玉米/大豆、玉米/花生间作对作物氮素吸收及结瘤固氮的影响

Effects of maize/soybean and maize/peanut intercropping systems on crops nitrogen uptake and nodulation nitrogen fixation

  • 摘要: 禾本科与豆科作物间作具有显著的增氮作用。为探明玉米/大豆、玉米/花生间作模式的氮素吸收、氮营养竞争能力及豆科结瘤特性的变化,解释玉米与豆科间作体系的增氮效应,通过田间试验,设置玉米单作(MM)、大豆单作(SS)、玉米/大豆间作(MS)、花生单作(PP)、玉米/花生间作(MP)等5种种植模式,研究不同种植模式对作物氮素积累、氮营养竞争强弱及豆科结瘤固氮特性的调控作用。结果表明,与单作相比,间作显著降低玉米和大豆的氮素积累量,对花生的氮素积累量影响不显著。5种模式系统氮素积累总量表现为MS > SS > MP,PP和MM处理最低且差异不显著,MS处理比MP处理显著高21.8%。与MM处理相比,MS和MP处理的玉米氮素积累量分别降低20.5%和11.7%,其中MP处理籽粒、叶片和茎秆氮素积累量比MS处理高8.9%、21.2%和14.3%。与SS处理相比,MS处理的大豆氮素积累量降低28.5%,其中,中行、边行分别降低10.1%、15.4%。玉米相对大豆氮营养竞争比率表现为强(CRms>1),相对花生则表现为弱(CRmp < 1)。与SS处理相比,五叶期MS处理的大豆根瘤数量显著增加,根瘤鲜重无显著差异,盛花期后根瘤数量和鲜重均显著降低;MS处理的大豆根瘤固氮酶活性均降低,且中行降低幅度更大。与PP处理相比,开花期MP处理的花生根瘤数量和鲜重均显著增加,下针期后均显著降低;MP处理的花生根瘤固氮酶活性均降低,且边行降低幅度更大。各间作模式作物的氮素积累量虽然降低,但间作模式的系统氮素积累量却显著高于各单作模式,两种间作模式中MS处理的氮素积累总量最高。

     

    Abstract: Cereal/legume-based intercropping systems have a significant effect on the soil by increasing nitrogen (N) content. To understand the trends of N uptake, N nutrient competition capacity, and the legume nodulation characteristics in a maize/legume intercropping system, we investigated the N absorption advantage in maize/soybean and maize/peanut strip intercropping systems. We conducted a field experiment to study N accumulation, N nutrient competition, and the legume nodulation N fixation regulation characteristics in different planting patterns, which were maize monoculture (MM), soybean monoculture (SS), maize/soybean intercropping (MS), peanut monoculture (PP), and maize/peanut intercropping (MP). The results showed that compared with the monocultures, intercropping decreased N accumulation in maize and soybeans and had no significant effect on the N accumulation in peanuts. The trend of total N accumulation in the five planting patterns was MS > SS > MP; PP and MM treatments exhibited the lowest accumulation and the difference was not significant. Moreover, the N accumulation of MS treatment was 21.8% higher than that of MP treatment. Additionally, N accumulation of maize in MS and MP treatments decreased by 20.5% and 11.7%, respectively, compared with MM treatment. N accumulation of grain, leaves, and stalks of maize in MP treatment was 8.9%, 21.2%, and 14.3% higher than those in MS treatment. Furthermore, N accumulation of soybean in MS treatment decreased by 28.5%, and the central and fringe rows decreased by 10.1% and 15.4%, respectively compared with SS treatment. The effect of MP treatment on peanut N accumulation was not significant. The value of N nutrition competition indicated that maize had a dominant position in MS, whereas it exhibited less competition in MP treatment. Compared with SS treatment, the number of soybean nodules in MS treatment was higher at the fifth trifoliate stage and lower after the full bloom stage. The effect of nodule fresh weight was not significant at the fifth trifoliate stage, and it decreased after the full bloom stage. Nitrogenase activity of soybean nodules in MS treatment decreased, and the decrease was greater in the central rows. Relative to PP treatment, the number and fresh weight of peanut nodules in MP treatment were higher at the early flowering stage and lower after the acicula forming stage. The nitrogenase activity of peanut nodules in MP treatment decreased, and the amplitude of the decrease was greater in the fringe row. Although the amount of N accumulation of crops in the intercropping planting patterns was reduced, the total N accumulation of the intercropping system was significantly higher than the monoculture planting patterns. The amount of N accumulation of MS treatment was the highest in the two intercropping planting patterns.

     

/

返回文章
返回