Impact of soil warming on the activity and abundance of nitrifiers under nitrogen fertilization conditions

Tatoba R Waghmode, ZHANG Xinyuan, DONG Wenxu, ZHANG Chuang, HU Chunsheng

Tatoba R Waghmode, ZHANG Xinyuan, DONG Wenxu, ZHANG Chuang, HU Chunsheng. Impact of soil warming on the activity and abundance of nitrifiers under nitrogen fertilization conditions[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1649-1655. DOI: 10.13930/j.cnki.cjea.190166
Citation: Tatoba R Waghmode, ZHANG Xinyuan, DONG Wenxu, ZHANG Chuang, HU Chunsheng. Impact of soil warming on the activity and abundance of nitrifiers under nitrogen fertilization conditions[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1649-1655. DOI: 10.13930/j.cnki.cjea.190166
TatobaR Waghmode, 张新媛, 董文旭, 张闯, 胡春胜. 氮肥施加条件下增温对硝化菌活性和丰度的影响[J]. 中国生态农业学报(中英文), 2019, 27(11): 1649-1655. DOI: 10.13930/j.cnki.cjea.190166
引用本文: TatobaR Waghmode, 张新媛, 董文旭, 张闯, 胡春胜. 氮肥施加条件下增温对硝化菌活性和丰度的影响[J]. 中国生态农业学报(中英文), 2019, 27(11): 1649-1655. DOI: 10.13930/j.cnki.cjea.190166
TatobaR Waghmode, 张新媛, 董文旭, 张闯, 胡春胜. 氮肥施加条件下增温对硝化菌活性和丰度的影响[J]. 中国生态农业学报(中英文), 2019, 27(11): 1649-1655. CSTR: 32371.14.j.cnki.cjea.190166
引用本文: TatobaR Waghmode, 张新媛, 董文旭, 张闯, 胡春胜. 氮肥施加条件下增温对硝化菌活性和丰度的影响[J]. 中国生态农业学报(中英文), 2019, 27(11): 1649-1655. CSTR: 32371.14.j.cnki.cjea.190166
Tatoba R Waghmode, ZHANG Xinyuan, DONG Wenxu, ZHANG Chuang, HU Chunsheng. Impact of soil warming on the activity and abundance of nitrifiers under nitrogen fertilization conditions[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1649-1655. CSTR: 32371.14.j.cnki.cjea.190166
Citation: Tatoba R Waghmode, ZHANG Xinyuan, DONG Wenxu, ZHANG Chuang, HU Chunsheng. Impact of soil warming on the activity and abundance of nitrifiers under nitrogen fertilization conditions[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1649-1655. CSTR: 32371.14.j.cnki.cjea.190166

Impact of soil warming on the activity and abundance of nitrifiers under nitrogen fertilization conditions

Funds: 

National Natural Science Foundation of China 41530859

National Natural Science Foundation of China 31850410480

National Key R & D Program of China DQGG0208-4

Program of the Chinese Academy of Sciences ZDRW-ZS-2016-5-1

More Information
    Author Bio:

    Tatoba R Waghmode, the main research direction is soil warming effects on nitrifier, denitrifiers and plant-microbe interaction.E-mail:tatobawaghmode@yahoo.com; ZHANG Xinyuan, the main research direction is nitrogen cycle in agroecosystem.E-mail:tatobawaghmode@yahoo.com

    Corresponding author:

    HU Chunsheng research interests are carbon, nitrogen, water cycle and soil ecological processes in agroecosystem.E-mail:cshu@sjziam.ac.cn

氮肥施加条件下增温对硝化菌活性和丰度的影响

基金项目: 

国家自然科学基金项目 41530859

国家自然科学基金项目 31850410480

空气污染原因及治理重点项目 DQGG0208-4

中国科学院重点项目 ZDRW-ZS-2016-5-1

详细信息
    通讯作者:

    胡春胜, 主要从事农田生态系统碳氮水循环和土壤生态过程研究。E-mail:cshu@sjziam.ac.cn

  • 中图分类号: S154.1

  • Abstract: The first step of nitrification (i.e., the oxidation of ammonia to nitrate) is catalyzed by nitrifiers, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the impact of soil warming on the activity and abundance of nitrifiers under different nitrogen (N) fertilization conditions remains poorly understood. A long-term field warming experiment has been conducted since October 2008 at the Luancheng Agro-Ecosystem Experimental Station of Chinese Academy of Sciences in the North China Plain, during which soil temperature was increased by 1.5℃ using infrared heaters (power, 1 000 W) placed 2 m above the soil surface. In 2018, we investigated soils from the control (no warming) and warming treatment plots for potential nitrification rate (PNR), abundance of AOB and AOA at 10 cm and 20 cm soil depth under two N fertilization conditions:without N fertilization (N0) and with 240 kg(N)·hm-2·a-1 fertilization (N1). Soil PNR, nitrate (NO3--N), and ammonium (NH4+-N) contents were spectrophotometrically assessed, and the abundance of functional genes was investigated via real-time quantitative PCR. Warming increased PNR and NO3--N content under N1 treatment and decreased them under N0 treatment (P < 0.05). Moreover, warming significantly increased AOB abundance under N1 treatment (P < 0.05), whereas it decreased the abundance of both AOA and AOB under N0 treatment, at both soil depths. Compared with N0, N1 exhibited substantial decrease in AOA/AOB ratio, suggesting that compared with warming without N fertilization, warming with N fertilization exhibited higher stimulation of AOB growth than of AOA growth. Conclusively, this study suggests that AOB significantly and positively responded to warming with N fertilization, whereas both AOA and AOB significantly and negatively responded to warming without N fertilization. This study provides an understanding of nitrifier activity and the response of ammonia-oxidizing microorganisms to warming conditions and N availability.
    摘要: 温度在多种生物地球化学过程中起到关键的调节作用,是影响土壤硝化作用和微生物分布的重要因素之一。硝化过程的第1个步骤由氨氧化细菌(AOB)和氨氧化古菌(AOA)催化,然而,不同施氮量下,增温对硝化菌活性和丰度的影响尚不清楚。本研究基于2008年10月起设立于太行山山前平原的长期增温试验平台(高于地表 2 m的红外加热器使土壤温度升高1.5℃),于2018年5月对不施氮(N0)和施氮[N1,240 kg(N)·hm-2·a-1]下增温分别对0~10 cm和10~20 cm土壤硝化潜势(PNR)、AOA和AOB丰度的影响进行了研究。硝态氮(NO3--N和铵态氮(NH4+-N)含量用分光光度法测量,应用缓冲液培养法测定土壤PNR,提取土壤DNA后用实时荧光定量PCR技术测定功能基因AOA和AOB的丰度。结果表明:温度升高显著增加N1条件下PNR和NO3--N含量(P < 0.05),降低了N0条件下PNR和NO3--N含量,但差异不显著。N1条件下,增温土壤AOB丰度显著提高(P < 0.05);N0条件下,增温土壤AOA丰度显著降低(P < 0.05)。与N0相比,N1条件下的AOA/AOB比值明显降低,表明增温加氮肥处理对AOB的生长刺激更强烈。在增温加施氮条件下,细菌(AOB)表现显著的正反应,在增温不施氮条件下,古菌(AOA)和AOB表现显著的负反应。本研究结果可为全球增温背景下进一步了解硝化活性和氨氧化微生物对增温和氮有效性的响应提供科学依据。
  • Figure  1.   Effect of soil warming on temperature (a), moisture (b), and contents of nitrate (c) and ammonium (d) under different N fertilization conditions: N0 (without N fertilization) and N1 (240 kg(N)∙hm-2∙a-1) at 0-10-cm (10 cm) and 10-20-cm (20 cm) soil depth.

    Different letters indicate significant differences between warming and control at P < 0.05 (Student's t-test). Error bars indicate standard deviation of the mean (n = 3).

    Figure  2.   Effect of warming on the potential nitrification rate (PNR, a), abundance of AOB (b), AOA (c), and AOA/AOB ratio (d) under different N fertilization conditions: N0 (without N fertilization) and N1 (240 kg(N)∙hm-2∙a-1) at 0-10-cm (10 cm) and 10-20-cm (20 cm) soil depth

    Different letters indicate significant differences between warming and control at P < 0.05 (Student's t-test). Error bars indicate standard deviation of the mean (n = 3).

    Table  1   Pearson's correlation (r values) analyses between PNR (nitrification activity), nitrifier abundance (AOA and AOB), and mineral N (NO3--N and NH4+-N) content under N fertilization conditions: N0 (without N fertilization) and N1 (240 kg(N)∙hm-2∙a-1) at 0-10-cm (10 cm) and 10-20-cm (20 cm) soil depth

    N0 treatment
    10 cm 20 cm
    PNR NH4+-N NO3-N AOB AOA PNR NH4+-N NO3-N AOB AOA
    PNR 1.00 PNR 1.00
    NH4+-N 0.16 1.00 NH4+-N 0.92** 1.00
    NO3-N 0.76 −0.00 1.00 NO3-N 0.93** 0.97** 1.00
    AOB 0.77 −0.14 0.83* 1.00 AOB 0.54 0.67 0.56 1.00
    AOA 0.79 0.25 0.56 0.50 1.00 AOA 0.66 0.80 0.76 0.51 1.00
    N1 treatment
    10 cm 20 cm
    PNR NH4+-N NO3-N AOB AOA PNR NH4+-N NO3-N AOB AOA
    PNR 1.00 −0.49 PNR 1.00
    NH4+-N −0.57 1.00 0.27 NH4+-N 0.88* 1.00
    NO3-N 0.91* −0.69 1.00 −0.16 NO3-N 0.71 0.79 1.00
    AOB 0.96** −0.57 0.95** 1.00 −0.31 AOB 0.86* 0.95** 0.93** 1.00
    AOA −0.49 0.27 −0.16 −0.31 1.00 AOA 0.19 0.23 0.21 0.18 1.00
       *, **: correlation coefficient is significant at the P < 0.05, P < 0.01 levels, respectively (2-tailed).
    下载: 导出CSV
  • ANDRESEN L C, MICHELSEN A, AMBUS P, et al. Belowground heathland responses after 2 years of combined warming, elevated CO2 and summer drought[J]. Biogeochemistry, 2010, 101(1/2/3):27-42 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4939fc14d02608f724c47c7043e6f495

    AVRAHAMI S, BOHANNAN B J M. Response of Nitrosospira sp. strain AF-like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration[J]. Applied and Environmental Microbiology, 2007, 73(4):1166-1173 doi: 10.1128/AEM.01803-06

    CUI P Y, FAN F L, YIN C, et al. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes[J]. Soil Biology and Biochemistry, 2016, 93:131-141 doi: 10.1016/j.soilbio.2015.11.005

    FRANCIS C A, ROBERTS K J, BEMAN J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41):14683-14688 doi: 10.1073/pnas.0506625102

    GRUNDMANN G L, RENAULT P, ROSSO L, et al. Differential effects of soil water content and temperature on nitrification and aeration[J]. Soil Science Society of America Journal, 1995, 59(5):1342 doi: 10.2136/sssaj1995.03615995005900050021x

    HE J Z, HU H W, ZHANG L M. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils[J]. Soil Biology and Biochemistry, 2012, 55:146-154 doi: 10.1016/j.soilbio.2012.06.006

    HORZ H P, BARBROOK A, FIELD C B, et al. Ammonia-oxidizing bacteria respond to multifactorial global change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(42):15136-15141 doi: 10.1073/pnas.0406616101

    HU H W, MACDONALD C A, TRIVEDI P, et al. Effects of climate warming and elevated CO2 on autotrophic nitrification and nitrifiers in dryland ecosystems[J]. Soil Biology and Biochemistry, 2016, 92:1-15 doi: 10.1016/j.soilbio.2015.09.008

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2013: 1535

    JIA Z J, CONRAD R. Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 2009, 11(7):1658-1671 doi: 10.1111/j.1462-2920.2009.01891.x

    JIN T, ZHANG T, YAN Q M. Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR[J]. Applied Microbiology and Biotechnology, 2010, 87(3):1167-1176 doi: 10.1007/s00253-010-2595-2

    KARHU K, AUFFRET M D, DUNGAIT J A J, et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response[J]. Nature, 2014, 513(7516):81-84 doi: 10.1038/nature13604

    KONNEKE M, SCHUBERT D M, BROWN P C, et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(22):8239-8244 doi: 10.1073/pnas.1402028111

    KOWALCHUK G A, STEPHEN J R. Ammonia-oxidizing bacteria:A model for molecular microbial ecology[J]. Annual Review of Microbiology, 2001, 55(1):485-529 doi: 10.1146/annurev.micro.55.1.485

    KUROLA J, SALKINOJA-SALONEN M, AARNIO T, et al. Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil[J]. FEMS Microbiology Letters, 2005, 250(1):33-38 doi: 10.1016/j.femsle.2005.06.057

    LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104):806-809 doi: 10.1038/nature04983

    LIU L T, HU C S, YANG P P, et al. Experimental warming-driven soil drying reduced N2O emissions from fertilized crop rotations of winter wheat-soybean/fallow, 2009-2014[J]. Agriculture, Ecosystems & Environment, 2016, 219:71-82 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f6bf3c5209603a0a63c38872f0bd1d77

    LONG X E, CHEN C R, XU Z H, et al. Abundance and community structure of ammonia oxidizing bacteria and archaea in a Sweden boreal forest soil under 19-year fertilization and 12-year warming[J]. Journal of Soils and Sediments, 2012, 12(7):1124-1133 doi: 10.1007/s11368-012-0532-y

    MARTENS-HABBENA W, BERUBE P M, URAKAWA H, et al. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria[J]. Nature, 2009, 461(7266):976-979 doi: 10.1038/nature08465

    PAGE A L, MILLER R H, KEENEY D R. Methods of Soil Analysis[M]. Madison, WI:American Society of Agronomy, Inc., 1982

    PATIL R H, LAEGDSMAND M, OLESEN J E, et al. Effect of soil warming and rainfall patterns on soil N cycling in northern Europe[J]. Agriculture, Ecosystems & Environment, 2010, 139(1/2):195-205 http://cn.bing.com/academic/profile?id=e3dd0872c942f7de582257ee3521a791&encoded=0&v=paper_preview&mkt=zh-cn

    QIAN C, CAI Z C. Leaching of nitrogen from subtropical soils as affected by nitrification potential and base cations[J]. Plant and Soil, 2007, 300(1/2):197-205 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89ded871ae4f6c9ee2aa6d9db6ecc5eb

    RUSTAD L, CAMPBELL J, MARION G, et al. A Meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4):543-562 doi: 10.1007/s004420000544

    RINNAN R, STARK S, TOLVANEN A. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath[J]. Journal of Ecology, 2009, 97(4):788-800 doi: 10.1111/j.1365-2745.2009.01506.x

    SAHRAWAT K L. Factors affecting nitrification in soils[J]. Communications in Soil Science and Plant Analysis, 2008, 39(9/10):1436-1446 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00103620802004235

    SINGH B K, BARDGETT R D, SMITH P, et al. Microorganisms and climate change:terrestrial feedbacks and mitigation options[J]. Nature Reviews Microbiology, 2010, 8(11):779-790 doi: 10.1038/nrmicro2439

    SMITH K. The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils[J]. Global Change Biology, 1997, 3(4):327-338 doi: 10.1046/j.1365-2486.1997.00100.x

    TOURNA M, FREITAG T E, NICOL G W, et al. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms[J]. Environmental Microbiology, 2008, 10(5):1357-1364 doi: 10.1111/j.1462-2920.2007.01563.x

    VALENTINE D L. Adaptations to energy stress dictate the ecology and evolution of the archaea[J]. Nature Reviews Microbiology, 2007, 5(4):316-323 doi: 10.1038/nrmicro1619

    VERHAMME D T, PROSSER J I, NICOL G W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms[J]. The ISME Journal, 2011, 5(6):1067-1071 doi: 10.1038/ismej.2010.191

    WAGHMODE T R, CHEN S M, LI J Z, et al. Response of nitrifier and denitrifier abundance and microbial community structure to experimental warming in an agricultural ecosystem[J]. Frontiers in Microbiology, 2018, 9:474 doi: 10.3389/fmicb.2018.00474

    XIA W W, ZHANG C X, ZENG X W, et al. Autotrophic growth of nitrifying community in an agricultural soil[J]. The ISME Journal, 2011, 5(7):1226-1236 doi: 10.1038/ismej.2011.5

    XU X Y, RAN Y, LI Y, et al. Warmer and drier conditions alter the nitrifier and denitrifier communities and reduce N2O emissions in fertilized vegetable soils[J]. Agriculture, Ecosystems & Environment, 2016, 231:133-142 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=083bef65eb945f069a20312e0c6bba6f

    ZHOU X Q, CHEN C R, WANG Y F, et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland[J]. Science of the Total Environment, 2013, 444:552-558 doi: 10.1016/j.scitotenv.2012.12.023

  • 期刊类型引用(1)

    1. 黄广一,喻好好,李世钰,黄家雄,吕玉兰,何飞飞. 咖啡园土壤硝化作用研究. 云南大学学报(自然科学版). 2022(03): 627-635 . 百度学术

    其他类型引用(1)

图(2)  /  表(1)
计量
  • 文章访问数:  828
  • HTML全文浏览量:  190
  • PDF下载量:  301
  • 被引次数: 2
出版历程
  • 收稿日期:  2019-03-04
  • 录用日期:  2019-06-24
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2019-10-31

目录

    /

    返回文章
    返回