Variations and effects of climate in growth period of Lycium barbarum L. in Ningxia
-
摘要: 为明确宁夏枸杞(Lycium barbarum L.)生长季气候变化特征及其对枸杞生长的影响,为决策部门有效利用气候资源提供数据支撑,本文基于1961-2017年宁夏17个气象站点的观测数据,采用数理统计分析、Mann-Kendall突变检测、气候倾向率和相关性检验等方法,分析了宁夏枸杞生育期气候变化特征及其影响。结果表明:气候暖干化是宁夏枸杞生育期气候变化的主要特征。近57 a来,气候变暖使宁夏枸杞生育期平均气温、≥ 10℃积温及日照时数增加,其线性趋势通过了0.001显著性水平检验。平均气温在1990年左右发生突变,1991-2017年平均气温比1961-1990年上升了0.7℃。≥ 10℃积温在20世纪90年代增加速率最大,2003年发生突变,比突变前年平均增加370.6℃。日照时数在2005年前后发生突变,突变后平均年日照时数增加93.9 h。降水量整体呈弱的减少趋势。气候变化对枸杞生长发育的影响利多弊少。气温升高,春季气温回升快,积温增多,整个生育期热量条件充足,使枸杞树萌芽期提前,总生育期延长,单产提高;果熟期、采摘期降水量减少,使枸杞炭疽病、黑果病发生机率减少,有利于品质提高。研究发现,中宁枸杞产量与稳定通过5℃到枸杞萌芽期的积温、≥ 10℃积温均显著正相关。同时,气候变暖增加了冬季农田土壤水分蒸发,病虫害发生有增加趋势。如何充分利用有利的气候资源,减轻或避免气候变化对枸杞生产的不利影响是需要进一步研究的重要内容。Abstract: In order to clarify the characteristics of climate change (1961-2017) in the growing season of Lycium barbarum and its impact on L. barbarum growth in Ningxia, and to provide corresponding data for effective utilization of climatic resources and scientific theoretical basis for the production and decision-making department of L. barbarum, the characteristics of climate change during the growth period of L. barbarum and its effects in Ningxia were analyzed by Mann-Kendall mutation detection, climatic tendency rate and correlation test, based on the observations of 17 meteorological stations in Ningxia from 1961 to 2017. Results showed that warming and drying were the main characteristics of climate change during the growth period of L. barbarum in Ningxia. Over the past 57 years, the average temperature, ≥ 10℃ accumulated temperature and sunshine hours during the growing period of L. barbarum in Ningxia increased due to climate warming, and the linear trend passed 0.001 significance level test. Average temperature changed abruptly around 1990, and increased by 0.7℃ during 1991-2017 compared with 1961-1990. ≥ 10℃ accumulated temperature had the maximum increase rate in 1990s, and abruptly changed in 2003. After that, annual ≥ 10℃ accumulated temperature increased by 370.6℃. Annual sunshine hours increased by 93.9 h in 2005 compared with before 2005. Precipitation showed a weak decreasing trend in 1961-2017. Effects of climate change on the growth of L. barbarum had more advantages than disadvantages. With the increase of air temperature and the rapid rise of air temperature in spring, the germination period of L. barbarum shifted to an earlier date, the total growth period was prolonged, and the yield per unit area was increased, which was beneficial to agricultural production. The decrease of precipitation during fruit ripening and picking period reduced the occurrence of anthracnose and improved the quality of L. barbarum. Furthermore, there was a significant positive correlation between the accumulated temperature from the date of passing 5℃ to the germination stage of L. barbarum, the ≥ 10℃ accumulated temperature and the yield of L. barbarum in Zhongning. Meanwhile, climate warming increased soil moisture evaporation in winter, which lead to an increasing trend on incidence of pests and diseases of L. barbarum. It needs a further research on how to make full use of favorable climatic resources, to avoid or alleviate the adverse effects of climate change on L. barbarum production.
-
紫云英 (Astragalus sinicus L.) 是我国南方稻区传统的冬绿肥, 翻压后能够增加土壤养分、改善土壤理化性状、提高植株氮磷钾含量、减少化肥用量[1-3]。近几十年来, 随着我国农业集约化程度的加深, 化肥因具有便捷、增效快等优点成为粮食增产的主要依赖对象, 这使我国普遍存在忽视绿肥施用、过度依赖化肥的现象, 化肥特别是氮肥用量过大, 目前我国水稻平均氮肥施用量为180 kg∙hm-2, 较世界平均水平增加75%, 有些地区甚至超过300 kg∙hm-2[4-5]。而过量施用氮肥会降低氮素利用效率[6], 造成作物贪青晚熟, 并引发一系列环境问题[7]。因此, 利用冬季空闲茬口种植紫云英, 并进行合理的养分管理, 在维持水稻产量高产的同时提高氮肥利用率, 对于实现水稻优质、高产、高效, 减少肥料损失具有十分重要的意义。国内外关于绿肥与化肥配施对水稻增产效果的研究已有不少报道, 多数研究表明, 利用紫云英根瘤菌固氮, 并配施适量化肥, 改善了土壤肥力, 其增产效果较好[8-9]。谢志坚等[10]通过研究翻压等量紫云英配施不同量化肥的土壤养分有效性表明, 紫云英配施60%~80%常规施肥量的化肥 (常规施肥为: N 150 kg∙hm-2、P2O575 kg∙hm-2、K2O 120 kg∙hm-2), 土壤中的碱解氮和速效钾能够增加10%~59%。王建红等[11]研究了紫云英还田配施化肥对单季晚稻养分利用和产量的影响, 结果表明紫云英鲜草翻压配施化肥处理的稻谷产量比不施肥处理提高8.5%~17.4%。侯红乾等[12]连续25年在江西省双季稻区进行田间定位试验, 研究表明, 有机无机肥配施条件下早晚稻平均产量比单施化肥增产3.9%~7.8%。徐昌旭等[13]研究结果表明, 早稻减少化肥用量20%(常规施肥为: N 150 kg∙hm-2、P2O575 kg∙hm-2、K2O 120 kg∙hm-2) 能有效促进水稻植株对氮、磷、钾养分的吸收与积累。国内外学者关于作物合理施肥研究很多, 但对于通过绿肥种植翻压减少化肥施用的水稻环境友好型栽培条件下水稻氮肥适宜用量的研究报道较少。而很多绿肥还田的研究多以紫云英还田与化肥配施 (或有机无机肥配施) 为重点, 对紫云英配施氮肥的研究不够系统充分。本研究利用冬季空闲茬口种植紫云英, 通过比较紫云英还田配施不同氮肥施用量下水稻干物质生产特性及氮素吸收利用的情况, 对冬种紫云英条件下稻田的合理施氮量进行探究, 从而为水稻可持续生产和水稻保护性耕作提供理论依据。
1. 材料与方法
1.1 试验区概况
试验于2014年10月至2015年7月在江西农业大学科技园水稻实验田 (28°46′N, 115°55′E) 进行。试验区为亚热带季风性湿润气候, 年均太阳总辐射量4.79×1013 J·hm-2, 年均日照时数1 852 h, 年日均温≥0 ℃积温达6 450 ℃, 年平均气温17.1~17.8 ℃, 年降水量1 624 mm。供试土壤为发育于第四纪的红黏土, 为亚热带典型红壤分布区。紫云英种植前试验耕层土壤pH 5.59, 有机质29.48 g∙kg-1, 全氮2.17 g∙kg-1, 碱解氮38.69 mg∙kg-1, 有效磷12.22 mg∙kg-1, 速效钾30.31 mg∙kg-1。
1.2 试验设计
采取单因素随机区组设计, 以冬闲常规施氮处理[150 kg (N)·hm-2]为对照 (处理A), 在等量翻压紫云英鲜草22 500 kg∙hm-2(干草养分含量:全氮26.7 g∙kg-1, 全磷2.1 g∙kg-1, 全钾20.1 g∙kg-1) 条件下, 施氮量设90 kg (N)∙hm-2(处理B)、120 kg (N)∙hm-2(处理C)、150 kg (N)∙hm-2(处理D) 和180 kg (N)∙hm-2(处理E)4个水平, 共5个处理, 所有处理3次重复, 15个小区, 小区面积为16.5 m2(5.5 m×3 m), 小区之间用水泥埂隔开, 以防止水肥串流。供试紫云英品种为‘余江大叶籽’, 2014年10月4日播种, 2015年4月3日盛花期翻压。早稻品种为‘金优458’, 于2015年3月27日播种, 4月29日移栽, 7月28日收割。每兜3苗, 每小区325兜。各处理氮肥用尿素 (含N 46%), 磷肥用钙镁磷肥 (含P2O512%), 钾肥用氯化钾 (含K2O 60%)。磷肥、钾肥各小区施用量相同, 磷肥 (P2O5)50 kg∙hm-2, 钾肥 (K2O)120 kg∙hm-2, 全部作基肥; 氮肥按基肥︰分蘖肥︰穗肥=5︰3︰2施用。分蘖肥在水稻移栽后5~7 d时施用, 穗肥在主茎幼穗长1~2 cm时施用。田间管理措施同一般大田栽培。
1.3 测定指标及计算方法
1.3.1 干物质测定
于早稻分蘖期 (2015年6月1日)、孕穗期 (6月14日)、抽穗期 (6月25日)、灌浆期 (7月6日) 和成熟期 (7月25日) 按每小区茎蘖数的平均数取代表性植株5穴 (小区边行不取), 分成叶片、茎鞘和穗 (抽穗后) 等部分装袋, 105 ℃下杀青30 min, 80 ℃下烘干至恒重后称重。干物质转运相关指标计算方法[14]分别为:
$$ 茎叶干物质输出量=抽穗期茎叶干物重-成熟期茎叶干物重 $$ (1) $$ \text{茎叶干物质输出率}=\text{茎叶干物质输出量}/\text{抽穗期茎叶干物重}\times 100{\text{% }} $$ (2) $$ 表观转变率=茎叶干物质输出量/抽穗至成熟期穗部干物质积累量\times 100{\text{% }} $$ (3) 1.3.2 植株氮素测定
每时期植株干物质积累测定完成后粉碎混匀, 采用H2SO4-H2O2消化, 以半微量开氏定氮法测定植株各器官全氮含量。相关指标计算方法[15]分别为:
$$ 氮素积累量=该时期地上部干物重\times 含氮量 $$ (4) $$ \text{氮素干物质生产效率(NDMPE)=}单位面积植株干物质积累量/植株氮积累量 $$ (5) $$ \text{氮收获指数(NHI)=}籽粒氮素积累量/植株氮素积累量 $$ (6) 1.4 数据处理
本研究所有数据的基本统计采用Microsoft Excel 2010, 采用SPSS 17.0软件进行统计分析。
2. 结果与分析
2.1 紫云英与氮肥配施对早稻干物质积累的影响
2.1.1 主要生育期群体干物重
由表 1可知, 不同施肥条件下早稻主要生育期地上部群体干物重因生育期不同而有所差异。分蘖期各处理间差异不显著 (P > 0.05)。从孕穗期开始, 各处理的差异逐渐显现。除分蘖期以外, 其余生育期处理C的干物质积累量均达最大, 且在孕穗期与其他处理间差异显著 (P < 0.05)。在抽穗期, 处理B、C、D的干物质积累量显著高于A、E处理 (P < 0.05)。在灌浆期, 处理B、C干物质累积量显著高于处理A (P < 0.05), 增幅分别为16.77%和17.02%。在成熟期, 处理B、C、D干物质累积量显著高于处理A (P < 0.05), 且处理C与处理A、E差异显著 (P < 0.05)。
表 1 各处理对早稻主要生育期群体干物重的影响Table 1. Effects of different treatments on dry matter weight of population atin main growth periods stages of early rice t·hm-2t·hm2 处理
Treatment分蘖期
Tillering stage孕穗期
Booting stage抽穗期
Heading stage灌浆期
Filling stage成熟期
MaturityA 2.15±0.12a 2.62±0.05c 3.78±0.09b 8.05±0.24b 8.68±0.14c B 1.95±0.06a 3.06±0.06b 4.45±0.04a 9.40±0.15a 9.65±0.27ab C 1.92±0.14a 3.58±0.17a 4.66±0.13a 9.42±0.42a 9.97±0.24a D 2.09±0.07a 3.04±0.16b 4.54±0.12a 8.81±0.46ab 9.44±0.29ab E 2.16±0.09a 2.70±0.04bc 3.78±0.02b 8.58±0.17ab 9.10±0.06bc A:冬闲+150 kg (N)·hm-2; B:紫云英+90 kg (N)·hm-2; C:紫云英+120 kg (N)·hm-2; D:紫云英+150 kg (N)·hm-2; E:紫云英+180 kg (N)·hm-2。数据为3个重复的平均值±标准误; 同列不同小写字母分别表示各处理间差异显著 (P < 0.05)。A: winter fallow with 150 kg (N)·hm-2 application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice. Values in the table are mean±SE of 3 replicates. Different lowercase letters in the same column mean significant differences at 0.05 level. 2.1.2 主要生育阶段干物质积累量和比例
从早稻主要生育阶段干物质积累量和比例来看 (表 2), 水稻播种—分蘖期及抽穗—灌浆期是干物质主要积累时期, 水稻在这两个生育阶段干物质积累量较大, 各处理在这两个生育阶段干物质积累量占成熟期干物重的19.26%~24.77%和45.23%~52.75%, 但均未达显著性差异 (P > 0.05)。在分蘖—孕穗期处理C的干物质积累量最大, 且显著高于处理A、D、E (P < 0.05);在孕穗—抽穗期, 处理D的干物质积累量最大, 显著高于处理C、E (P < 0.05), 增幅均为38.89%;而灌浆—成熟期各处理间干物质积累量差异不显著 (P > 0.05)。
表 2 各处理早稻主要生育阶段干物质积累量和比例Table 2. Dry matter accumulation and its ratio in main growth stages of early rice under different treatments处理
Treatment播种—分蘖期
Sowing-tillering stage分蘖—孕穗期
Tillering-booting stage孕穗—抽穗期
Booting-heading stage抽穗—灌浆期
Heading-filling stage灌浆—成熟期
Filling-maturity stage积累量
DMA
(t·hm-2)比例
RTDM
(%)积累量
DMA
(t·hm-2)比例
RTDM
(%)积累量
DMA
(t·hm-2)比例
RTDM
(%)积累量
DMA
(t·hm-2)比例
RTDM
(%)积累量
DMA
(t·hm-2)比例
RTDM
(%)A 2.15±0.12a 24.77 0.47±0.11b 5.41 1.16±0.11ab 13.36 4.27±0.30a 49.19 0.63±0.27a 7.27 B 1.95±0.06a 20.21 1.11±0.12ab 11.50 1.39±0.06ab 14.40 4.95±0.13a 51.30 0.25±0.40a 2.59 C 1.92±0.14a 19.26 1.66±0.28a 16.65 1.08±0.17b 10.83 4.77±0.44a 47.84 0.55±0.27a 5.52 D 2.09±0.07a 22.15 0.95±0.09b 10.06 1.50±0.04a 15.89 4.27±0.34a 45.23 0.63±0.18a 6.67 E 2.16±0.09a 23.74 0.54±0.13b 5.93 1.08±0.03b 11.87 4.80±0.19a 52.75 0.52±0.14a 5.71 A:冬闲+150 kg (N)·hm-2; B:紫云英+90 kg (N)·hm-2; C:紫云英+120 kg (N)·hm-2; D:紫云英+150 kg (N)·hm-2; E:紫云英+180 kg (N)·hm-2。DMA:生育阶段干物质积累量; RTDM:该生育阶段干物质积累量占总积累量的比重。数据为3个重复的平均值±标准误; 同列不同小写字母分别表示各处理间差异显著 (P < 0.05)。A: winter fallow with 150 kg (N)·hm-2 application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice. DMA: amount of dry matter accumulation in at the growth stage; RTDM: the ratio of dry matter accumulation to total accumulation in theis growth stage. Values in the table are mean±SE of 3 replicates. Different lowercase letters in the same column mean significant differences at 0.05 level. 2.1.3 干物质在茎鞘、叶片和穗的分配情况
通过分析茎鞘、叶片和穗分配情况 (表 3) 可知, 早稻干物质茎鞘比例在抽穗期达最大, 并随着生育进程的推进有不断降低的趋势。抽穗期处理C的茎鞘比例最大, 达46.50%, 与处理A、E差异显著 (P < 0.05), 分别增加7.83个百分点和4.75个百分点。叶片比例的变化趋势与茎鞘比例一致, 在抽穗期达最大, 各处理间差异显著 (P < 0.05), 其中处理A叶片比例最大, 为41.33%;成熟期处理D的叶片比例最大, 为14.00%, 与处理A、B、E差异显著 (P < 0.05)。穗比例随着生育进程的推进呈现出不断上升的趋势, 各处理均在成熟期达最大, 从抽穗期的18.50%~23.50%增加到成熟期的64.50%~68.67%。抽穗期处理D的穗比例最大, 并与处理C差异显著 (P < 0.05);成熟期处理B与处理A、C、D差异显著 (P < 0.05)。
表 3 各处理早稻中、后期干物质在茎鞘、叶片和穗的分配情况Table 3. Dry weight ratios of stem-sheath, leaf, panicle at middle and late stages of early rice under different treatments %% 处理
Treatment茎鞘比例Ratio of stem-sheath 叶片比例Ratio of leaf 穗比例Ratio of panicle 抽穗期
Heading stage灌浆期
Filling stage成熟期
Maturity stage抽穗期
Heading stage灌浆期
Filling stage成熟期
Maturity stage抽穗期
Heading stage灌浆期
Filling stage成熟期
Maturity stageA 38.67±0.33c 28.00±0.58a 22.00±0.58a 41.33±0.33a 18.00±0.00a 11.67±0.67bc 20.00±0.58ab 54.00±0.58a 66.33±0.33bc B 43.33±0.67ab 27.67±1.67a 20.67±1.20a 36.67±0.33c 21.66±2.67a 10.67±0.33c 20.00±1.00ab 50.67±4.33a 68.67±0.89a C 46.50±1.44a 26.25±1.25a 20.75±0.75a 35.00±0.41d 17.75±0.75a 13.25±0.48ab 18.50±1.71b 56.00±1.87a 66.00±0.71bc D 43.50±0.50ab 26.50±0.50a 21.50±0.50a 33.00±0.00e 19.00±0.00a 14.00±0.00a 23.50±0.50a 54.50±0.50a 64.50±0.50c E 41.75±0.75bc 28.50±0.87a 20.25±0.25a 38.25±0.63b 18.50±0.29a 12.00±0.41bc 20.00±1.29ab 53.00±1.00a 67.75±0.25ab A:冬闲+150 kg (N)·hm-2; B:紫云英+90 kg (N)·hm-2; C:紫云英+120 kg (N)·hm-2; D:紫云英+150 kg (N)·hm-2; E:紫云英+180 kg (N)·hm-2。数据为3个重复的平均值±标准误; 同列不同小写字母分别表示各处理间差异显著 (P < 0.05)。A: winter fallow with 150 kg (N)·hm-2 application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice. Values in the table are mean±SE of 3 replicates. Different lowercase letters in the same column mean significant differences at 0.05 level. 2.1.4 干物质的转运
从表 4可知, 处理B的早稻茎叶干物质输出量、输出率和表观转变率均达到最大, 处理C次之, 处理E达到最低, 处理D的3个指标高于处理A, 但未达到显著性差异 (P > 0.05)。说明在紫云英全量还田条件下, 减量施氮促进了早稻地上部分营养器官的干物质向籽粒中转移, 且相同施氮量下, 紫云英还田与否对干物质从营养器官向籽粒中转移效果并不明显, 而高量施氮反而抑制了干物质的转移。
表 4 各处理早稻干物质的转运Table 4. Dry matter transformation of early rice under different treatments处理
Treatment茎叶干物质输出量
Dry matter exportation from in stem-sheath and leaf (t·hm-2)茎叶干物质输出率
Output percent of dry matter fromin stem-sheath and leaf (%)表观转变率
Apparent conversion rate (%)A 0.11±0.01c 3.31±0.07c 2.20±0.06c B 0.54±0.01a 15.17±0.43a 9.41±0.08a C 0.41±0.02b 10.79±0.43b 7.17±0.10b D 0.12±0.01c 3.46±0.08c 2.39±0.12c E 0.09±0.01c 2.98±0.10c 1.66±0.07d A:冬闲+150 kg (N)·hm-2; B:紫云英+90 kg (N)·hm-2; C:紫云英+ 120 kg (N)·hm-2; D:紫云英+150 kg (N)·hm-2; E:紫云英+180 kg (N)·hm-2。数据为3个重复的平均值±标准误; 同列不同小写字母分别表示各处理间差异显著 (P < 0.05)。A: winter fallow with 150 kg (N)·hm-2 application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice. Values in the table are mean±SE of 3 replicates. Different lowercase letters in the same column mean significant differences at 0.05 level. 2.2 紫云英与氮肥配施对早稻氮素含量的影响
2.2.1 主要生育期氮素吸收积累量
由图 1可知, 紫云英配施氮肥条件下早稻主要生育期氮素吸收积累量因生育期不同而有所差异, 且呈逐渐升高的趋势, 在成熟期达最大。分蘖期各处理间氮素吸收积累量差异不显著 (P > 0.05)。除抽穗期处理D的氮素积累量最大外, 孕穗期、灌浆期和成熟期都是处理C的氮素积累量达最大, 且均显著高于处理A, 其中灌浆期和成熟期亦显著高于处理B (P < 0.05)。
图 1 各处理早稻主要生育阶段氮素累积量A:冬闲+150 kg (N)·hm-2; B:紫云英+90 kg (N)·hm-2; C:紫云英+120 kg (N)·hm-2; D:紫云英+150 kg (N)·hm-2; E:紫云英+ 180 kg (N)·hm-2。不同小写字母分别表示同一生育时期各处理间差异显著 (P < 0.05)。Figure 1. Nitrogen accumulations in at main growth periods stages of early rice under different treatmentsA: winter fallow with 150 kg (N)·hm-2 application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice. Different lowercase letters mean significant differences at the same growth stage at 0.05 level.2.2.2 成熟期茎、叶、穗的氮素养分含量及吸收量
由表 5可知, 不同施肥处理成熟期早稻茎、叶、穗氮素养分含量存在差异, 且不同施肥处理对各养分器官的氮素养分吸收量存在较为明显的影响。从茎全氮含量看, 处理C、D、E均显著高于处理B (P < 0.05), 可能是紫云英还田条件下, 较高施氮量一定程度上促进了茎中氮素的累积, 也可能是由于处理B本身的施氮量较其他处理少; 从叶全氮含量看, 各处理间并无显著差异; 从穗全氮含量看, 也是处理E显著高于其他处理 (P < 0.05)。从茎氮素吸收量看, 处理C显著高于处理B (P < 0.05);从叶片氮素吸收量看, 处理D显著高于处理B (P < 0.05);从穗氮素吸收量看, 4种紫云英配施氮肥处理均显著高于处理A (P < 0.05)。
表 5 各处理早稻成熟期茎、叶、穗的氮素养分含量及吸收量Table 5. Nitrogen contents and nutrient uptakes of stem-sheath, leaf, panicle in at maturity stages of early rice under different treatments处理
Treatment全氮含量Total nitrogen content (%) 氮素养分吸收量Nitrogenutrient uptakes (kg·hm-2) 茎Stem-sheath 叶Leaf 穗Panicle 茎Stem-sheath 叶Leaf 穗Panicle A 1.14±0.13ab 2.08±0.15a 1.45±0.04bc 21.67±1.97ab 21.03±1.24ab 83.60±1.49b B 1.01±0.04b 1.83±0.15a 1.45±0.00bc 19.96±0.93b 19.16±1.70b 95.96±2.20a C 1.36±0.03a 1.81±0.07a 1.41±0.02c 33.48±5.64a 23.73±1.58ab 92.68±2.77a D 1.34±0.11a 1.87±0.02a 1.50±0.03b 27.52±3.63ab 24.29±0.58a 91.33±4.02a E 1.43±0.10a 2.03±0.06a 1.57±0.01a 26.61±1.99ab 21.92±0.73ab 96.80±1.05a A:冬闲+150 kg (N)·hm-2; B:紫云英+90 kg (N)·hm-2; C:紫云英+120 kg (N)·hm-2; D:紫云英+150 kg (N)·hm-2; E:紫云英+180 kg (N)·hm-2。数据为3个重复的平均值±标准误; 同列不同小写字母分别表示各处理间差异显著 (P < 0.05)。A: winter fallow with 150 kg (N)·hm-2 application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice. Values in the table are mean±SE of 3 replicates. Different lowercase letters in the same column mean significant differences at 0.05 level. 2.2.3 氮素养分吸收利用效率
由表 6可知, 不同施肥处理下早稻的氮素养分吸收利用效率存在差异。从氮素干物质生产效率 (NDMPE) 看, 氮素干物质生产效率表现出随施氮量的增加而下降的趋势。处理B的氮素干物质生产效率最高, 比其他处理增加3.94%~14.08%。氮收获指数 (NHI) 反映了氮素在植株营养器官与生殖器官间的分配情况, 结果显示不同施肥处理对早稻氮收获指数存在一定的影响。各处理氮收获指数为61.83%~71.04%, 其中处理B的氮收获指数显著高于其他处理 (P < 0.05), 处理E次之。因此, 在各处理中, 处理B的氮素干物质生产效率和氮收获指数较高, 分别为71.44 kg·kg-1和71.04%。
表 6 各处理早稻的氮素干物质生产效率 (NDMPE) 和氮收获指数 (NHI)Table 6. Nitrogen dry matter production efficiency (NDMPE) and nitrogen harvest index (NHI) of early rice under different treatments处理Treatment NDMPE (kg·kg-1) NHI (%) A 68.73±4.31a 66.19±1.08bc B 71.44±3.08a 71.04±1.45a C 66.52±2.87a 61.83±1.35c D 65.95±7.97a 63.80±1.43bc E 62.62±1.84a 66.61±1.08b A:冬闲+150 kg (N)·hm-2; B:紫云英+90 kg (N)·hm-2; C:紫云英+ 120 kg (N)·hm-2; D:紫云英+150 kg (N)·hm-2; E:紫云英+180 kg (N)·hm-2。数据为3个重复的平均值±标准误; 同列不同小写字母分别表示各处理间差异显著 (P < 0.05)。A: winter fallow with 150 kg (N)·hm-2 application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg (N)·hm-2 application in early rice. Values in the table are mean±SE of 3 replicates. Different lowercase letters in the same column mean significant differences at 0.05 level. 3. 讨论与结论
研究表明, 有机无机肥配施有利于促进植株干物质积累[16]。徐昌旭等[13]研究结果显示, 翻压22 500 kg∙hm-2紫云英后, 与施用100%化肥 (N 150 kg∙hm-2、P2O575 kg∙hm-2、K2O 120 kg∙hm-2) 相比, 减少化肥用量可以促进干物质的积累; 减少化肥用量20%, 水稻干物质积累量平均增加18.8%, 而化肥用量减少到常规用量的40%~60%时, 干物质积累量并没有减少。杨长明等[17]研究结果表明:有机无机肥配施有利于水稻植株在灌浆期对干物质的积累。姜佰文等[18]研究结果显示, 在等量有机肥用量条件下, 配施适宜比例的无机肥能够提高总干物质积累量18.8%~26.9%。本研究结果同样表明, 与对照处理相比, 紫云英与氮肥配施各处理的早稻干物质积累量均在一定程度上有所提高, 其中以紫云英配施120 kg∙hm-2氮肥处理的干物质积累量最大。各处理在抽穗—灌浆期的干物质积累比例均最大, 而紫云英与氮肥配施处理在这一阶段的干物质积累量较冬闲处理平均增加10.01%。聂俊等[19]研究结果表明, 有机肥与化肥配施可以提高水稻分蘖期到成熟期的干物质积累, 而本研究结果显示紫云英与氮肥配施对干物质积累的优势仅从孕穗期开始, 在分蘖期冬闲常规施氮处理、紫云英配施150 kg∙hm-2氮肥和180 kg∙hm-2氮肥处理的干物质积累量均高于紫云英配施90 kg∙hm-2氮肥和120 kg∙hm-2氮肥处理, 这可能是因为紫云英翻压后由于前期气温低, 氮素释放慢, 并未完全转化成可被直接利用的形式, 氮素供应相对不足[20], 而氮肥作为速效肥料, 养分释放速度较快, 因此氮肥施用量大的处理在水稻生育前期长势较好, 而紫云英与氮肥配施处理在水稻生育中后期长势较好。从早稻干物质转运情况看, 随着施氮量的增加, 茎叶干物质输出量、输出率及表观转变率呈下降趋势, 这与朱冰[21]、赵田径等[22]的研究结果一致。
养分吸收是物质生产的基础。植物中的养分从土壤中获得, 杨馨逸等[23]认为在相同肥力下, 土壤氮素转化率随着施氮量的增加呈现先上升后下降的趋势, 只有施入适宜的氮量才能协调好土壤供氮和作物需氮之间的关系。因此, 氮肥施用不合理、养分供应不同步是氮素利用效率低的主要原因[24]。常用的氮肥是速效肥料, 冬闲处理在水稻生长前期供肥过旺、后期供肥不足, 而紫云英与化肥的养分释放速率不同, 翻压紫云英处理在水稻全生育期都有充足的养分供应。要文倩等[25]研究结果表明, 有机无机肥配施有利于提高水稻养分利用效率, 促进氮素吸收。商跃凤[26]研究表明有机无机氮肥混施氮肥利用率比单施化肥提高7%~18%。张小莉等[27]研究结果亦表明, 有机无机复混肥处理的氮素积累量、氮素利用效率均显著高于化肥处理。本试验中, 紫云英与氮肥配施增加了水稻的氮素吸收量, 与不施紫云英处理相比, 紫云英与氮肥配施处理的早稻氮素吸收量增加6.95%~18.68%, 其中紫云英配施120 kg∙hm-2氮肥处理的氮素吸收积累量最高。这与李贺[28]、孟琳[29]的研究结果类似。本试验中, 氮素干物质生产效率随着施氮量增加呈先上升再下降的趋势, 说明在一定范围内, 施氮量增加能促进作物对氮素的吸收利用, 但当氮肥施用量过量施用时, 会造成水稻对氮素的奢侈吸收[30], 从而降低氮素利用率, 这与前人[11]的研究结果一致。
本试验条件下, 与不施紫云英处理相比, 紫云英配施氮肥处理提高了水稻干物质积累量、氮素吸收积累量以及氮素利用率, 其中以紫云英配施纯氮90 kg∙hm-2和120 kg∙hm-2处理的效果较优, 明显地实现了减氮增效的目的, 是较理想的施肥模式。
-
图 2 1961—2017年宁夏枸杞生育期平均气温的年际变化(a)和M-K突变检验(b)
图 2b中, 直实线为α=0.05显著性水平临界值, 直虚线为α=0.001显著性水平临界值。
Figure 2. Interannual variation (a) and M-K mutation test (b) of average temperature during growth period of Lycium barbarum L. in Ningxia from 1961 to 2017
In figure 2b, the solid and dotted straight lines are significant horizontal critical values of α = 0.05 and 0.001, respectively.
图 4 1961—2017年宁夏枸杞生育期≥10 ℃积温的年际变化(a)和M-K突变检验(b)
图 4b中, 直实线为α=0.05显著性水平临界值, 直虚线为α=0.001显著性水平临界值。
Figure 4. Interannual variation (a) and M-K mutation test (b) of ≥10 ℃ accumulated temperature during growth period of Lycium barbarum L. in Ningxia from 1961 to 2017
In figure 4b, the solid and dotted straight lines are significant horizontal critical values of α = 0.05 and 0.001, respectively.
图 6 1961—2017年宁夏枸杞生育期日照时数的年际变化(a)和M-K突变检验(b)
图 6b中, 直实线为α=0.05显著性水平临界值, 直虚线为α=0.001显著性水平临界值。
Figure 6. Interannual variation (a) and M-K mutation test (b) of sunshine hours during growth period of Lycium barbarum L. in Ningxia from 1961 to 2017
In figure 6b, the solid and dotted straight lines are significant horizontal critical values of α = 0.05 and 0.001, respectively.
图 8 1961—2017年宁夏枸杞生育期降雨的年际变化(a)和M-K突变检验(b)
图 8b中, 直实线为α=0.05显著性水平临界值。
Figure 8. Interannual variation (a) and M-K mutation test (b) of precipitation during growth period of Lycium barbarum L. in Ningxia from 1961 to 2017
In figure 8b, the solid straight lines are significant horizontal critical values of α = 0.05.
图 9 中宁县2006—2018年枸杞萌芽期≥5 ℃积温(a)、1984—2018年全生育期≥10 ℃积温(b)与产量的关系
Figure 9. Relationships between yield and ≥ 5 ℃ accumulated temperature during germination (a) in 2006—2018 and ≥ 10 ℃ accumulated temperature during entire growth period (b) in 1984—2018 of Lycium barbarum L. in Zhongning County, Ningxia
表 1 1961—2003年和2004—2017年宁夏枸杞物候期比较统计
Table 1 Comparative statistics of phenology periods of Lycium barbarum L. from 1961 to 2003 and from 2004 to 2017 in Ningxia
区域
Area萌芽期(月-日)
Germination stage (month-day)提前日数
Advance days (d)秋果成熟期(月-日)
Mature stage of autumn fruit (month-day)推迟日数
Delayed days (d)1961—2017年生育期
Growth period from 1961 to 2017 (d)1961—2003 2004—2017 1961—2003 2004—2017 石嘴山Shizuishan 04-15 04-11 4 10-06 10-11 5 182 惠农Huinong 04-20 04-12 8 10-07 10-15 8 175 贺兰Helan 04-18 04-11 7 10-08 10-11 3 177 平罗Pingluo 04-19 04-13 6 10-07 10-14 7 176 吴忠Wuzhong 04-17 04-09 8 10-08 10-16 8 179 银川Yinchuan 04-18 04-11 7 10-08 10-15 7 178 陶乐Taole 04-20 04-14 6 10-07 10-12 5 174 青铜峡Qingtongxia 04-16 04-10 6 10-08 10-14 6 178 永宁Yongning 04-18 04-10 8 10-08 10-16 8 178 灵武Lingwu 04-17 04-11 6 10-06 10-11 5 176 中卫Zhongwei 04-19 04-09 10 10-06 10-14 8 176 中宁Zhongning 04-16 04-09 7 10-08 10-16 8 179 兴仁Xingren 05-04 04-15 19 09-29 10-05 6 153 海原Haiyuan 05-08 05-02 6 09-25 10-02 7 145 同心Tongxin 04-22 04-13 9 10-08 10-13 5 173 固原Guyuan 05-07 05-01 6 09-24 10-02 8 144 韦州Weizhou 04-24 04-12 12 10-08 10-08 0 171 平均值Average value 04-02 04-14 8 10-05 10-11 6 171 -
[1] 周广胜.气候变化对中国农业生产影响研究展望[J].气象与环境科学, 2015, 38(1): 80-94 doi: 10.3969/j.issn.1673-7148.2015.01.012 ZHOU G S. Research prospect on impact of climate change on agricultural production in China[J]. Meteorological and Environmental Sciences, 2015, 38(1): 80-94 doi: 10.3969/j.issn.1673-7148.2015.01.012
[2] 孙华, 何茂萍, 胡明成.全球变化背景下气候变暖对中国农业生产的影响[J].中国农业资源与区划, 2015, 36(7): 51-57 http://d.old.wanfangdata.com.cn/Periodical/zgnyzyyqh201507009 SUN H, HE M P, HU M C. Impact of global climatic warming on agricultural production in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2015, 36(7): 51-57 http://d.old.wanfangdata.com.cn/Periodical/zgnyzyyqh201507009
[3] IPCC. Climate Change 2013: The Physical Science Basis[M]. Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2013: 1-552
[4] 苏占胜, 秦其明, 陈晓光, 等. GIS技术在宁夏枸杞气候区划中的应用[J].资源科学, 2006, 28(6): 68-72 doi: 10.3321/j.issn:1007-7588.2006.06.010 SU Z S, QIN Q M, CHEN X G, et al. Application of GIS for climate mapping of Chinese wolfberry in Ningxia Hui Autonomous Region[J]. Resources Science, 2006, 28(6): 68-72 doi: 10.3321/j.issn:1007-7588.2006.06.010
[5] 马力文, 叶殿秀, 曹宁, 等.宁夏枸杞气候区划[J].气象科学, 2009, 29(4): 4546-4551 http://d.old.wanfangdata.com.cn/Periodical/zykx200606010 MA L W, YE D X, CAO N, et al. A climatic suitable regionalization of Lycium barbarum L. in Ningxia[J]. Scientia Meteorologica Sinica, 2009, 29(4): 4546-4551 http://d.old.wanfangdata.com.cn/Periodical/zykx200606010
[6] 刘静, 张晓煜, 杨有林, 等.枸杞产量与气象条件的关系研究[J].中国农业气象, 2004, 25(1): 17-21 doi: 10.3969/j.issn.1000-6362.2004.01.005 LIU J, ZHANG X Y, YANG Y L, et al. Research in relationship of yield and it's meteorological conditions of Lycium barbarum L.[J]. Chinese Journal of Agrometeorology, 2004, 25(1): 17-21 doi: 10.3969/j.issn.1000-6362.2004.01.005
[7] 张晓煜.宁夏优质枸杞形成的环境条件研究[D].北京: 中国农业大学, 2003 http://cdmd.cnki.com.cn/Article/CDMD-10019-2003092603.htm ZHANG X Y. Studies on environmental condition of high quality medlar in Ningxia Hui Autonomous Region[D]. Beijing: China Agricultural University, 2003 http://cdmd.cnki.com.cn/Article/CDMD-10019-2003092603.htm
[8] 李剑萍, 张学艺, 刘静.枸杞外观品质与气象条件的关系[J].气象, 2004, 30(4): 51-54 http://d.old.wanfangdata.com.cn/Periodical/qx200404013 LI J P, ZHANG X Y, LIU J. Relationship between external quality characters of Lycium barbarum L. and weather conditions[J]. Meteorological Monthly, 2004, 30(4): 51-54 http://d.old.wanfangdata.com.cn/Periodical/qx200404013
[9] 齐国亮.气象因子对宁夏枸杞外观品质及药用成分多糖积累的影响[D].银川: 宁夏大学, 2015 QI G L. Influence of meteorological factors on the appearance quality of Lycium barbarum L. and the accumulation of medicinal composition of Lycium barbarum L. polysaccharides[D]. Yinchuan: Ningxia University, 2015
[10] 雷玉红, 梁志勇, 王发科, 等.柴达木黑枸杞生长发育的气象适宜性及灾害影响分析[J].青海农林科技, 2018, (2): 21-25 doi: 10.3969/j.issn.1004-9967.2018.02.006 LEI Y H, LIANG Z Y, WANG F K, et al. Meteorological suitability and disaster impact analysis of the growth and development of Chaidamu black wolfberry[J]. Science and Technology of Qinghai Agriculture and Forestry, 2018, (2): 21-25 doi: 10.3969/j.issn.1004-9967.2018.02.006
[11] 包晗, 郑国琦, 苏雪玲, 等.温室不同温度对枸杞果实及种子发育的影响[J].江苏农业科学, 2018, 46(8): 127-131 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201808031 BAO H, ZHENG G Q, SU X L, et al. Effects of different temperature on fruit and seed development of Lycium barbarum in greenhouse[J]. Jiangsu Agricultural Sciences, 2018, 46(8): 127-131 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201808031
[12] 邓振镛, 王强, 张强, 等.中国北方气候暖干化对粮食作物的影响及应对措施[J].生态学报, 2010, 30(22): 6278-6288 http://d.old.wanfangdata.com.cn/Periodical/stxb201022030 DENG Z Y, WANG Q, ZHANG Q, et al. Impact of climate warming and drying on food crops in northern China and the countermeasures[J]. Acta Ecologica Sinica, 2010, 30(22): 6278-6288 http://d.old.wanfangdata.com.cn/Periodical/stxb201022030
[13] 杨晓光, 李勇, 代姝玮, 等.气候变化背景下中国农业气候资源变化Ⅸ.中国农业气候资源时空变化特征[J].应用生态学报, 2011, 22(12): 3177-3188 http://d.old.wanfangdata.com.cn/Periodical/yystxb201112014 YANG X G, LI Y, DAI S W, et al. Changes of China agricultural climate resources under the background of climate change: Ⅸ. Spatiotemporal change characteristics of China agricultural climate resources[J]. Chinese Journal of Applied Ecology, 2011, 22(12): 3177-3188 http://d.old.wanfangdata.com.cn/Periodical/yystxb201112014
[14] 郭建平.气候变化对中国农业生产的影响研究进展[J].应用气象学报, 2015, 26(1): 1-11 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201501001 GUO J P. Advances in impacts of climate change on agricultural production in China[J]. Journal of Applied Meteorological Science, 2015, 26(1): 1-11 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201501001
[15] 胡琦, 潘学标, 邵长秀, 等. 1961—2010年中国农业热量资源分布和变化特征[J].中国农业气象, 2014, 35(2): 119-127 doi: 10.3969/j.issn.1000-6362.2014.02.001 HU Q, PAN X B, SHAO C X, et al. Distribution and variation of China agricultural heat resources in 1961-2010[J]. Chinese Journal of Agrometeorology, 2014, 35(2): 119-127 doi: 10.3969/j.issn.1000-6362.2014.02.001
[16] 张磊, 段晓凤, 李红英, 等.宁夏枸杞生长的气象条件分析及管理措施[J].北方果树, 2014, (4): 16-19 doi: 10.3969/j.issn.1001-5698.2014.04.010 ZHANG L, DUAN X F, LI H Y, et al. Analysis of meteorological conditions and managing measures for Lycium barbarum L. in Ningxia[J]. Northern Fruits, 2014, (4): 16-19 doi: 10.3969/j.issn.1001-5698.2014.04.010
[17] 苏占胜, 刘静, 李建萍, 等.宁夏枸杞产量气候区划研究[J].干旱地区农业研究, 2004, 22(2): 132-135 doi: 10.3321/j.issn:1000-7601.2004.02.028 SU Z S, LIU J, LI J P, et al. The climatic demarcation for the yield of medlar (Lycium barbarum L.) in Ningxia[J]. Agricultural Research in the Arid Areas, 2004, 22(2): 132-135 doi: 10.3321/j.issn:1000-7601.2004.02.028
[18] 刘静, 张宗山, 马力文, 等.宁夏枸杞蚜虫发生规律及其气象等级预报[J].中国农业气象, 2015, 36(3): 356-363 doi: 10.3969/j.issn.1000-6362.2015.03.014 LIU J, ZHANG Z S, MA L W, et al. Occurrence of Aphis sp. on Lycium barbarum L. and its meteorological grades forecast in Ningxia[J]. Chinese Journal of Agrometeorology, 2015, 36(3): 356-363 doi: 10.3969/j.issn.1000-6362.2015.03.014
[19] 刘赛, 李建领, 徐常青, 等.枸杞瘿螨田间迁移扩散规律研究[J].中国现代中药, 2016, 18(3): 271-274 http://d.old.wanfangdata.com.cn/Periodical/zyyjyxx201603003 LIU S, LI J L, XU C Q, et al. The dispersal mode of Aceria pallida on Lycium barbarum[J]. Modern Chinese Medicine, 2016, 18(3): 271-274 http://d.old.wanfangdata.com.cn/Periodical/zyyjyxx201603003
[20] 刘静, 张宗山, 张立荣, 等.银川枸杞炭疽病发生的气象指标研究[J].应用气象学报, 2008, 19(3): 333-341 doi: 10.3969/j.issn.1001-7313.2008.03.009 LIU J, ZHANG Z S, ZHANG L R, et al. Climatic characteristics of disease by Colletotrichum gloeosporioides Penz on China wolfberry in Yinchuan[J]. Journal of Applied Meteorological Science, 2008, 19(3): 333-341 doi: 10.3969/j.issn.1001-7313.2008.03.009
[21] 齐国亮, 苏雪玲, 郑国琦, 等.气象因子对宁夏枸杞果实生长及多糖含量的影响[J].植物学报, 2016, 51(3): 311-321 http://d.old.wanfangdata.com.cn/Periodical/zwxtb201603006 QI G L, SU X L, ZHENG G Q, et al. Effect of meteorological factor on fruit growth and accumulation of polysaccharides in Lycium barbarum[J]. Chinese Bulletin of Botany, 2016, 51(3): 311-321 http://d.old.wanfangdata.com.cn/Periodical/zwxtb201603006
[22] 苏雪玲, 齐国亮, 郑国琦, 等.不同产地气象因子对宁夏枸杞果实糖分积累的影响[J].西北植物学报, 2015, 35(8): 1634-1641 http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201508019 SU X L, QI G L, ZHENG G Q, et al. Effect of meteorological factors of different regions on sugar accumulation in Lycium barbarum L. fruit[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(8): 1634-1641 http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201508019
[23] 陈清平, 祁慧东, 邱瑾, 等.中宁县枸杞园中常见灾害性天气及对策[J].农业科学研究, 2012, 33(4): 66-69 doi: 10.3969/j.issn.1673-0747.2012.04.016 CHEN Q P, QI H D, QIU J, et al. The common disaster weather prevention in wolfberry garden in Zhongning County of Ningxia[J]. Journal of Agricultural Sciences, 2012, 33(4): 66-69 doi: 10.3969/j.issn.1673-0747.2012.04.016
[24] 邓振镛, 张强, 王润元, 等.西北地区特色作物对气候变化响应及应对技术的研究进展[J].冰川冻土, 2012, 34(4): 855-862 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201204012 DENG Z Y, ZHANG Q, WANG R Y, et al. A review of the commercial crops in northwest China: response to regional climate change and coping technology[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 855-862 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201204012
[25] 王连喜.宁夏农业气候资源及其分析[M].宁夏人民出版社, 2008 WANG L X. Agricultural Climate Resources in Ningxia and Its Analysis[M]. Yinchuan: Ningxia People's Publishing House, 2008
[26] 马力文, 刘静.枸杞气象业务服务[M].北京:气象出版社, 2018 MA L W, LIU J. Chinese Wolfberry Meteorological Business Services[M]. Beijing: China Meteorological Press, 2018
[27] 魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社, 2007 WEI F Y. Modern Climatological Statistical Diagnosis and Prediction Technology[M]. Beijing: China Meteorological Press, 2007
[28] 中国气候变化蓝皮书[M].北京: 中国气象局, 2018 China Blue Book on Climate Change[M]. Beijing: China Meteorological Administration, 2018
[29] 王润元, 邓振镛, 姚玉璧, 等.旱区名特优作物生态适应性与资源利用[M].北京:气象出版社, 2015 WANG R Y, DENG Z Y, YAO Y B, et al. Ecological adaptability and resource utilization of specialty crops in arid areas[M]. China Meteorological Press, 2015