干旱胁迫下调节ATP的含量对提高转玉米C4pepc水稻光合速率的影响

Effect of regulating ATP on improving photosynthetic rate of transgenic rice with overexpressing maize C4 pepc under drought stress

  • 摘要: 为了分析三磷酸腺苷(adenosine triphosphate, ATP)是否是限制高表达转玉米C4型磷酸烯醇式丙酮酸羧化酶基因(C4-pepc)水稻光合速率提高的限制因素, 本文以高表达的转玉米C4型磷酸烯醇式丙酮酸羧化酶基因水稻(PC)及其原种'Kitaake'(WT)作为试验材料, 喷施蒸馏水(对照)、2 mmol·L -1亚硫酸氢钠溶液、100 umol·L-1 N′-(3,4-二氯苯基)-N,N-二甲基脲3-(3′,4′-dichlorophenyl)-1,1-dimethylurea, DCMU和10 umol·L-1 寡霉素(oligomycin)溶液过夜处理5~6叶期水稻幼苗, 在20%(m/v)PEG-6000模拟干旱胁迫条件下, 研究不同处理对水稻叶片净光合速率(Pn)、气孔导度(Gs)、胞间二氧化碳浓度(Ci)、ATP含量、玉米C4型磷酸烯醇式丙酮酸羧化酶(PEPC)活性以及光系统Ⅱ(photosynthem Ⅱ, PSⅡ)实际光化学效率(actual photochemical efficiency of PSⅡ in the light,ΦPSⅡ)的影响。试验结果表明, 喷施亚硫酸氢钠溶液提高了PC和WT在水培条件下叶片的Pn, DCMU和寡霉素溶液处理则降低了PC和WT叶片的Pn。喷施亚硫酸氢钠溶液增加了WT叶片GsCi, 但降低了PC叶片GsCi。喷施DCMU溶液增加了PC和WT叶片Ci, 但降低了叶片Gs。用20% PEG-6000模拟干旱胁迫处理后, 亚硫酸氢钠、DCMU和寡霉素溶液处理的水稻叶片Pn均下降, 喷施亚硫酸氢钠溶液处理可以减缓Pn下降的趋势, 喷施DCMU和寡霉素溶液加速了叶片Pn的下降。在20% PEG-6000处理8 h后, PC在喷施不同试剂处理下Gs差异不大, 但其Pn变化显著。进一步的研究表明不同处理下叶片中ATP含量、PEPC活性以及ΦPSⅡ出现显著变化, DCMU处理引起ATP含量、PEPC活性和ΦPSⅡ快速下降, 亚硫酸氢钠溶液处理能够减缓这些参数的下降, 喷施寡霉素降低了叶片中的ATP含量, 但是对ΦPSⅡ没有显著影响。因此认为, 在干旱胁迫条件下, PEPC的高表达能够维持较高的PSⅡ活性, 与原种相比,也产生较高含量的ATP, 来维持净光合速率的稳定。

     

    Abstract: C4-phosphoenolpyruvate carboxylase (PEPC) gene (C4-pepc) plays a key role in C4 photosynthesis by catalyzing initial fixation of CO2 in C4 plants. To determine whether adenosine triphosphate (ATP) limits photosynthetic rate of transgenic rice plant with over-expressing maize C4-pepc, the second upper leaves of non-transgenic rice (WT) and transgenic rice with over-expressing maizeC4-pepc (PC) were sprayed with 2 mmol·L-1 NaHSO3, 100 umol·L-1 3-(3 ,4 -dichlorophenyl)-1,1-dimethylurea (DCMU) and 10 umol·L-1 oligomycin at 5 6 leaf blade seedling stage under 20% (m/v) polyethylene glycol 6000 (PEG-6000) treatment. Then the net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), PEPC activity, ATP content and ΦPS? of PC and WT rice plants measured in the next morning. The results showed that 2 mmol·L-1 NaHSO3 enhanced Pn of the upper leaves of PC and WT rice seedlings without PEG-6000 treatment. However, the 100 umol·L-1 DCMU and 10 umol·L-1 oligomycin decreased Pn of the upper leaves of PC and WT rice seedlings without PEG-6000 treatment. Treatment with 2 mmol·L-1 NaHSO3 increased Gs and Ci of WT rice leaves but decreased Gs and Ci of PC rice leaves. While treatment with 100 umol·L-1 DCMU increased Ci of PC and WT rice leaves, it decreased Gs of PC and WT rice leaves. PEG-6000 treatment decreased Pn of the upper leaves in PC and WT plants under different treatments. However, PEG-6000 treatment combined with 2 mmol·L-1 NaHSO3 solution spray retarded the decrease in Pn. Then PEG-6000 treatment combined with DCMU and oligomycin sprays increased the rate of Pn decline. After 8 hours of 20% PEG-6000 treatment combined with different solutions, Gs of PC rice leaves remained unchanged while Pn of PC rice leaves changed obviously. The results further showed that ATP content, PEPC activity and ΦPS? content in rice leaves changed obviously under different treatments. While DCMU treatment accelerated the decrease in ATP content, PEPC activity and ΦPS? of PC and WT leaves, NaHSO3 retarded the rates of decrease in these elements. Although oligomycin decreased ATP content in rice leaves, it had no effect on ΦPSII in rice leaves. It was therefore concluded that PC maintained high levels of PS? activity and Pn stability by inducing more ATP in rice leaves compared with WT plants under drought stress.

     

/

返回文章
返回