伊洛河上游流域退耕还林还草对蓝水绿水分配的影响

Green/blue water allocation as affected by Grain-for-Green practices in the upper reaches of the Yiluo River

  • 摘要: 土地利用变化对区域水循环具有重要影响,土地利用决策就是水资源决策,这一命题已经被诸多研究证实并被研究者和决策者所认识。本文以黄河流域中游的伊洛河上游流域为研究区域,应用分布式流域农业生态水文模型SWAT(Soil and Water Assessment Tool),在我国退耕还林还草的生态恢复和重建的重大背景下,分别设置了6种不同的土地利用变化情景,基于蓝水和绿水的视角,研究土地利用/覆被对流域水循环的影响。本文对SWAT模型输出的月径流结果进行了率定和验证,证明该模型对研究流域水文循环的模拟达到了可接受水平的准确性与合理性。采用单因素方差分析和多重比较,分析基于不同水文年型下土地利用变化对各水文要素变化的影响。结果表明:1)2010-2015年多年平均降水资源总量为34.94亿m3,多年平均蓝水绿水资源总量为34.09亿m3,蓝水资源量占多年蓝水绿水资源总量的33.73%,绿水资源量占多年蓝水绿水资源总量的66.27%。2)不同情景退耕还林或还草,蓝水资源量均减少,绿水流均增加,绿水库均减少。在丰水年和平水年,退耕还林还草对蓝水资源量中地表径流分量影响较明显。该结论对于加深认识伊洛河上游流域土地利用/覆被和水资源的相互关系具有一定意义,为该区域高效合理利用水土资源提供了科学依据。

     

    Abstract: Land use/cover change (LUCC) is of significant impact on regional water cycle. Land use decision-making is water resources decision-making, which has been confirmed by many studies and recognized by researchers and decision makers. Taking the upper reaches of Yiluo River in the middle reaches of the Yellow River Basin as the case study area, this paper applied the distributed watershed agricultural eco-hydrological model SWAT (Soil and Water Assessment Tool). According to the important background of ecological restoration and reconstruction of Grain-for-Green in China, six different land use change scenarios were set up to study the impact of land use/cover change on watershed water cycle from the perspective of blue/green water. This paper calibrated and validated the monthly runoff output of SWAT model, and proved that the model achieved acceptable accuracy and rationality in simulating the hydrological cycle of the river basin. One-way ANOVA and multiple comparisons were used to analyze the effects of land use change on the changes of various hydrological factors based on different hydrological years. The results showed that:1) From 2010 to 2015, the annual average precipitation resources was 3.494 billion m3, and the annual average of total blue water and green water resources was 3.409 billion m3. Blue water resources accounted for 33.73%, and green water resources accounted for 66.27% of the total blue water and green water resources in multi-year average. 2) Under different scenarios of Grain-for-Green, the amount of blue water resources decreased, the green water flow increased, and the green reservoirs decreased. In the year of the wet year and normal year, the impact of land use/cover change on the surface runoff component of the blue water resources was more obvious. This conclusion has certain significance for deepening the understanding of the relationship between land use/cover and water resources in the upper reaches of the Yiluo River, and provides a scientific basis for efficient and rational utilization of water and soil resources in the region.

     

/

返回文章
返回