东北薄层黑土区协调玉米产量和环境效应的氮肥一次性投入阈值

孔丽丽, 尹彩侠, 张磊, 刘志全, 侯云鹏, 高洪军, 徐新朋

孔丽丽, 尹彩侠, 张磊, 刘志全, 侯云鹏, 高洪军, 徐新朋. 东北薄层黑土区协调玉米产量和环境效应的氮肥一次性投入阈值[J]. 中国生态农业学报 (中英文), 2025, 33(3): 1−11. DOI: 10.12357/cjea.20240431
引用本文: 孔丽丽, 尹彩侠, 张磊, 刘志全, 侯云鹏, 高洪军, 徐新朋. 东北薄层黑土区协调玉米产量和环境效应的氮肥一次性投入阈值[J]. 中国生态农业学报 (中英文), 2025, 33(3): 1−11. DOI: 10.12357/cjea.20240431
KONG L L, YIN C X, ZHANG L, LIU Z Q, HOU Y P, GAO H J, XU X P. Input threshold of one-time application of nitrogen fertilizer to coordinate maize yield and environmental effects in thin layer black soil region of Northeast China[J]. Chinese Journal of Eco-Agriculture, 2025, 33(3): 1−11. DOI: 10.12357/cjea.20240431
Citation: KONG L L, YIN C X, ZHANG L, LIU Z Q, HOU Y P, GAO H J, XU X P. Input threshold of one-time application of nitrogen fertilizer to coordinate maize yield and environmental effects in thin layer black soil region of Northeast China[J]. Chinese Journal of Eco-Agriculture, 2025, 33(3): 1−11. DOI: 10.12357/cjea.20240431
孔丽丽, 尹彩侠, 张磊, 刘志全, 侯云鹏, 高洪军, 徐新朋. 东北薄层黑土区协调玉米产量和环境效应的氮肥一次性投入阈值[J]. 中国生态农业学报 (中英文), 2025, 33(3): 1−11. CSTR: 32371.14.cjea.20240431
引用本文: 孔丽丽, 尹彩侠, 张磊, 刘志全, 侯云鹏, 高洪军, 徐新朋. 东北薄层黑土区协调玉米产量和环境效应的氮肥一次性投入阈值[J]. 中国生态农业学报 (中英文), 2025, 33(3): 1−11. CSTR: 32371.14.cjea.20240431
KONG L L, YIN C X, ZHANG L, LIU Z Q, HOU Y P, GAO H J, XU X P. Input threshold of one-time application of nitrogen fertilizer to coordinate maize yield and environmental effects in thin layer black soil region of Northeast China[J]. Chinese Journal of Eco-Agriculture, 2025, 33(3): 1−11. CSTR: 32371.14.cjea.20240431
Citation: KONG L L, YIN C X, ZHANG L, LIU Z Q, HOU Y P, GAO H J, XU X P. Input threshold of one-time application of nitrogen fertilizer to coordinate maize yield and environmental effects in thin layer black soil region of Northeast China[J]. Chinese Journal of Eco-Agriculture, 2025, 33(3): 1−11. CSTR: 32371.14.cjea.20240431

东北薄层黑土区协调玉米产量和环境效应的氮肥一次性投入阈值

基金项目: 国家重点研发计划项目(2022YFD1500104)和吉林省科技发展计划项目(20220202024NC)资助
详细信息
    作者简介:

    孔丽丽, 主要研究方向为作物养分高效管理。E-mail: kongll2020@126.com

    通讯作者:

    侯云鹏, 主要研究方向为养分资源管理、作物施肥原理与技术, E-mail: exceedfhvfha@163.com

    徐新朋, 主要研究方向为作物养分管理, E-mail: xinpengxu@163.com

  • 中图分类号: S513

Input threshold of one-time application of nitrogen fertilizer to coordinate maize yield and environmental effects in thin layer black soil region of Northeast China

Funds: This study was supported by the National Key Research & Development Project of China (2022YFD1500104) and the Science and Technology Development Plan Project of Jilin Province (20220202024NC).
More Information
  • 摘要:

    为探寻东北黑土区兼顾玉米产量与环境效应的氮肥一次性投入阈值, 在吉林省薄层黑土区(公主岭市刘房子村)开展了为期8 a (2016—2023年)的田间定位试验, 研究氮肥(普通尿素与控释氮肥配施4∶6)一次性施用条件下玉米产量、氮素吸收利用、土壤NO3-N含量变化和氮素平衡对不同氮肥用量(0、70、140、210、280和350 kg∙hm−2, 以N计)的响应。结果表明, 与不施氮肥处理相比, 施氮处理玉米产量8 a平均增幅为63.8%~188.8%, 差异均达显著水平(P<0.05)。增产原因是施氮增加了穗粒数和百粒重。随氮肥用量增加, 玉米产量呈上升趋势, 当氮肥用量增至 210 kg∙hm−2达产量平台, 8 a平均产量为11 668 kg∙hm−2。氮素表观回收率、农学利用效率和偏肥生产力均随氮肥用量增加呈下降趋势。随氮肥用量的增加, 0~100 cm土壤NO3-N含量呈增加趋势; 2023年玉米收获后, N210处理土壤NO3-N含量与试验起始值相近。8年氮素平衡结果显示, 土壤无机氮素残留量与表观损失量均随氮肥用量的增加呈增加趋势。通过拟合氮肥用量与玉米产量、土壤氮素表观损失量和氮素表观回收率的关系得出, 施氮范围在198~219 kg∙hm−2时, 可获得较高的玉米产量和氮肥利用率, 且能保持玉米收获前后土壤氮库的基本稳定, 同时也可将氮素表观损失量维持在较低水平, 因此, 可作为兼顾玉米产量和环境效益的氮肥一次性投入阈值。研究结果可为东北薄层黑土区玉米氮肥一次性施用提供理论依据。

    Abstract:

    To explore the input threshold of a one-time application of N fertilizer that considers maize yield and environmental effects in the black soil region of Northeast China, this study established a 8-year field experiment in the black thin-layer soil region of Jilin Province (Liufangzi Village, Gongzhuling City) from 2016 to 2023. This study revealed the responses of maize yield, N uptake and utilization, soil NO3-N content, and soil N apparent balance to different N fertilizer application rates under the condition of a one-time application of N fertilizer (common urea plus controlled-release N fertilizer at a N ratio of 4∶6). Six N fertilizer application treatments were established: 0, 70, 140, 210, 280, and 350 kg∙hm−2, labeled as N0, N70, N140, N210, N280, and N350, respectively. The results showed that the 8-year average maize yield increased by 63.8%–188.8% under N fertilizer application treatments compared with no N fertilizer, and significant differences were observed (P<0.05). The advantages of maize yield under N fertilizer application treatments were mainly attributed to the increased grains per ear and 100-kernel weight of maize. The maize yield showed an upward trend with increased N fertilizer application rates, reaching the yield platform under 210 kg∙hm−2 of N fertilizer application rate. With this N fertilizer application rate, the average maize yield over eight years was 11 668 kg∙hm−2. N apparent recovery efficiency (REN), N agronomic efficiency (AEN), and N partial factor productivity (PFPN) decreased with increasing N fertilizer application rates. The NO3-N contents in the 0–100 cm soil layerincreased with increasing N application rates. The NO3-N content under N210 treatment was similar to the initial value of the experiment after the maize was harvested in 2023. In the 8 year experiment, the N apparent balance results showed that inorganic N residual and N apparent loss increased with increasing N fertilizer application rates. Inorganic N residual under N210 treatment was similar to the initial values in the experiment. When it reached the yield platform at 208.8 kg∙hm−2 of N fertilizer application rate, maize yield, N apparent recovery efficiency, inorganic N residual, and N apparent loss were 11 835 kg∙hm−2, 48.2%, 172.3 kg∙hm−2, and 53.9 kg∙hm−2 respectively. The calculated theoretical results for maize yield, N apparent recovery efficiency, and N apparent loss matched well with the observed values under the maximum maize yield under N210 treatment. Within the 95% confidence interval of the N fertilizer application rate under the theoretical maximum maize yield, the optimum N fertilizer application rate was calculated at 198−219 kg∙hm−2. In conclusion, the range of N fertilizer application at 198−219 kg∙hm−2 obtained higher maize yield and N use efficiency, maintained the basic stability of soil N pools before and after maize harvest, and maintained N apparent loss to a lower level. Therefore, it can be used as an input threshold for the one-time application of N fertilizer that considers maize yield and environmental effects. These results provide a theoretical basis for the one-time application of N fertilizer to maize in the black, thin-layered soil region of Northeast China.

  • 玉米(Zea mays L.)作为粮食、饲料、工业和生物能源原材料, 目前已成为中国种植面积最大的作物[1-2]。在玉米养分管理中, 氮(N)是影响玉米生长发育的主要限制因子, 其用量与玉米产量间关系密切[3]。由于氮肥提高玉米产量的效果显著, 在过去30 a间, 氮肥用量不断提高[4]。然而相关研究表明, 过多的氮肥投入不仅无法进一步提高玉米产量, 反而会因大量的氮素盈余导致严重的环境问题, 如地下水硝酸盐超标、地表水富营养化以及以氧化亚氮或氨挥发形式进入大气导致的温室效应等[5-6]。因此, 如何合理施用氮肥, 以确保维持或增加玉米产量的同时, 最大限度降低氮素损失风险, 是实现农业绿色发展面临的重要科学问题。

    东北黑土区作为我国重要的玉米生产基地, 在保障国家粮食安全中发挥举足轻重的作用[7]。在该区域, 氮肥过量施用在玉米种植系统中非常普遍[8], 以吉林省为例, 平均氮肥用量高达244.6 kg∙hm−2 [9], 其用量远高于当前玉米产量水平下氮素需求量, 从而导致农田氮素以径流、淋溶和挥发等方式大量损失, 对东北黑土区生态环境可持续发展产生了不利影响[10-11]。因此, 明确兼顾玉米产量和环境效应的适宜氮肥用量, 对实现玉米高产、环境友好及农业可持续发展具有重要意义。目前, 围绕农田适宜氮肥用量的研究较多, 但是最佳氮肥用量的确定大多基于肥料投入和作物产量之间的函数关系, 以产量和经济效益最大化为主要目标[12-14], 但该方法缺乏对环境因素的考虑, 导致其结果具有一定的局限性; 此外, 目前玉米适宜氮肥用量的确定大多基于氮肥分次施用的方式(氮肥基施+拔节期追肥) [15-16], 缺乏采用控释氮肥一次性施用条件下的氮肥适宜用量研究, 尤其缺乏控释氮肥长期施用下兼顾产量和环境效应的氮肥适宜用量的有效评估。事实上, 东北地区由于受劳动成本增加和玉米中后期追肥不便等因素影响, 选择一次性施肥方式的农民数量迅速增加, 以吉林省为例, 一次性施肥的农民比例高达50%以上[9]。而控释氮肥是实现玉米一次性施肥的最佳选择[17]。因此, 明确使用控释氮肥施用策略一次性施用的氮肥投入阈值对于现阶段提高玉米氮肥利用效率和降低氮素损失具有重要作用。鉴于此, 本研究通过在吉林省薄层黑土玉米主产区开展的连续8 a的定位试验(2016—2023年), 应用玉米产量、氮素吸收利用、土壤剖面NO3-N含量和农田氮素表观平衡等方面的综合特征变化, 对控释氮肥一次性施用条件下不同氮肥用量进行综合评价, 其目标是: 1) 探明长期控释氮肥一次性施用条件下不同氮肥用量对玉米产量和氮素吸收利用变化规律的影响; 2) 明确长期控释氮肥一次性施用条件下, 不同氮肥用量对土壤氮素变化和氮素残留损失特征的影响; 3) 从玉米产量、氮素利用效率、土壤氮素残留和氮素损失等4个方面对施氮效益进行综合评估, 探索兼顾玉米产量和环境效应的氮肥适宜用量; 以期为东北地区玉米产量提高和减少环境污染风险提供理论依据。

    定位试验于2016年5月—2023年10月在吉林省公主岭市刘房子镇刘房子村进行(43°39′N, 125°05′E)。该地区属于中温带半湿润气候区, 年平均气温5.6 ℃, 多年平均降水594.8 mm, 降雨多集中在7—8月, 为典型的雨养农业区。2016—2023年, 试验区玉米生育期平均温度和降水量变化如图1所示。试验区种植制度为玉米连作, 土壤类型为黑土, 土壤质地为粘质壤土, 2016年试验起始时耕层(0~20 cm)土壤基础养分状况为: 有机质 22.35 g∙kg−1、水解性氮 112.79 mg∙kg−1、有效磷 16.85 mg∙kg−1、速效钾 113.97 mg∙kg−1, pH 6.21, 0~20、20~40、40~60、60~80和80~100 cm土层土壤NO3-N含量分别为24.26、14.09、10.10、9.10和8.66 mg∙kg−1

    图  1  玉米生育期气象条件(2016—2023年)
    Figure  1.  Meteorological conditions during maize growth period from 2016 to 2023

    试验采用定位试验设计, 速效氮肥与控释氮肥掺混比例为4∶6[18], 共设置6个氮肥用量处理(0、70、140、210、280和350 kg∙hm−2), 分别用N0、N70、N140、N210、N280和N350表示。不同施氮处理磷肥(P2O5)和钾(K2O)肥用量一致, 分别为80 kg∙hm−2和90 kg∙hm−2; 肥料施用方法为全部氮磷钾肥作为基肥于玉米播种前施用。试验用氮肥为普通尿素(N 46%)和控释氮肥(N 45%), 磷肥和钾肥分别为重过磷酸钙(P2O5 46%)和氯化钾(K2O 60%)。供试普通尿素、重过磷酸钙和氯化钾均从当地肥料经销商处购买, 控释氮肥为树脂包膜尿素(金正大生态工程有限公司, 水溶性聚合物包膜的控释尿素, 氮素释放曲线为S型, 释放期约为60 d)。田间试验小区面积为40 m2, 重复3次, 随机区组排列。2016—2023年, 种植玉米品种均为‘农华101’, 种植密度65 000 株∙hm−2, 采用等行距种植模式。于每年5月上旬播种, 10月初收获。玉米生育期内未进行灌溉, 除施肥措施外, 其他田间管理均按照当地玉米高产栽培模式进行。

    1)玉米产量与构成: 玉米成熟后, 在每小区中部选取20 m2进行人工收获, 同时测定每个试验小区玉米穗数, 收获后存放于晾晒场自然风干, 当籽粒含水量≤20%时, 人工脱粒, 利用PM-8188谷物水分测定仪测定不同处理籽粒含水量, 换算成14.0%的标准含水率计算产量, 并按测产面积折算成单位面积产量。同时, 选择10个具有代表性果穗, 测定穗粒数和百粒重。

    2)玉米氮素吸收量: 每季玉米生理成熟期采集各处理玉米地上部植株样品, 每小区选取具有代表性玉米植株5株, 分解为茎秆和籽粒两部分, 放入烘干箱后于105 ℃杀青30 min, 后调整至80 ℃烘干至恒重, 测定干物质量。将成熟期玉米植株和籽粒样品粉碎, 过0.5 mm筛, 用H2SO4-H2O2消煮, 凯氏定氮法测定各器官氮含量, 计算单位面积氮积累量。

    $$ \mathrm{UPT}_{\mathit{\mathrm{N}}}\mathrm{=DM}_{\mathit{\mathrm{u}}}\mathrm{\times Con}\mathrm{_{\mathit{\mathrm{N}}}} $$ (1)

    式中: UPTN为氮吸收量, kg∙hm−2; DMu为成熟期地上部分干重, kg∙hm−2; ConN为氮含量, %。

    3)氮素利用效率: 氮素利用效率包括氮素表观回收率(REN)、氮素农学利用效率(AEN)和氮素偏肥生产力(PFPN), 其计算公式如下:

    $$ \mathrm{REN=(}\mathit{U}\mathrm{_{\mathit{\mathrm{F}}}}-\mathit{U}_{\mathrm{CK}}\mathrm{)/}\mathit{N}_{\mathit{\mathrm{F}}}\mathrm{\times100} $$ (2)
    $$ \mathrm{AEN=(}\mathit{Y}_{\mathit{\mathrm{F}}}-\mathit{Y}_{\mathrm{CK}}\mathrm{)/}\mathit{N}_{\mathit{\mathrm{F}}} $$ (3)
    $$ \mathrm{PFPN=}\mathit{Y}_{\mathit{\mathrm{F}}}\mathrm{/}\mathit{N}_{\mathit{\mathrm{F}}} $$ (4)

    式中: UFUCK分别为施用氮肥和不施用氮肥时玉米成熟期地上氮积累量, kg∙hm−2; NF为氮肥施用量, kg∙hm−2; YFYCK分别为施用氮肥和不施用氮肥的产量, kg∙hm−2

    不同年份氮素利用效率可看作当季肥料氮素利用效率, 将8 a平均氮素利用效率作为累积氮素利用效率进行比较。

    4) 土壤NO3-N含量: 在每年玉米种植前和收获后分别采集不同处理0~100 cm土层土壤样品, 每20 cm一层, 每小区随机取8个点, 去除土壤中的植物残体与根系, 同层次土壤混合均匀后带回实验室研磨过5 mm筛, 采用1 mol·L−1 KCl 溶液(土液比1∶5)震荡浸提, 流动注射分析仪(型号AA3-A001-02E, 德国布兰鲁贝)测定土壤NO3-N含量。土壤样品于105 ℃烘干24 h, 测定土壤含水量。

    5) 土壤氮素表观平衡: 每年对不同施氮处理土壤-植物系统氮输入和输出的表观氮素平衡进行估算。氮输入主要包括氮肥用量、玉米播前0~100 cm土层土壤NO3-N积累量和净矿化量, 其中净矿化量通过不施氮肥处理计算; 氮输出包括成熟期玉米地上部氮吸收量、玉米成熟期0~100 cm土层土壤NO3-N积累量和氮素表观损失量。由于土壤氮素积累主要以NO3-N为主, NH4+-N在旱作作物整个生长季中相对稳定, 且相对含量较低[19], 因此在计算过程中未将土壤NH4+-N包括在内。玉米根系通常分布在土壤0~90 cm土层[20], 所以在计算氮收支时, 选用0~100 cm土层土壤NO3-N含量。表观氮矿化和表观氮损失计算公式如下:

    $$ \mathrm{NR=} \mathit{T} \mathrm{\times BD\times } \mathit{N} _{ \mathrm{inorganic}} \mathrm{/ 10} $$ (5)
    $$ \mathrm{NM=} \mathit{U} _{ \mathrm{CK}}+ \mathrm{NR}_{ \mathrm{CK}}- \mathrm{NI} $$ (6)
    $$ \mathrm{NL=(}\mathit{N}_{\mathit{\mathrm{F}}}+\mathrm{NI+NM)-(}\mathit{U}_{\mathit{\mathrm{F}}}\mathrm{+NR}_{\mathit{\mathrm{F}}}\mathrm{)} $$ (7)

    式中: NR为土壤无机氮素残留量, kg∙hm−2; T为土层厚度, cm; BD为土壤容重, g∙cm−3; Ninorganic为NO3-N含量, mg∙kg−1; NM为土壤氮素矿化量, kg∙hm−2; NRCK为不施用氮肥时土壤无机氮残留量, kg∙hm−2; NI为土壤初始无机氮累积量, kg∙hm−2; NL为土壤氮素表观损失量, kg∙hm−2; UF和UCK分别为施用氮肥和不施用氮肥时玉米成熟期地上氮积累量, kg∙hm−2; NRF为施用氮肥时土壤无机氮残留量, kg∙hm−2。氮素矿化量计算值不等同于实际值, 还包括通过干沉降和湿沉降进入农田的氮素; 氮肥表观损失量的计算值不同于利用15N实测的氮素损失, 还包括所有未知去向的肥料氮(如土壤生物固定、淋洗和氨挥发等)。

    采用Microsoft Excel 365整理汇总试验数据, 采用IBM SPSS Statistics 19 (IBM Corp., Armonk, NY, USA)进行氮肥用量和年份两因素方差分析(ANOVA), 采用Duncan多重比较进行单因素方差分析(P<0.05), 分别采用线性加平台、线性和指数模型拟合玉米产量、氮素表观回收率和氮素损失与氮肥用量的关系, 采用Origin 2021进行绘图。

    氮肥用量和年份对玉米产量、穗粒数和百粒重均具有显著影响(P<0.01), 且二者的交互效应也达显著水平(P<0.01) (图2)。相较于N0处理, 施氮处理玉米产量8年平均增幅为63.8%~188.8%, 差异均达显著水平(P<0.05)。造成产量差异的原因是施氮处理玉米穗粒数和百粒重均显著高于不施氮肥处理(P<0.05), 其中玉米穗粒数8 a平均增幅为54.7%~108.1%, 百粒重平均增幅为7.4%~19.3%。在不同氮肥用量处理中, 玉米产量随氮肥用量的增加呈增加趋势, 当氮肥用量增至210 kg∙hm−2时达产量平台, 8 a平均产量为11 668 kg∙hm−2, 较N0处理增产181.3%。当氮肥用量为210~350 kg∙hm−2时, 处理之间玉米产量差异不显著。

    图  2  2016—2023年不同施氮处理玉米产量与构成因素(8 a平均)
    N0: 不施氮; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2; Y: 年份; N: 氮肥用量; Y×N: Y和N的交互相应。箱形图的上下边缘线分别表示样本5%和95%数值, 箱形图中矩形的上下边缘分别为25%和75%数值, 箱体中实线表示中位数, 虚线表示平均值; 不同小写字母表示不同处理在P<0.05水平差异显著, **表示在P<0.01水平显著。N0: no N fertilizer; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2; Y: year; N: N fertilizer application rate; Y×N: interaction of Y and N. The upper and lower edge lines in the box plot represent the 5% and 95% values of the samples, respectively. The upper and lower edge lines of the rectangle in the box plot represent the 25% and 75% values of the samples, respectively. The solid lines represent the median values, and the dashed lines represent the average values in the box. Different lowercase letters indicate significant differences among different treatments at P<0.05 level, and ** indicates significant differences at P<0.01 level.
    Figure  2.  Maize yield and yield components (8-year average) under different N fertilizer application treatments from 2016 to 2023

    氮肥用量和年份对REN、AEN和PFPN均具有显著影响(P<0.01), 且两因素的交互效应均达显著水平(P<0.01) (图3)。玉米REN和AEN在氮肥用量为70~210 kg∙hm−2时处理之间差异不显著, 当氮肥用量增至280和350 kg∙hm−2时, RNE和AEN与氮肥用量70~210 kg∙hm−2差异达显著水平(P<0.05)。PFPN表现为随氮肥用量的增加呈显著下降趋势(P<0.05)。

    图  3  2016—2023年不同施氮处理玉米氮素利用效率(8 a平均)
    REN: 氮素表观回收率; AEN: 氮素农学利用效率; PFPN: 氮素偏肥生产力; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2; Y: 年份; N: 氮肥用量; Y×N: Y和N的交互相应。箱形图的上下边缘线分别表示样本5%和95%数值, 箱形图中矩形的上下边缘分别为25%和75%数值, 箱体中实线表示中位数, 虚线表示平均值; 不同小写字母表示8年期平均值在P<0.05水平上差异显著, **表示在P<0.01水平差异显著。REN: N apparent recovery efficiency; AEN: N agronomic efficiency; PFPN: N partial factor productivity; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2; Y: year; N: N fertilizer application rate; Y×N: interaction of Y and N. The upper and lower edge lines in the box plot represent the 5% and 95% values of the samples, respectively. The upper and lower edge lines of the rectangle in the box plot represent the 25% and 75% values of the samples, respectively. The solid lines represent the median values, and the dashed lines represent the average values in the box. Different lowercase letters indicate significant differences among different treatments at P<0.05 level, and ** indicates significant differences at P<0.01 level.
    Figure  3.  N use efficiency (8-year average) of maize under different N fertilizer application treatments from 2016 to 2023

    8 a土壤NO3-N含量结果表明(图4), 同一年份下, 0~40 cm土层土壤NO3-N含量在0~210 kg∙hm−2 范围内随氮肥用量的增加而增加(P<0.05), 当氮肥用量超过210 kg∙hm−2, 土壤NO3-N含量差异不再显著增加。而在40~100 cm土层, 土壤NO3-N含量则表现为N280和N350处理显著高于其余施氮处理(P<0.05)。2023年玉米收获后, 与试验起始土壤NO3-N含量相比, N0、N70和N140处理不同土层土壤NO3-N含量较土壤初始值依次降低36.9%~83.6% (0~20 cm)、29.2%~72.0% (20~40 cm)、14.4%~59.2% (40~60 cm)、12.8%~64.2% (60~80 cm)和15.8%~59.1% (80~100 cm), 差异均达显著水平(P<0.05); 氮肥用量210 kg∙hm−2时, 0~100 cm土层土壤NO3-N含量与土壤初始值最为接近。当氮肥用量增至280和350 kg∙hm−2时, 0~40 cm土层土壤NO3-N含量与土壤初始值无显著差异, 40~100 cm土层土壤NO3-N含量显著高于土壤初始值(P<0.05), 提高幅度分别为24.9%~34.1% (40~60 cm)、27.5%~35.2% (60~80 cm)和19.5%~30.1% (80~100 cm)。可见, 氮肥过量施用增加了土壤NO3-N向深层土壤的迁移, 进而增加了环境风险。

    图  4  2016—2023年不同施氮处理0~100 cm土层土壤NO3-N含量
    N0: 不施氮; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2。N0: no N fertilizer; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2.
    Figure  4.  Soil NO3-N content in 0−100 cm soil layer under different N fertilizer application treatments from 2016 to 2023

    土壤-植物系统的氮素收支表观平衡结果表明(图5), 氮肥用量和年份对氮吸收量、无机氮素(NO3-N)残留量和氮素表观损失量均具有显著影响(P<0.01), 且两因素的交互效应均达显著水平(P<0.01)。在氮的总输出项中, 随着氮肥用量增加, 玉米氮吸收量呈增加趋势, 当氮肥用量增至210 kg∙hm−2时达氮吸收量平台, 8 a平均氮吸收量为204.2 kg∙hm−2, N210、N280和N350处理间玉米氮吸收量无显著差异, 而土壤无机氮素残留量和氮素表观损失量均随施氮量的增加呈显著增加趋势(P<0.05), 其中N210处理土壤无机氮素残留量与试验起始时相近。以上说明, 过量施氮不仅不能继续增加玉米吸氮量, 同时还会显著增加土壤NO3-N残留量和损失量。

    图  5  2016—2023年不同施氮处理土壤氮素收支表观平衡(8 a平均)
    UPTN: 氮吸收量; NR: 土壤无机氮素残留量; NL: 氮素表观损失量; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2; Y: 年份; N: 氮肥用量; Y×N: Y和N的交互相应。箱形图的上下边缘线分别代表样本5%和95%数值, 箱形图中矩形的上下边缘分别为25%和75%数值, 箱体中实线表示中位数, 虚线表示平均值, 不同小写字母表示不同处理在P<0.05水平差异显著, **表示在P<0.01水平差异显著; 土壤无机氮残留量中虚线为试验起始土壤氮素积累量。UPTN: N uptake; NR: soil inorganic N residual; NL: N apparent loss; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2; Y: year; N: N fertilizer application rate; Y×N: interaction of Y and N. The upper and lower edge lines in the box plot represent the 5% and 95% values of the samples, respectively. The upper and lower edge lines of the rectangle in the box plot represent the 25% and 75% values of the samples, respectively. The solid lines represent the median values, and the dashed lines represent the average values in the box. Different lowercase letters indicate significant differences among different treatments at P<0.05 level, and ** indicates significant differences at P<0.01 level. The dashed lines in the soil inorganic N residual represent the initial soil N accumulation in the experiment.
    Figure  5.  Apparent balance of soil N budget (8 year average) under different N fertilizer application treatments from 2016 to 2023

    回归分析表明(图6), 氮肥用量与玉米产量呈显著的线性加平台关系(P<0.01, R2=0.890 7); 与氮素表观回收率呈显著的线性负相关(P<0.01, R2=0.464 1); 与土壤无机氮素残留量呈显著的线性正相关(P<0.01, R2=0.827 7); 与氮素损失量呈显著的指数相关(P<0.01, R2=0.879 7)。当氮肥用量为208.8 kg∙hm−2时, 玉米产量达到平台水平, 为11835 kg∙hm−2, 相应氮素表观回收率为48.2%, 土壤氮素残留量为172.3 kg∙hm−2, 氮素表观损失量为53.9 kg∙hm−2。计算所得的理论玉米产量、氮素表观回收率和氮素表观损失与实际最高产量处理(N210)吻合较好, 同时土壤无机氮素残留量与试验起始值相近。因此判定, 氮肥用量为208.8 kg∙hm−2时, 既可实现玉米高产, 又能降低土壤氮素损失, 同时还能维持土壤矿质氮储量的基本稳定。以理论最高产量氮肥用量的95%作为置信区间, 计算出最佳施氮范围为198~219 kg∙hm−2

    图  6  玉米产量(MY)、氮素表观回收率(REN)、土壤无机氮素残留量(NR)、氮素表观损失量(NL)与氮肥用量的关系(8 a平均)
    **: P<0.01.
    Figure  6.  Correlations between maize yield (MY), N apparent recovery efficiency (REN), soil inorganic N residual (NR), N apparent loss (NL) and N fertilizer application rate (8 year average)

    氮在植物生长发育过程起重要作用, 它影响着植物几乎所有的代谢过程[21]。对于玉米而言, 施用氮肥可有效促进玉米根系发育, 提高玉米物质生产, 进而增加玉米产量[22-23], 而施氮水平作为玉米高产的重要栽培条件, 在玉米生产中是不可忽视的因素[24]。相关研究表明, 在一定氮肥用量范围内, 作物产量随氮肥用量的增加而增加, 当施氮量达到一定水平后, 玉米产量不再增加, 甚至下降[25]。本研究中, 尽管受不同年份和气候因素影响, 玉米产量在年际间产生一定差异, 但整体规律一致, 各施氮水平均显著增加了玉米产量(图2), 这是由于施氮可有效提高植株体内活性氧清除酶的代谢合成量[26-27], 提高叶片制造同化产物的能力, 并增强作物生育后期叶片光合性能, 促进籽粒灌浆[28], 进而提高穗粒数和百粒重, 最终实现高产[3,29]。然而, 当氮肥用量继续增至280 kg∙hm−2和350 kg∙hm−2时, 穗粒数和百粒重无显著变化, 相应产量也不再增加。这是因为过量施氮会导致作物叶片中硝酸盐还原酶活性过高, 氮代谢过度旺盛, 碳水化合物消耗过多, 不利于玉米生育后期干物质积累和转运[30], 进而减弱了氮肥对玉米的增产作用。

    肥料利用效率是衡量施肥是否合理的重要指标之一, 因此, 提高肥料利用率是实现玉米高产高效的重要研究方向。肥料利用效率受气候条件、土壤肥力、养分管理和品种特性等综合影响[31-32], 其中肥料用量对肥料利用效率的影响最大。相关研究表明, 肥料利用率往往随肥料用量的增加呈下降趋势, 而作物获得高产条件下, 其肥料利用效率并非最高[33]。本研究中, 氮素表观回收率、氮素农学利用效率和氮素偏生产力均随施氮量的增加而下降(图3)。但结合产量发现, 虽然低氮处理(N70和N140)氮素表观回收率、农学利用效率和偏生产力较N210处理分别提高4.7%~6.9%、5.3%~5.5%和21.2%~74.7%, 但玉米平均产量较后者降低19.2%~41.8% (图2)。主要原因是N210处理的养分投入量远高于N70和N140处理; 而与N280和N350处理相比, N210处理不仅氮肥利用效率显著高于前者, 而且玉米产量也与前者处于相同水平。这说明氮肥用量不足虽然获得了较高的氮肥利用率, 但无法获得较高的玉米产量[13], 并且还会严重损耗土壤氮肥力[14]; 适宜氮肥用量的氮肥利用率有所降低, 但可实现玉米高产, 并能保持土壤氮素生产力; 氮肥过量施用不仅无法进一步增加玉米产量, 还使氮肥利用效率降低。因此, 如何在保证作物高产及保持土壤氮素生产力的前提下, 保证较高的氮肥利用效率, 是合理施氮的关键。

    土壤是肥料养分供给作物生长的主要媒介, 当投入土壤中的肥料超过作物需求, 过量养分在土壤中的残留或流失会造成生态环境污染, 而土壤中营养元素无法满足作物养分需求时, 则会导致土壤养分耗竭, 造成土壤养分的不均衡化[34-36]。因此, 判定施肥模式是否合理, 除考虑肥料对作物产量、效益和肥料利用率等因素外, 还应关注土壤养分含量变化。对于氮素而言, 土壤NO3-N是玉米吸收利用氮素的主要形式, 其供应强度直接影响植物对养分的吸收与利用[37], 而NO3-N在土壤剖面中的分布受环境、土壤类型、灌溉方式、种植制度和养分管理的共同影响, 其中氮肥用量对NO3-N在土壤中分布的影响最为显著[14,38-39]。当施氮水平超过作物氮素需求时, 会导致NO3-N在耕层土壤大量积累, 这些NO3-N在重力水的作用下渗入深层土壤, 会造成深层土壤NO3-N的大量积累与损失, 且氮素损失量随氮素盈余量的增加呈指数增长[25]。本研究中, 尽管控释氮肥中的氮素具有缓慢释放特性, 但当氮肥用量超过作物吸收能力时, 仍会造成NO3-N向下淋失。如本研究中N280和N350处理并未较N210处理显著提高根系活跃层(0~40 cm)土壤NO3-N含量, 反而显著增加了深层(60~100 cm)土壤NO3-N含量(图4), 并显著提高了氮素表观损失量(图5)。氮素损失量并非越低越好, N70和N140处理土壤氮素表观损失虽然维持在较低水平, 但由于氮素投入低于玉米氮素吸收, 导致土壤氮素残留量低于试验起始值, 说明该氮肥用量会导致土壤氮素耗竭, 影响其可持续的生产力。而N210处理虽然增加了氮素损失量, 但土壤无机氮素残留量与试验起始时相近。可见, 无论氮肥如何进行优化管理, 出现氮素损失都是一个不可避免的问题。因此, 氮肥管理的重点是在保持土壤氮素生产力的条件下降低氮素损失。

    目前, 通过产量对肥料的响应曲线和土壤养分收支平衡确定最佳氮肥用量是最常用的科学方法[40-41]。但是, 通过肥料投入和作物产量之间的函数关系确定适宜氮肥用量, 难以检验施氮对环境的影响状况[16]; 而通过以氮素投入与氮素支出差为0确定的最佳氮肥用量虽然会降低氮素损失[42-43], 但也存在问题, 由于氮肥施入土壤后, 氮素通过不同途径损失是不可必免的, 这意味着氮素投入量与作物氮素吸收相等会导致土壤氮素亏缺, 因此, 两种方法均具有一定局限性。本研究将氮肥投入与玉米产量、氮素表观回收率、土壤无机氮素残留量和土壤氮素表观损失量分别建立函数关系, 以获得最高产量、较高的氮素利用率、较低的氮素损失量及稳定的氮素残留为目标, 综合考虑产量与环境效应, 更加强调资源利用效率和环境友好性。由此可以判定, 在氮肥用量为198~219 kg(N)∙hm−2时, 可实现玉米高产和氮素资源高效利用, 并能维持土壤氮素生产力。

    本研究通过在东北薄层黑土区的8 a长期定位田间观测发现, 氮肥一次性施用(普通尿素与控释氮肥配施4∶6)对玉米具有显著的增产效果, 在氮肥用量为70~210 kg(N)∙hm−2时, 玉米产量随氮肥用量的增加显著增加, 当超过这一范围时, 玉米产量无显著变化; 氮素表观回收率、农学利用效率和偏肥生产力均随氮肥用量的增加呈下降趋势。与不施氮肥处理相比, 随氮肥用量的增加和施氮年限的增加, 0~100 cm土层土壤无机氮含量总体呈增加趋势, 其中N210处理土壤NO3-N含量与试验起始时土壤NO3-N含量相近。通过建立氮肥用量与玉米产量、氮素表观回收率、土壤无机氮素残留量和氮素表观损失量的关系, 确定氮肥一次性施用条件下适宜用量为198~219 kg∙hm−2, 此时, 既能维持玉米高产, 又能维持玉米收获前后0~100 cm土层土壤矿质氮库的基本稳定, 并且氮素表观损失量也维持在较低水平, 因此, 该氮肥用量可作为东北薄层黑土区兼顾玉米产量和环境效益的速效氮肥和控释氮肥混合一次性施用条件下的氮肥适宜用量。

  • 图  1   玉米生育期气象条件(2016—2023年)

    Figure  1.   Meteorological conditions during maize growth period from 2016 to 2023

    图  2   2016—2023年不同施氮处理玉米产量与构成因素(8 a平均)

    N0: 不施氮; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2; Y: 年份; N: 氮肥用量; Y×N: Y和N的交互相应。箱形图的上下边缘线分别表示样本5%和95%数值, 箱形图中矩形的上下边缘分别为25%和75%数值, 箱体中实线表示中位数, 虚线表示平均值; 不同小写字母表示不同处理在P<0.05水平差异显著, **表示在P<0.01水平显著。N0: no N fertilizer; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2; Y: year; N: N fertilizer application rate; Y×N: interaction of Y and N. The upper and lower edge lines in the box plot represent the 5% and 95% values of the samples, respectively. The upper and lower edge lines of the rectangle in the box plot represent the 25% and 75% values of the samples, respectively. The solid lines represent the median values, and the dashed lines represent the average values in the box. Different lowercase letters indicate significant differences among different treatments at P<0.05 level, and ** indicates significant differences at P<0.01 level.

    Figure  2.   Maize yield and yield components (8-year average) under different N fertilizer application treatments from 2016 to 2023

    图  3   2016—2023年不同施氮处理玉米氮素利用效率(8 a平均)

    REN: 氮素表观回收率; AEN: 氮素农学利用效率; PFPN: 氮素偏肥生产力; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2; Y: 年份; N: 氮肥用量; Y×N: Y和N的交互相应。箱形图的上下边缘线分别表示样本5%和95%数值, 箱形图中矩形的上下边缘分别为25%和75%数值, 箱体中实线表示中位数, 虚线表示平均值; 不同小写字母表示8年期平均值在P<0.05水平上差异显著, **表示在P<0.01水平差异显著。REN: N apparent recovery efficiency; AEN: N agronomic efficiency; PFPN: N partial factor productivity; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2; Y: year; N: N fertilizer application rate; Y×N: interaction of Y and N. The upper and lower edge lines in the box plot represent the 5% and 95% values of the samples, respectively. The upper and lower edge lines of the rectangle in the box plot represent the 25% and 75% values of the samples, respectively. The solid lines represent the median values, and the dashed lines represent the average values in the box. Different lowercase letters indicate significant differences among different treatments at P<0.05 level, and ** indicates significant differences at P<0.01 level.

    Figure  3.   N use efficiency (8-year average) of maize under different N fertilizer application treatments from 2016 to 2023

    图  4   2016—2023年不同施氮处理0~100 cm土层土壤NO3-N含量

    N0: 不施氮; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2。N0: no N fertilizer; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2.

    Figure  4.   Soil NO3-N content in 0−100 cm soil layer under different N fertilizer application treatments from 2016 to 2023

    图  5   2016—2023年不同施氮处理土壤氮素收支表观平衡(8 a平均)

    UPTN: 氮吸收量; NR: 土壤无机氮素残留量; NL: 氮素表观损失量; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2; Y: 年份; N: 氮肥用量; Y×N: Y和N的交互相应。箱形图的上下边缘线分别代表样本5%和95%数值, 箱形图中矩形的上下边缘分别为25%和75%数值, 箱体中实线表示中位数, 虚线表示平均值, 不同小写字母表示不同处理在P<0.05水平差异显著, **表示在P<0.01水平差异显著; 土壤无机氮残留量中虚线为试验起始土壤氮素积累量。UPTN: N uptake; NR: soil inorganic N residual; NL: N apparent loss; N70: 70 kg∙hm−2; N140: 140 kg∙hm−2; N210: 210 kg∙hm−2; N280: 280 kg∙hm−2; N350: 350 kg∙hm−2; Y: year; N: N fertilizer application rate; Y×N: interaction of Y and N. The upper and lower edge lines in the box plot represent the 5% and 95% values of the samples, respectively. The upper and lower edge lines of the rectangle in the box plot represent the 25% and 75% values of the samples, respectively. The solid lines represent the median values, and the dashed lines represent the average values in the box. Different lowercase letters indicate significant differences among different treatments at P<0.05 level, and ** indicates significant differences at P<0.01 level. The dashed lines in the soil inorganic N residual represent the initial soil N accumulation in the experiment.

    Figure  5.   Apparent balance of soil N budget (8 year average) under different N fertilizer application treatments from 2016 to 2023

    图  6   玉米产量(MY)、氮素表观回收率(REN)、土壤无机氮素残留量(NR)、氮素表观损失量(NL)与氮肥用量的关系(8 a平均)

    **: P<0.01.

    Figure  6.   Correlations between maize yield (MY), N apparent recovery efficiency (REN), soil inorganic N residual (NR), N apparent loss (NL) and N fertilizer application rate (8 year average)

  • [1] 李少昆, 王崇桃. 中国玉米生产技术的演变与发展[J]. 中国农业科学, 2009, 42(6): 1941−1951 doi: 10.3864/j.issn.0578-1752.2009.06.009

    LI S K, WANG C T. Evolution and development of maize production techniques in China[J]. Scientia Agricultura Sinica, 2009, 42(6): 1941−1951 doi: 10.3864/j.issn.0578-1752.2009.06.009

    [2] 国家统计局. 中国统计年鉴2023[M]. 北京: 中国统计出版社, 2023

    National Bureau of Statistic of China. China Statistical Yearbook 2023[M]. Beijing: China Statistics Press, 2023

    [3]

    HOU Y P, XU X P, KONG L L, et al. Improving nitrogen contribution in maize post-tasseling using optimum management under mulch drip irrigation in the semiarid region of Northeast China[J]. Frontiers in Plant Science, 2022, 13: 1095314 doi: 10.3389/fpls.2022.1095314

    [4]

    FAO. World Food and Agriculture — Statistical Yearbook 2023[M]. Rome: FAO, 2023

    [5]

    GALLOWAY J N, ABER J D, ERISMAN J W, et al. The nitrogen cascade[J]. BioScience, 2003, 53(4): 341 doi: 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2

    [6]

    XU M Z, ZHANG Y J, WANG Y H, et al. Optimizing nitrogen input and nitrogen use efficiency through soil nitrogen balance in a long-term winter wheat-summer maize rotation system in North China[J]. European Journal of Agronomy, 2023, 149: 126908 doi: 10.1016/j.eja.2023.126908

    [7] 辛景树, 汪景宽, 薛彦东. 东北黑土区耕地质量评价[M]. 北京: 中国农业出版社, 2017

    XIN J S, WANG J K, XUE Y D. Evaluation of Cultivated Land Quality in Black Soil Region of Northeast China[M]. Beijing: China Agriculture Press, 2017

    [8] 米国华, 伍大利, 陈延玲, 等. 东北玉米化肥减施增效技术途径探讨[J]. 中国农业科学, 2018, 51(14): 2758−2770 doi: 10.3864/j.issn.0578-1752.2018.14.013

    MI G H, WU D L, CHEN Y L, et al. The ways to reduce chemical fertilizer input and increase fertilizer use efficiency in maize in Northeast China[J]. Scientia Agricultura Sinica, 2018, 51(14): 2758−2770 doi: 10.3864/j.issn.0578-1752.2018.14.013

    [9] 王缘怡, 李晓宇, 王寅, 等. 吉林省农户玉米种植与施肥现状调查[J]. 中国农业资源与区划, 2021, 42(9): 262−271

    WANG Y Y, LI X Y, WANG Y, et al. Smallholder investigation on current maize cultivation and fertilization in Jilin Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(9): 262−271

    [10] 许瑞, 徐新朋, 侯云鹏, 等. 生态集约化管理提高东北春玉米产量和氮素利用率[J]. 植物营养与肥料学报, 2020, 26(3): 461−471 doi: 10.11674/zwyf.19145

    XU R, XU X P, HOU Y P, et al. Increasing yield and nitrogen use efficiency of spring maize in Northeast China through ecological intensification management[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 461−471 doi: 10.11674/zwyf.19145

    [11] 孙铖, 周华真, 陈磊, 等. 东北三省农田化肥氮地下淋溶污染等级评估[J]. 农业资源与环境学报, 2018, 35(5): 405−411

    SUN C, ZHOU H Z, CHEN L, et al. Pollution grade assessment of nitrogen leaching from farmland fertilizer in three northeastern provinces[J]. Journal of Agricultural Resources and Environment, 2018, 35(5): 405−411

    [12] 杨忠浩, 党廷辉, 路远, 等. 黄土塬区春玉米氮肥—水分—产量关系研究[J]. 水土保持学报, 2020, 34(4): 237−240, 248

    YANG Z H, DANG T H, LU Y, et al. Study on the relationship between nitrogen fertilizer−water−yield of spring maize in the Loess Plateau[J]. Journal of Soil and Water Conservation, 2020, 34(4): 237−240, 248

    [13] 侯云鹏, 孔丽丽, 李前, 等. 不同施氮水平对春玉米氮素吸收、转运及产量的影响[J]. 玉米科学, 2015, 23(3): 136−142

    HOU Y P, KONG L L, LI Q, et al. Effect of different nitrogen rates on nitrogen absorption, translocation and yield of spring maize[J]. Journal of Maize Sciences, 2015, 23(3): 136−142

    [14] 侯云鹏, 尹彩侠, 孔丽丽, 等. 氮肥对吉林春玉米产量、农学效率和氮养分平衡的影响[J]. 中国土壤与肥料, 2016(6): 93−98 doi: 10.11838/sfsc.20160615

    HOU Y P, YIN C X, KONG L L, et al. Effect of nitrogen fertilizer application on yield, agronomic efficiency and nitrogen balance of spring maize[J]. Soil and Fertilizer Sciences in China, 2016(6): 93−98 doi: 10.11838/sfsc.20160615

    [15] 郑春雨, 沙珊伊, 朱琳, 等. 基于生态和社会效益优化黑土区高产玉米氮肥施用量[J]. 中国农业科学, 2023, 56(11): 2129−2140 doi: 10.3864/j.issn.0578-1752.2023.11.008

    ZHENG C Y, SHA S Y, ZHU L, et al. Optimizing nitrogen fertilizer rate for high-yield maize in black soil region based on ecological and social benefits[J]. Scientia Agricultura Sinica, 2023, 56(11): 2129−2140 doi: 10.3864/j.issn.0578-1752.2023.11.008

    [16] 李兴吉, 王岭, 程松, 等. 吉林省中部黑土区秸秆全量深翻还田条件下春玉米氮肥适宜用量研究[J]. 植物营养与肥料学报, 2022, 28(5): 835−844 doi: 10.11674/zwyf.2021499

    LI X J, WANG L, CHENG S, et al. Suitable nitrogen application rate for spring maize under full straw mulching in black soil area of central Jilin Province[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 835−844 doi: 10.11674/zwyf.2021499

    [17] 孙东旭, 马晓晓, 商启寰, 等. 水基聚合物包膜尿素实现山东夏玉米氮肥减施和一次性基施[J]. 植物营养与肥料学报, 2023, 29(5): 912−923 doi: 10.11674/zwyf.2022511

    SUN D X, MA X X, SHANG Q H, et al. Applying waterborne polymer coated urea to realize input reduction and one-time basal application of nitrogen fertilizer in summer maize production in Shandong Province[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 912−923 doi: 10.11674/zwyf.2022511

    [18] 张磊, 孔丽丽, 侯云鹏, 等. 实现黑土玉米高产和养分高效的控释氮肥与尿素掺混比例[J]. 植物营养与肥料学报, 2022, 28(12): 2201−2213 doi: 10.11674/zwyf.2022179

    ZHANG L, KONG L L, HOU Y P, et al. Optimum application ratio of controlled-release nitrogen fertilizer and urea for high maize yield and nutrient efficiency in black soil[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2201−2213 doi: 10.11674/zwyf.2022179

    [19]

    ZHAO R F, CHEN X P, ZHANG F S, et al. Fertilization and nitrogen balance in a wheat–maize rotation system in North China[J]. Agronomy Journal, 2006, 98(4): 938−945 doi: 10.2134/agronj2005.0157

    [20]

    LIU X J, JU X T, ZHANG F S, et al. Nitrogen dynamics and budgets in a winter wheat–maize cropping system in the North China Plain[J]. Field Crops Research, 2003, 83(2): 111−124 doi: 10.1016/S0378-4290(03)00068-6

    [21]

    LEGHARI S J, WAHOCHO N A, LAGHARI G M, et al. Role of nitrogen for plant growth and development: A review[J]. Advances in Environmental Biology, 2016, 10(9): 209−218

    [22]

    WU Y, BIAN S F, LIU Z M, et al. Drip irrigation incorporating water conservation measures: Effects on soil water–nitrogen utilization, root traits and grain production of spring maize in semi-arid areas[J]. Journal of Integrative Agriculture, 2021, 20(12): 3127−3142 doi: 10.1016/S2095-3119(20)63314-7

    [23] 房孟颖, 卢霖, 王庆燕, 等. 乙矮合剂对不同施氮量夏玉米根系形态构建和产量的影响[J]. 中国农业科学, 2022, 55(24): 4808−4822 doi: 10.3864/j.issn.0578-1752.2022.24.003

    FANG M Y, LU L, WANG Q Y, et al. Effects of ethylene-chlormequat-potassium on root morphological construction and yield of summer maize with different nitrogen application rates[J]. Scientia Agricultura Sinica, 2022, 55(24): 4808−4822 doi: 10.3864/j.issn.0578-1752.2022.24.003

    [24]

    LIU J L, BU L D, ZHU L, et al. Nitrogen fertilization effects on nitrogen balance and use efficiency for film-mulched maize in a semiarid region[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2013, 63(7): 612–622

    [25]

    HOU Y P, XU X P, KONG L L, et al. Film-mulched drip irrigation achieves high maize yield and low N losses in semi-arid areas of northeastern China[J]. European Journal of Agronomy, 2023, 146: 126819 doi: 10.1016/j.eja.2023.126819

    [26] 金容, 郭萍, 周芳, 等. 控释氮肥比例对玉米氮代谢关键酶活性及干物质积累的影响[J]. 四川农业大学学报, 2018, 36(6): 729−736

    JIN R, GUO P, ZHOU F, et al. Effects of controlled-release nitrogen fertilizer ratio on the nitrogen metabolism key enzymes activities and dry matter accumulation of maize[J]. Journal of Sichuan Agricultural University, 2018, 36(6): 729−736

    [27]

    ZHENG C Y, LI C L, TIAN L B, et al. Mixture of controlled-release and normal urea to improve maize root development, post-silking plant growth, and grain filling[J]. European Journal of Agronomy, 2023, 151: 126994 doi: 10.1016/j.eja.2023.126994

    [28] 熊伟仡, 徐开未, 刘明鹏, 等. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735−1748 doi: 10.3864/j.issn.0578-1752.2022.09.004

    XIONG W Y, XU K W, LIU M P, et al. Effects of different nitrogen application levels on photosynthetic characteristics, nitrogen use efficiency and yield of spring maize in Sichuan Province[J]. Scientia Agricultura Sinica, 2022, 55(9): 1735−1748 doi: 10.3864/j.issn.0578-1752.2022.09.004

    [29] 王旭敏, 雒文鹤, 刘朋召, 等. 节水减氮对夏玉米干物质和氮素积累转运及产量的调控效应[J]. 中国农业科学, 2021, 54(15): 3183−3197 doi: 10.3864/j.issn.0578-1752.2021.15.004

    WANG X M, LUO W H, LIU P Z, et al. Regulation effects of water saving and nitrogen reduction on dry matter and nitrogen accumulation, transportation and yield of summer maize[J]. Scientia Agricultura Sinica, 2021, 54(15): 3183−3197 doi: 10.3864/j.issn.0578-1752.2021.15.004

    [30] 何萍, 金继运, 林葆. 氮肥用量对春玉米叶片衰老的影响及其机理研究[J]. 中国农业科学, 1998, 31(3): 1−4 doi: 10.3321/j.issn:0578-1752.1998.03.012

    HE P, JIN J Y, LIN B. Effect of N application rates on leaf senescence and its mechanism in spring maize[J]. Scientia Agricultura Sinica, 1998, 31(3): 1−4 doi: 10.3321/j.issn:0578-1752.1998.03.012

    [31] 钱春荣, 于洋, 宫秀杰, 等. 黑龙江省不同年代玉米杂交种产量对种植密度和施氮水平的响应[J]. 作物学报, 2012, 38(10): 1864−1874

    QIAN C R, YU Y, GONG X J, et al. Response of grain yield to plant density and nitrogen application rate for maize hybrids released from different eras in Heilongjiang Province[J]. Acta Agronomica Sinica, 2012, 38(10): 1864−1874

    [32] 陆晓松, 于东升, 徐志超, 等. 土壤肥力质量与施氮量对小麦氮肥利用效率的综合定量关系研究[J]. 土壤学报, 2019, 56(2): 487−494 doi: 10.11766/trxb201805170170

    LU X S, YU D S, XU Z C, et al. Study on comprehensive quantitative relationship of soil fertility quality and nitrogen application rate with wheat nitrogen use efficiency[J]. Acta Pedologica Sinica, 2019, 56(2): 487−494 doi: 10.11766/trxb201805170170

    [33] 侯云鹏, 孔丽丽, 尹彩侠, 等. 覆膜滴灌下氮肥与种植密度互作对东北春玉米产量、群体养分吸收与转运的调控效应[J]. 植物营养与肥料学报, 2021, 27(1): 54−65 doi: 10.11674/zwyf.20233

    HOU Y P, KONG L L, YIN C X, et al. Interaction between nitrogen fertilizer and plant density on nutrient absorption, translocation and yield of spring maize under drip irrigation in Northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 54−65 doi: 10.11674/zwyf.20233

    [34]

    WANG D, MO Y, LI G Y, et al. Improving maize production and decreasing nitrogen residue in soil using mulched drip fertigation[J]. Agricultural Water Management, 2021, 251: 106871 doi: 10.1016/j.agwat.2021.106871

    [35] 侯云鹏, 孔丽丽, 李前, 等. 滴灌施氮对春玉米氮素吸收、土壤无机氮含量及氮素平衡的影响[J]. 水土保持学报, 2018, 32(1): 238−248

    HOU Y P, KONG L L, LI Q, et al. Effects of drip irrigation with nitrogen on nitrogen uptake, soil inorganic nitrogen content and nitrogen balance of spring maize[J]. Journal of Soil and Water Conservation, 2018, 32(1): 238−248

    [36] 侯云鹏, 孔丽丽, 徐新朋, 等. 基于养分专家系统推荐施肥在东北玉米上的长期综合效应[J]. 农业工程学报, 2021, 37(19): 129−138 doi: 10.11975/j.issn.1002-6819.2021.19.015

    HOU Y P, KONG L L, XU X P, et al. Long-term comprehensive effects of recommended fertilization based on nutrient expert system of maize in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19): 129−138 doi: 10.11975/j.issn.1002-6819.2021.19.015

    [37]

    NIE S W, ENEJI A E, CHEN Y Q, et al. Nitrate leaching from maize intercropping systems with N fertilizer over-dose[J]. Journal of Integrative Agriculture, 2012, 11(9): 1555−1565 doi: 10.1016/S2095-3119(12)60156-7

    [38] 屈佳伟, 高聚林, 于晓芳, 等. 不同氮效率玉米品种对土壤硝态氮时空分布及农田氮素平衡的影响[J]. 作物学报, 2018, 44(5): 737−749 doi: 10.3724/SP.J.1006.2018.00737

    QU J W, GAO J L, YU X F, et al. Effects of maize varieties with different nitrogen efficiencies on temporal and spatial distribution of soil nitrate and field nitrogen balance[J]. Acta Agronomica Sinica, 2018, 44(5): 737−749 doi: 10.3724/SP.J.1006.2018.00737

    [39] 曹玉军, 姚凡云, 吕艳杰, 等. 综合农艺措施实现东北玉米生产和环境效益及土壤肥力的同步提升[J]. 植物营养与肥料学报, 2023, 29(1): 18−30 doi: 10.11674/zwyf.2022225

    CAO Y J, YAO F Y, LÜ Y J, et al. Integrated agronomic measures increase maize production, environmental efficiency, and soil fertility in Northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(1): 18−30 doi: 10.11674/zwyf.2022225

    [40] 侯云鹏, 张磊, 孔丽丽, 等. 施钾对不同肥力土壤玉米钾素吸收、分配及产量的影响[J]. 中国生态农业学报, 2013, 21(11): 1333−1339 doi: 10.3724/SP.J.1011.2013.01333

    HOU Y P, ZHANG L, KONG L L, et al. Effect of potassium application rate on potassium absorption, distribution and yield of spring maize under different soil fertilities[J]. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1333−1339 doi: 10.3724/SP.J.1011.2013.01333

    [41] 侯云鹏, 王立春, 李前, 等. 覆膜滴灌条件下基于玉米产量和土壤磷素平衡的磷肥适用量研究[J]. 中国农业科学, 2019, 52(20): 3573−3584 doi: 10.3864/j.issn.0578-1752.2019.20.008

    HOU Y P, WANG L C, LI Q, et al. Research on optimum phosphorus fertilizer rate based on maize yield and phosphorus balance in soil under film mulched drip irrigation conditions[J]. Scientia Agricultura Sinica, 2019, 52(20): 3573−3584 doi: 10.3864/j.issn.0578-1752.2019.20.008

    [42] 杨宪龙, 路永莉, 同延安, 等. 陕西关中小麦-玉米轮作区协调作物产量和环境效应的农田适宜氮肥用量[J]. 生态学报, 2014, 34(21): 6115−6123

    YANG X L, LU Y L, TONG Y A, et al. Optimum-N application rate to maximize yield and protect the environment in a wheat-maize rotation system on the Guanzhong Plain, Shaanxi Province[J]. Acta Ecologica Sinica, 2014, 34(21): 6115−6123

    [43] 张君, 赵沛义, 潘志华, 等. 基于产量及环境友好的玉米氮肥投入阈值确定[J]. 农业工程学报, 2016, 32(12): 136−143 doi: 10.11975/j.issn.1002-6819.2016.12.020

    ZHANG J, ZHAO P Y, PAN Z H, et al. Determination of input threshold of nitrogen fertilizer based on environment-friendly agriculture and maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(12): 136−143 doi: 10.11975/j.issn.1002-6819.2016.12.020

图(6)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  15
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 修回日期:  2024-09-08
  • 录用日期:  2024-09-09
  • 网络出版日期:  2024-09-09

目录

/

返回文章
返回