的关系

    Figure  2.   Relationship between soil salinity (Q) and electrical conductivity (EC)

    图  3   模拟周期内不同深度土壤含水量实测值与模拟值对比

    Figure  3.   Comparison between measured and simulated water contents in different soil depths during the simulation period

    图  4   不同时刻土壤含盐量实测值与模拟值对比

    Figure  4.   Comparison between measured and simulated soil salinity at different times

    图  5   不同灌水量入渗48 h土壤含盐量实测值与模拟值对比

    Figure  5.   Comparison between measured and simulated soil salinity after infiltration form 48 h with different irrigation water amounts

    图  6   不同灌水量土壤含盐量模拟值与实测值相关性分析

    Figure  6.   Correlation analysis between simulated and measured soil salinity with different irrigation water amounts

    图  7   不同时刻土壤剖面含盐量及水通量变化

    Figure  7.   Variations of salinity and water flux in soil profile at different times

    图  8   土壤剖面盐分及温度变化趋势

    Figure  8.   Variation trends of salinity and temperature in soil profile

    表  1   试验地土壤基本物理性质和水力学参数

    Table  1   Basic physical properties and hydraulic parameters of the experimental soil

    ${\theta _{\rm{r}}}$
    (cm3∙cm−3)
    ${\theta _{\rm{s}}}$
    (cm3∙cm−3)
    $\alpha $
    (cm−1)
    n
    Ks
    (cm∙d−1)
    l D
    (g∙cm−3)
    0.054 0.45 0.023 1.94 11.93 0.5 1.33
    ${\theta _{\rm{r}}}$: 残余含水量; ${\theta _{\rm{s}}}$: 饱和含水量; Ks: 饱和导水率; $\alpha $、nl: 模型参数; D: 容重。${\theta _{\rm{r}}}$: residual water content; ${\theta _{\rm{s}}}$: saturated water content; Ks: saturated hydraulic conductivity; $\alpha $, n, l: model parameters; D: bulk density.
    下载: 导出CSV

    表  2   不同土层深度土壤水分含量模拟结果验证

    Table  2   Verification of simulation results of soil water contents at different soil depths

    指标
    Index
    土壤深度Soil depth (cm)
    10 20 30 40 60
    均方根误差Root mean squared error (cm3∙cm−3) 0.0348 0.0179 0.0179 0.0122 0.0053
    平均误差Average error (cm3∙cm−3) 0.0255 0.0129 0.0126 0.0103 0.0047
    纳什效率系数Nash-Sutcliffe efficiency coefficient 0.782 0.897 0.791 0.843 0.818
    下载: 导出CSV

    表  3   各入渗时间后不同深度土壤盐分含量模拟结果验证

    Table  3   Verification of simulation results of salt contents at different soil depths after each infiltration time

    指标
    Index
    入渗时间Infiltration time (h)
    12 24 40 45 48
    均方根误差Root mean squared error (g∙kg−1) 0.181 0.131 0.120 0.034 0.027
    平均误差Average error (g∙kg−1) 0.262 0.247 0.261 0.059 0.044
    纳什效率系数Nash-Sutcliffe efficiency coefficient −0.737 −0.124 −0.578 0.912 0.940
    下载: 导出CSV
  • [1] 冯保清. 我国不同分区灌溉水有效利用系数变化特征及其影响因素分析[J]. 节水灌溉, 2013, (6): 29-32 doi: 10.3969/j.issn.1007-4929.2013.06.008

    FENG B Q. Analysis on the characteristics and influencing factors of effective utilization coefficient of irrigation water in different regions of China[J]. Water Saving Irrigation, 2013, (6): 29-32 doi: 10.3969/j.issn.1007-4929.2013.06.008

    [2] 雷志栋, 胡和平, 杨诗秀. 关于提高灌溉水利用率的认识[J]. 中国水利, 1999, (7): 13-14 https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG199907008.htm

    LEI Z D, HU H P, YANG S X. Awareness of improving the utilization rate of irrigation water[J]. China Water Resources, 1999, (7): 13-14 https://www.cnki.com.cn/Article/CJFDTOTAL-SLZG199907008.htm

    [3] 王浩, 秦大庸, 郭孟卓, 等. 干旱区水资源合理配置模式与计算方法[J]. 水科学进展, 2004, 15(6): 689-694 doi: 10.3321/j.issn:1001-6791.2004.06.001

    WANG H, QIN D Y, GUO M Z, et al. Mode and calculation method for rational water resources allocation in arid zone[J]. Advances in Water Science, 2004, 15(6): 689-694 doi: 10.3321/j.issn:1001-6791.2004.06.001

    [4] 张喜英. 华北典型区域农田耗水与节水灌溉研究[J]. 中国生态农业学报, 2018, 26(10): 1454-1464 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1004&flag=1

    ZHANG X Y. Water use and water-saving irrigation in typical farmlands in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1454-1464 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1004&flag=1

    [5]

    QIU G Y, WANG L M, HE X H, et al. Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the North China Plain[J]. Agricultural and Forest Meteorology, 2008, 148(11): 1848-1859 doi: 10.1016/j.agrformet.2008.06.010

    [6] 万书勤, 康跃虎, 王丹, 等. 华北半湿润地区微咸水滴灌对番茄生长和产量的影响[J]. 农业工程学报, 2008, 24(8): 30-35 doi: 10.3321/j.issn:1002-6819.2008.08.007

    WAN S Q, KANG Y H, WANG D, et al. Effect of saline water on tomato growth and yield by drip irrigation in semi-humid regions of north China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(8): 30-35 doi: 10.3321/j.issn:1002-6819.2008.08.007

    [7] 刘增进, 李宝萍, 李远华, 等. 冬小麦水分利用效率与最优灌溉制度的研究[J]. 农业工程学报, 2004, 20(4): 58-63 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200404013.htm

    LIU Z J, LI B P, LI Y H, et al. Research on the water use efficiency and optimal irrigation schedule of the winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(4): 58-63 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200404013.htm

    [8]

    LI J G, QU Z Y, CHEN J, et al. Effect of different thresholds of drip irrigation using saline water on soil salt transportation and maize yield[J]. Water, 2018, 10(12): 1855 doi: 10.3390/w10121855

    [9] 杨宇, 王金霞, 黄季焜. 农户灌溉适应行为及对单产的影响: 华北平原应对严重干旱事件的实证研究[J]. 资源科学, 2016, 38(5): 900-908 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201605009.htm

    YANG Y, WANG J X, HUANG J K. The adaptive irrigation behavior of farmers and impacts on yield during extreme drought events in the North China Plain[J]. Resources Science, 2016, 38(5): 900-908 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201605009.htm

    [10]

    WEST D W, HOFFMAN G J, FISHER M J. Photosynthesis, leaf conductance, and water relations of cowpea under saline conditions[J]. Irrigation Science, 1986, 7(3): 183-193 doi: 10.1007/BF00344073

    [11]

    CHEN G Z, JIAO L F, LI X H. Sensitivity analysis and identification of parameters to the van Genuchten equation[J]. Journal of Chemistry, DOI: org/10.1155/2016/9879537

    [12]

    KAWAMOTO K, MOLDRUP P, FERRÉ T P A, et al. Linking the Gardner and Campbell models for water retention and hydraulic conductivity in near-saturated soil[J]. Soil Science, 2006, 171(8): 573-584 doi: 10.1097/01.ss.0000228035.72647.3c

    [13] 张露, 王益权, 韩霁昌, 等. 基于van Genuchten模型的渭北苹果园土壤水分能量特征分析[J]. 农业工程学报, 2016, 32(19): 120-126 doi: 10.11975/j.issn.1002-6819.2016.19.017

    ZHANG L, WANG Y Q, HAN J C, et al. Analysis on soil moisture energy feature of apple orchards in Weibei area based on van Genuchten model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(19): 120-126 doi: 10.11975/j.issn.1002-6819.2016.19.017

    [14]

    GHANBARIAN-ALAVIJEH B, LIAGHAT A, HUANG G H, et al. Estimation of the van Genuchten soil water retention properties from soil textural data[J]. Pedosphere, 2010, 20(4): 456-465 doi: 10.1016/S1002-0160(10)60035-5

    [15] 苏雯. 基于HYDRUS的干旱区非饱和土壤入渗性能及水盐运移模拟研究[D]. 乌鲁木齐: 新疆大学, 2017: 13-16

    SU W. Simulation of unsaturated soil infiltration and water salt transport in arid area based on HYDRUS[D]. Urumqi: Xinjiang University, 2017: 13-16

    [16] 范严伟, 黄宁, 马孝义, 等. 应用HYDRUS-1D模拟砂质夹层土壤入渗特性[J]. 土壤, 2016, 48(1): 193-200 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201601029.htm

    FAN Y W, HUANG N, MA X Y, et al. Simulation of infiltration characteristics in soil with sand interlayer using HYDRUS-1D[J]. Soils, 2016, 48(1): 193-200 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201601029.htm

    [17] 李冰冰, 王云强, 李志. HYDRUS-1D模型模拟渭北旱塬深剖面土壤水分的适用性[J]. 应用生态学报, 2019, 30(2): 398-404 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201902006.htm

    LI B B, WANG Y Q, LI Z. Applicability of HYDRUS-1D model in simulating the soil moisture in deep profiles on the Weibei rainfed highland, China[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 398-404 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201902006.htm

    [18] 余根坚, 黄介生, 高占义. 基于HYDRUS模型不同灌水模式下土壤水盐运移模拟[J]. 水利学报, 2013, 44(7): 826-834 https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201307012.htm

    YU G J, HUANG J S, GAO Z Y. Study on water and salt transportation of different irrigation modes by the simulation of HYDRUS model[J]. Journal of Hydraulic Engineering, 2013, 44(7): 826-834 https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201307012.htm

    [19]

    ZENG W Z, XU C, WU J W, et al. Soil salt leaching under different irrigation regimes: HYDRUS-1D modelling and analysis[J]. Journal of Arid Land, 2014, 6(1): 44-58 doi: 10.1007/s40333-013-0176-9

    [20]

    WU C Y, GAO J S, ZHAO P, et al. Study on the transportation pattern of water and salt in soil of high-density jujube orchards under drip irrigation in South Xinjiang[J]. Acta Horticulturae, 2013, (993): 191-198 http://www.researchgate.net/publication/284242469_Study_on_the_transportation_pattern_of_water_and_salt_in_soil_of_high-density_jujube_orchards_under_drip_irrigation_in_South_Xinjiang

    [21] 潘延鑫, 罗纨, 贾忠华, 等. 基于HYDRUS模型的盐碱地土壤水盐运移模拟[J]. 干旱地区农业研究, 2017, 35(1): 135-142 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201701022.htm

    PAN Y X, LUO Z, JIA Z H, et al. The simulation of water and salt transportation by HYDRUS model in Lubotan of Shaanxi, China[J]. Agricultural Research in the Arid Areas, 2017, 35(1): 135-142 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201701022.htm

    [22] 王志坤. 基于不同灌水模式下HYDRUS模型土壤水盐运移模拟研究[J]. 水利技术监督, 2018, (6): 39-42 doi: 10.3969/j.issn.1008-1305.2018.06.014

    WANG Z K. Soil water and salt transport simulation based on the HYDRUS model under different irrigation modes[J]. Technical Supervision in Water Resources, 2018, (6): 39-42 doi: 10.3969/j.issn.1008-1305.2018.06.014

    [23]

    MGUIDICHE A, PROVENZANO G, DOUH B, et al. Assessing Hydrus-2D to simulate soil water content (SWC) and salt accumulation under an SDI system: Application to a potato crop in a semi-arid area of central Tunisia[J]. Irrigation and Drainage, 2015, 64(2): 263-274 doi: 10.1002/ird.1884

    [24] 毕远杰, 王全九, 雪静. 覆盖及水质对土壤水盐状况及油葵产量的影响[J]. 农业工程学报, 2010, 26(S1): 83-89 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2010S1019.htm

    BI Y J, WANG Q J, XUE J. Effects of ground coverage measure and water quality on soil water salinity distribution and helianthus yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(S1): 83-89 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2010S1019.htm

    [25]

    GONZÁLEZ M G, RAMOS T B, CARLESSO R, et al. Modelling soil water dynamics of full and deficit drip irrigated maize cultivated under a rain shelter[J]. Biosystems Engineering, 2015, 132: 1-18 doi: 10.1016/j.biosystemseng.2015.02.001

    [26] 杨奇勇, 杨劲松, 余世鹏. 禹城市耕地土壤盐分与有机质的指示克里格分析[J]. 生态学报, 2011, 31(8): 2196-2202 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201108019.htm

    YANG Q Y, YANG J S, YU S P. Evaluation on spatial distribution of soil salinity and soil organic matter by indicator Kriging in Yucheng City[J]. Acta Ecologica Sinica, 2011, 31(8): 2196-2202 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201108019.htm

    [27]

    GE D Z, LONG H L, QIAO W F, et al. Effects of rural-urban migration on agricultural transformation: A case of Yucheng City, China[J]. Journal of Rural Studies, 2020, 76: 85-95 doi: 10.1016/j.jrurstud.2020.04.010

    [28] 李玮, 何江涛, 刘丽雅, 等. Hydrus-1D软件在地下水污染风险评价中的应用[J]. 中国环境科学, 2013, 33(4): 639-647 doi: 10.3969/j.issn.1000-6923.2013.04.009

    LI W, HE J T, LIU L Y, et al. Application of Hydrus-1D software in groundwater contamination risk assessment[J]. China Environmental Science, 2013, 33(4): 639-647 doi: 10.3969/j.issn.1000-6923.2013.04.009

    [29] 曹巧红, 龚元石. 应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征[J]. 植物营养与肥料学报, 2003, 9(2): 139-145 doi: 10.3321/j.issn:1008-505X.2003.02.002

    CAO Q H, GONG Y S. Simulation and analysis of water balance and nitrogen leaching using Hydrus-1D under winter wheat crop[J]. Journal of Plant Nutrition and Fertilizers, 2003, 9(2): 139-145 doi: 10.3321/j.issn:1008-505X.2003.02.002

    [30] 温焕君. 重金属Cd在层状土壤中的运移特征及数值模拟[D]. 青岛: 青岛大学, 2018: 23-25

    WEN H J. Migration characteristics and numerical simulation of heavy metal Cd[D]. Qingdao: Qingdao University, 2018: 23-25

    [31]

    MA Y, SHAO S Y, SONG X F. Evaluation of optimal irrigation scheduling and groundwater recharge at representative sites in the North China Plain with SWAP model and field experiments[J]. Computers and Electronics in Agriculture, 2015, 116: 125-136 doi: 10.1016/j.compag.2015.06.015

    [32] 何康康, 杨艳敏, 杨永辉. 基于HYDRUS-1D模型的华北低平原区不同微咸水利用模式下土壤水盐运移的模拟[J]. 中国生态农业学报, 2016, 24(8): 1059-1070 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016807&flag=1

    HE K K, YANG Y M, YANG Y H. HYDRUS-1D model simulation of soil water and salt movement under various brackish water use schemes in the North China Lowplain[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1059-1070 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016807&flag=1

    [33] 武悦, 王鹏, 李彦标, 等. 巴彦淖尔市耕地土壤中可溶性盐分测定方法探讨[J]. 安徽农学通报, 2018, 24(14): 96-97 doi: 10.3969/j.issn.1007-7731.2018.14.043

    WU Y, WANG P, LI Y B, et al. The method of determination of soluble salt in cultivated land of Bayannur City[J]. Anhui Agricultural Science Bulletin, 2018, 24(14): 96-97 doi: 10.3969/j.issn.1007-7731.2018.14.043

    [34] 刘彬彬, 刘尧兵, 张科锋. 基于HYDRUS-1D的不同质地土壤入渗过程数值模拟[J]. 干旱地区农业研究, 2018, 36(4): 140-145 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201804021.htm

    LIU B B, LIU Y B, ZHANG K F. Numerical simulations of water infiltration for various soil textures using HYDRUS 1D[J]. Agricultural Research in the Arid Areas, 2018, 36(4): 140-145 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201804021.htm

    [35]

    WANG Y Q, HU W, ZHU Y J, et al. Vertical distribution and temporal stability of soil water in 21-m profiles under different land uses on the Loess Plateau in China[J]. Journal of Hydrology, 2015, 527: 543-554 doi: 10.1016/j.jhydrol.2015.05.010

    [36] 罗朋, 张富仓, 李晓军, 等. 入渗水头对盐碱土水盐运移影响的试验研究[J]. 节水灌溉, 2008, (6): 4-7 doi: 10.3969/j.issn.1007-4929.2008.06.002

    LUO P, ZHANG F C, LI X J, et al. Experimental study on influence of infiltration head on water and salt transportation in saline-alkali soil[J]. Water Saving Irrigation, 2008, (6): 4-7 doi: 10.3969/j.issn.1007-4929.2008.06.002

    [37] 郑冬梅. 松嫩平原盐渍土水盐运移的节律性研究[D]. 长春: 东北师范大学, 2005: 17-19

    ZHENG D M. Study on the temporal rhythm of water and salt transference of alkalization soil in Songnen Plain[D]. Changchun: Northeast Normal University, 2005: 17-19

    [38] 樊会敏, 张蓉蓉, 许明祥, 等. 渭北地区土壤剖面电导率年内动态变化及影响因素[J]. 西北农林科技大学学报: 自然科学版, 2018, 46(8): 107-115 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201808015.htm

    FAN H M, ZHANG R R, XU M X, et al. Seasonal changes and influencing factors of soil electrical conductivity in soil profile of Weibei region[J]. Journal of Northwest A & F University: Natural Science Edition, 2018, 46(8): 107-115 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201808015.htm

    [39] 乔江飞, 王海江, 李亚莉, 等. 莫索湾灌区土壤剖面盐分的季节性变化特征[J]. 中国土壤与肥料, 2016, (3): 13-18 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201603003.htm

    QIAO J F, WANG H J, LI Y L, et al. Spatial variability of soil salinity in different seasons in Mosuowan irrigation area[J]. Soils and Fertilizers Sciences in China, 2016, (3): 13-18 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201603003.htm

    [40] 许振柱, 李长荣, 陈平, 等. 土壤干旱对冬小麦生理特性和干物质积累的影响[J]. 干旱地区农业研究, 2000, 18(1): 113-118 doi: 10.3321/j.issn:1000-7601.2000.01.020

    XU Z Z, LI C R, CHEN P, et al. Effects of soil drought on physiological characteristics and dry matter accumulation of winter wheat[J]. Agricultural Research in the Arid Areas, 2000, 18(1): 113-118 doi: 10.3321/j.issn:1000-7601.2000.01.020

    [41]

    LEKAKIS E H, ANTONOPOULOS V Z. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport[J]. Journal of Hydrology, 2015, 530: 431-446 doi: 10.1016/j.jhydrol.2015.09.070

图(8)  /  表(3)
计量
  • 文章访问数:  817
  • HTML全文浏览量:  274
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-13
  • 录用日期:  2020-12-15
  • 网络出版日期:  2021-06-21
  • 刊出日期:  2021-05-31

目录

    /

    返回文章
    返回